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• Solving the overconfidence problem of 
ANNs in extrapolation tasks 

• Obtain a reliable uncertainty map using 
the Last-Layer Laplace Approximation 
method 

• Provide insight into the predictability of 
soil types and identify knowledge gaps 

• This research enhances the reliability 
and applicability of ANNs  
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A B S T R A C T   

Artificial neural networks (ANNs) have proven to be a useful tool for complex questions that involve large 
amounts of data. Our use case of predicting soil maps with ANNs is in high demand by government agencies, 
construction companies, or farmers, given cost and time intensive field work. However, there are two main 
challenges when applying ANNs. In their most common form, deep learning algorithms do not provide inter
pretable predictive uncertainty. This means that properties of an ANN such as the certainty and plausibility of the 
predicted variables, rely on the interpretation by experts rather than being quantified by evaluation metrics 
validating the ANNs. Further, these algorithms have shown a high confidence in their predictions in areas 
geographically distant from the training area or areas sparsely covered by training data. To tackle these chal
lenges, we use the Bayesian deep learning approach “last-layer Laplace approximation”, which is specifically 
designed to quantify uncertainty into deep networks, in our explorative study on soil classification. It corrects the 
overconfident areas without reducing the accuracy of the predictions, giving us a more realistic uncertainty 
expression of the model’s prediction. In our study area in southern Germany, we subdivide the soils into soil 
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regions and as a test case we explicitly exclude two soil regions in the training area but include these regions in 
the prediction. Our results emphasize the need for uncertainty measurement to obtain more reliable and inter
pretable results of ANNs, especially for regions far away from the training area. Moreover, the knowledge gained 
from this research addresses the problem of overconfidence of ANNs and provides valuable information on the 
predictability of soil types and the identification of knowledge gaps. By analyzing regions where the model has 
limited data support and, consequently, high uncertainty, stakeholders can recognize the areas that require more 
data collection efforts.   

1. Introduction 

The use of machine learning in science has become incredibly 
valuable and has significantly transformed many areas of research. The 
number of studies in which methods from the field of machine learning 
(ML) are used is constantly increasing (Zhang et al., 2022). Soil science 
is one of the pioneers here, where extensive applications in the field of 
soil mapping were already developed at the beginning of this century 
(Behrens et al., 2005; McBratney et al., 2003). Today, digital soil map
ping is one of the largest areas in which the methods are widely used for 
all kinds of climatic and geomorphometric regions of the World and in 
different areas of soil science, which has been demonstrated by 
numerous papers (Minasny and McBratney, 2016; Rentschler et al., 
2022; Scull et al., 2003; Taghizadeh-Mehrjardi et al., 2021b; Zhang 
et al., 2022). Methodologically, applications of ML in soil science range 
from linear regression to modelling soil properties and their relation
ships to complex deep learning methods (Moore et al., 1993; Veres et al., 
2015). The increasing use of these methods is not only due to their 
suitability for soil scientific and geographical questions, but also because 
producing soil type maps in the traditional way with cartographers 
surveying the landscape is very costly and time-consuming. This effort 
can be reduced with machine learning, especially for larger or even 
difficult to access areas (Behrens et al., 2005; Grunwald et al., 2011; 
Hewitt, 1993). At the same time, machine learning methods and their 
source code are becoming more accessible due to open-source software 
and widely available computational resources (Dramsch, 2020), and 
with the publication of several large open source datasets containing 
digital elevation models, climate data and other remote sensing data, 
especially those describing the vegetation, it is getting more convenient 
to apply them (Gascon et al., 2017; McBratney et al., 2003). 

Looking at the properties and functions of soils, for example carbon 
and water storage and plant nutrition, the soil type as a highly integrated 
prediction variable has the advantage that we can infer mechanical 
properties, dynamic processes and general characteristics from it with 
little effort (Albrecht et al., 2005; Hartemink and Bockheim, 2013). For 
example, Zhou et al. (2004) showed new spatial patterns in the pre
dicted soil type map with their Bayesian predictive modelling approach. 
Grinand et al. (2008) uses classification tree analysis, which also sup
ports decision-making in soil map extrapolation using machine learning 
methods. Adhikari et al. (2014) compared an existing soil map from a 
field survey with a predicted map calculated using a decision tree model. 
Artificial neural networks (ANNs) are currently one of the most popular 
machine learning methods (Taghizadeh-Mehrjardi et al., 2020, 2021a), 
as they are able to process large amounts of data and compute pre
dictions comparably fast (Haykin, 1998; Schmidhuber, 2015; Silveira 
et al., 2013). Brungard et al. (2015) predicted soil taxonomy classes 
using eleven different models and found that the complex models con
taining neural networks were more accurate. Furthermore, Zhu (2000) 
found that ANNs can be used to obtain high-resolution soil maps. 
Although Heung et al. (2016) has also achieved good results with ANNs, 
they also have to admit that ANNs are difficult to interpret. Despite the 
results being rich in information, a major drawback of the predicted soil 
maps, and especially of the survey maps, is that they do not quantify the 
uncertainty of the individual soil types at a given geographical location 
(Hengl et al., 2017). Instead, mostly is only given an overall accuracy 
statement in the form of a single statistical number. This is usually 

calculated as a coefficient using cross-validation techniques, where a 
subset of the training dataset is used to quantify the uncertainty of the 
overall performance (Wadoux et al., 2020). However, this is not suffi
cient, especially for regional or global tasks using unbalanced data sets, 
and that further analysis on uncertainty statements is needed, which was 
highlighted by (Meyer and Pebesma, 2022). Also, studies considering 
the uncertainty of predicted classes, like soil or vegetation classes, only 
looking at the probability of the predicted class or its confidence inter
val, have been criticized as well (Wadoux et al., 2020). They reported 
that out of 175 papers, only 30 % included uncertainty quantification, 
most were focused on achieving high prediction accuracy and only a 
handful used machine learning methods for the uncertainty quantifica
tion. It is obvious that a better understanding and quantification of the 
uncertainty of soil maps modelled with ML is needed, especially when 
extrapolating from the training domain or when transferring the model 
to other more or less similar domains. In particular, working with ANNs 
as a black box requires such an assessment, as this model class is also 
known to be overconfident (Breiman, 2001; Nguyen et al., 2015; Hein 
et al., 2019). This means that ANNs can predict very reliable results, in 
our case soil classes, with a probability of up to 100 %, even if the input 
data is incorrect or uncertain. The lack of uncertainty measurement by 
the ANNs themselves makes it difficult to assess the reliability of the 
model predictions, which can lead to misinterpretations and incorrect 
decisions (Guo et al., 2017). With this study, we apply an ANN that 
predicts soil types inside and outside the known training domain in a 
trial study. We quantify the uncertainty of our model at every pixel in 
the area using last-layer Laplace Approximation (LLLA) (Kristiadi et al., 
2020). Our aim is to add this uncertainty measurement to a soil classi
fication problem to identify and correct the overconfidence of ANNs and 
to be able to spatially analyse and interpret in a following step the 
prediction of the ANN and its uncertainty derived from the LLLA. 
Further, we will discuss the transferability of the ANN to adjacent 
similar areas. Overall, our analyses will help to better understand and 
interpret results from ML models in soil science to provide new insights 
into soil processes and the spatial structure of the different domains. 

2. Material and methods 

2.1. Study area 

Our study area is located in the centre of Baden-Württemberg in 
Germany and covers an area of about 35 km2. The average altitude in 
this region is 504 m, but if we look at the Swabian Jura (SJ) and the rest 
of the region separately, we have an average of 731 m and 444 m 
respectively, which can also be seen in Fig. 1A. The Neckar valley with 
its tributaries dominates this area, which extends from the southwest to 
the northeast over the area of the study site. In between are predomi
nantly agriculturally used landscapes with settlements and towns, and 
the Schönbuch with its extensive, characteristic forests. 

In the southeast is the SJ, which is characterized by its unique 
maritime geologic formation with calcaric sedimentary parent material 
and the resulting different terrain, climate, geological substrates and 
thus soil types. Because of these features, it stands out from the region 
and in our case can be considered as an almost distinct area. In the 
northwest we have the Black Forest (BF), which also differs from the rest 
of the area in terms by the features mentioned, but at the same time has 
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similarities due to the likewise terrestrial geologic formation including 
sandstone. This great difference in such a small area naturally influences 
the vegetation and the processes in the soil, including soil formation. In 
total, the area comprises five major soil landscapes with different 
characterization, shown in Fig. 1B. These are areas in which, under 
similar geological, morphological and climatic conditions and under the 
influence of human, a landscape-typical association of soils has 
developed. 

2.2. Data 

Fig. 2A shows the soil types in the study area, with each number 
representing a soil type and its characterization. The soil types are 
determined according to the German soil classification system, which is 
based on the processes taking place in the soil and their properties 
(Eckelmann et al., 2005). In our area, there are 40 different soil types 
and the urban area, which is represented by the number 0. A detailed 
description can be seen in the Table 1, including the translation from the 
German into the World Reference Base (WRB) soil systematics (WRB, 
2022). 

In order to preserve the diversity that is lost in this translation, we 
will stick to the German classification. The soil type map used for our 
prediction variable was initially provided by Landesamt für Geologie, 
Rohstoffe und Bergbau (LGRB) Baden-Württemberg as a polygon map 
(Fig. 2A). We converted this polygon map to a raster file using a ras
terization function based on the digital elevation grid. While the original 
scale of the map is 1:50,000, its rasterization allowed to produce a raster 
with pixels of 10 × 10 m. As covariates for the neural network, exem
plified in Fig. 2B, we looked for spatially dense data over the whole 
region to get as detailed data as possible, which is also important for the 
performance of the neural network. For this purpose, we use a digital 
elevation model (Fig. 2B(a)), which was also provided by the LGRB with 
a resolution of 10 m, based on which topographic indices were calcu
lated, also with a resolution of 10 m. The decision on which of the 
variables we use as covariates is based on expert geographical knowl
edge of the region, commonly used variables in the geosciences and by 
using the SCORPAN model introduced by McBratney et al. (2003), 
which is based on Jenny (1983). To cover most of the covariates pre
sented in the SCORPAN model, we also included satellite data. Coper
nicus provides the Sentinel-2 data, available from 2017 in 13 spectral 
bands with a 5-day repetition frequency. For us, the most important 
variables are the visible (R, G, B) and near-infrared bands, which have a 
resolution of 10 m. We use these spectral bands to calculate important 
indices such as the Normalized Difference Vegetation Index (Fig. 2B(d)) 
to describe vegetation cover. Finally, we calculate the median value for 
each index over the time series from March to May 2019. In our analysis, 

we used the median as the mean over years to mitigate the influence of 
outliers and to ensure a more robust representation of the data. To 
capture the influence of geology, we add a geological map with the scale 
of 1:50,000, provided by the LGRB and rasterized in the same way as the 
soil type map. We provide an overview of all the covariates used for the 
ANN and the corresponding references in Table 2. 

2.3. Model architecture 

The origin of Artificial Neural Networks (ANNs) lies in the field of 
image recognition, especially in the area of classification (Goodfellow 
et al., 2016). These models are known for their ability to model multiple 
outcomes quickly and efficiently with a large amount of data, even with 
absence of prior knowledge about the data. Inspired by the neuronal 
structure, they look for dependencies and patterns in the given data that 
include input variables and a responding output variable. ANNS are 
organized in layers consisting of neurons using a (non-)linear activation 
function to transform and forward their inputs to the next layer, 
allowing the ANN to learn complex patterns. The input layer receives the 
input data and consists of one neuron per input feature, in our case, one 
neuron per covariate. The neurons in the hidden layers pass the 
weighted sum of the outputs from the previous layer to their activation 
function. The final layer outputs the prediction and consists of one 
neuron per output variable, in our case, one neuron per soil type. During 
training the weights of the connections between the layers are learned 
via stochastic gradient descent to minimize a loss function measuring 
the error of the predictions. There is a wide variability of different 
constructs for an ANN for computation or information processing in 
terms of the architecture of the neural network, the number, types and 
dimensions of layers, or the activation function chosen. Since the focus 
of our study is on uncertainty of machine learning models in a soil 
context rather than on model performance, the simplicity of the model 
was very important to us. We choose a fully connected multilayer per
ceptron as described in Table 3. As the activation function for the hidden 
layer, the rectified linear unit function was chosen, first used by Hahn
loser et al. (2000) and defined as 

ReLU(x) = max(0, x)

with x as input to a neuron. 

2.4. Confidence and uncertainty measurement of ANNs 

We use the softmax function for the output layer to transform the 
previous layer’s outputs into a vector of probabilities, essentially a 
probability distribution over the input classes. Mathematically, the 
Softmax function is defined as follows (Bridle, 1990; Goodfellow et al., 

Fig. 1. (A) Digital elevation model of the study area with its important landscapes, (B) distribution of the soil families, (C) location of the study area in Germany.  
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2016): 

Softmax(xi) =
exp(xi)

∑
jexp(xi)

where x is the vector of raw values for all classes. The class with the 
highest value is often used as the ANNs’ prediction. However, we are not 
only interested in determining the soil classes for a given location and 
creating a soil type map, but also in evaluating the probability distri
bution of these classes over individual pixels. These probability values 
can be interpreted as a measure of confidence in the classification result. 
A higher maximum probability indicates that the predicted class is more 
likely to accurately represent the soil type at the given pixel position. In 
other words, the ANN has predicted this class with a low uncertainty and 
is therefore very confident about the prediction. A value of 1 demon
strates that there is a very high level of confidence in the predicted class 
for that particular pixel, suggesting that the model is almost certain 
about its prediction. On the other hand, a value of 0 reflects a very low 
level of confidence, indicating that the model shows a high uncertainty 
about the predicted class for that pixel. 

2.5. Last-Layer Laplace Approximation 

To analyse the uncertainty of ANNs, most studies only consider the 
confidence measurement from the previous section. However, this does 
not yet take into account the uncertainty of the model itself. As 
mentioned earlier, ANNs are known to be miscalibrated in terms of their 
uncertainty (Guo et al., 2017) or even tend to be overconfident in areas 
that are not well covered by training points or that are far away from 
them (Hein et al., 2019). To improve this overconfidence and at the 
same time obtain a spatially broad uncertainty expression, we use the 
Last-Layer Laplace Approximation (LLLA) by Kristiadi et al. (2020). This 
method is based on a probabilistic and Bayesian method by MacKay 
(1995), which calculate the a posteriori uncertainty for the neural 
network weights. More precisely, we approximate the posterior with the 
Laplace approximation by estimating the posterior with 

p(Θ|D) ≈ N (Θ; ,Σ) with Σ : ΘMAP =
(
∇2

ΘL (D ;Θ)
⃒
⃒

ΘMAP

)− 1  

where ΘMAP is the maximum a posteriori estimate of the last-layer pa
rameters, obtained by minimizing the negative log posterior L (D ;Θ), e. 
g. standard deep learning with a cross-entropy loss and an isotropic 
Gaussian prior. In other words, this amounts to training the network as 
usual to find ΘMAP, then computing the Hessian of the training loss at 

this point. This approach is significantly cheaper than alternative 
methods based on sampling weights (both in terms of compute and 
memory cost). It also has the benefit that the point estimate (ΘMAP) is 
unaffected by the uncertainty estimation, which simplifies development 
and tuning. Nevertheless, the computation of the Hessian adds a 
computational overhead. Computing the full Hessian is not feasible for 
large networks. But prior work by other authors (Kristiadi et al., 2020) 
has shown that limiting the Hessian to just the *last layer*, which is 
much less costly, already produces structured and useful uncertainty. 
Other approximations to curvature are also possible (Daxberger et al., 
2021), but we limit ourselves to the Last-Layer Laplace approximation in 
this work. 

2.6. Training and optimization process of the model 

In contrast to most studies, our train and validation area is not 
arbitrarily chosen, but we deliberately select a specific area, that con
tains all soil types typical for the four soil landscapes, developed under 
terrestrial conditions, shown as a solid rectangle in Fig. 2A. The reason 
for the intentional selection is that we want to ensure that the soil types 
of the maritime soil landscape, i.e., those from the SJ, are not included in 
order to look at how the model relates to regions about which it does not 
receive information on soil types. In addition, we choose the centre of 
our map because we want to simulate a situation that often occurs, that 
some parts of a study area are well sampled due to previous individual 
projects. 

The datasets contain the 30 covariates from Table 2 and the soil type 
labels. The SJ and its typical soil types are intentionally not present in 
the training and validation dataset to avoid providing information to the 
model. The test dataset (dashed rectangle in Fig. 2A) is similar in respect 
of the occurring soil types to the training and validation area to be able 
to determine the overall accuracy of the model. The detailed breakdown 
of soil types in the different data sets is shown in Table 4 and in Fig. 3. 
The training and validation set comprise 1,922,946 datapoints, while 
the test set contains 824,120 datapoints. 

We tuned architectural and training hyperparameters using 
sequential model-based optimization on 1 % of the full dataset, to obtain 
results in a feasible time. Specifically, we used Bayesian optimization 
(Garnett, 2022) combined with Successive Halving to allocate resources 
to promising settings, as implemented in SMAC (Lindauer et al., 2022). 
We tuned a total of six hyperparameters comprising the number of 
neurons for each of the three layers (between 32 and 512 units), the 
initial learning rate (between 1e − 4 and 1.0), the learning rate sched
uler (cosine annealing or exponentially decaying), and weight decay 

Fig. 2. (A) Soil type map over the study area, created by the LGRB with the train and validation area (solid rectangle) and the test area (dashed rectangle) (B) 
Examples of four used covariates over the study area: a. digital elevation model, b. soil moisture, c. slope and d. normalized difference vegetation index. 

K. Rau et al.                                                                                                                                                                                                                                     



Science of the Total Environment 944 (2024) 173720

5

Table 1 
Detailed description of the soil types.  

Classes 
number 

Label German soil 
classification 

WRB- 
classification 

Detailed information  

0 None None None Ablation, order, 
settlement  

1 A1 Brauner Auenboden, 
Auenbraunerde 

Fluvisol, 
Cambisol 

Partly with gleying 
in the near subsoil, 
of alluvial sand and 
alluvial loam  

2 A2 Auengley-Brauner 
Auenboden, 
Auengley- 
Auenbraunerde 

Cambisol From alluvial sand 
and alluvial clay  

3 A3 Auengley, 
Auenpseudogley- 
Auengley, Brauner 
Auenboden-Auengley 

Fluvisol From alluvial sand 
and alluvial clay  

4 A7 Auenbraunerde, 
Auenparabraunerde 

Cambisol From older alluvial 
sediment  

5 B1 Terra fusca- 
Braunerde, Terra 
fusca-Parabraunerde, 
Reliktbraunerde 

Leptosol, 
Cambisol 

From solifluction 
soils over limestone 
and dolomite stone  

6 B2 Braunerde, Pelosol- 
Braunerde, 
Pseudogley- 
Braunerde 

Cambisol From solifluction 
soils, partly alluvial 
and flood loam  

7 B4 Braunerde, Podsol- 
Braunerde 

Arenosol Mostly podzolic, 
from sandstone, 
debris-rich fluvial 
soils and slope 
debris  

8 CF1 Braunerde-Terra 
fusca, Terra fusca 

Cambisol From limestone and 
dolomite  

9 CF2 Terra fusca, 
Braunerde-Terra 
fusca 

Cambisol From relocated river 
gravels  

10 D1 Pelosol, Braunerde- 
Pelosol, Pseudogley- 
Pelosol 

Luvisol From solifluction 
soils, subordinate 
from alluvial debris  

11 D2 Pelosol, Pseudogley- 
Pelosol 

Luvisol From flood and 
terrace sediments  

12 D3 Pelosol, Braunerde, 
Parabraunerde, Nass- 
and Quellengley 

Cambisol From sliding masses  

13 G1 Gley, Quellengley, 
Kolluvium-Gley 

Gleysol From solifluction 
soils and 
sedimentary 
formations, mostly 
alluvial deposits  

14 G2 Pseudogley-Gley, 
Braunerde-Gley, Gley 

Planosol From flood loam, old 
water and alluvial 
sediment  

15 G3 Anmoorgley, 
Nassgley, Humus- 
and Moorgley 

Gleysol From alluvial 
deposits, floodplain 
and flood sediments, 
and glacial deposits  

16 H1 Niedermoor, Gley- 
Niedermoor, 
Hochmoor 

Gleysol From peat  

17 K1 Kolluvium Anthrosol Partly over 
Braunerde and 
Parabraunerde, from 
alluvial deposits 
over solifluction 
soils  

18 K2 Pseudogley- 
Kolluvium, Gley- 
Kolluvium 

Planosol From alluvial 
deposits  

19 L1 Parabraunerde Luvisol From loess and sand 
loess  

20 L2 Parabraunerde, 
Braunerde- 
Parabraunerde, 
Pseudogley- 
Parabraunerde 

Luvisol Of loess loam and 
loess-loam-rich 
solifluction soils  

Table 1 (continued ) 

Classes 
number 

Label German soil 
classification 

WRB- 
classification 

Detailed information  

21 L3 Parabraunerde, 
Pelosol- 
Parabraunerde, Terra 
fusca-Parabraunerde, 
Pseudogley- 
Parabraunerde 

Luvisol From solifluction 
soils and slope 
debris  

22 L5 Parabraunerde, 
Parabraunerde- 
Braunerde, 
Pseudogley- 
Parabraunerde 

Luvisol From terrace 
sediments, river and 
meltwater gravels  

23 N1 Ranker und 
Braunerde-Ranker 

Leptosol- 
Cambisol 

From sandstone  

24 P1 Podsol und 
Braunerde-Podsol 

Podsol- 
Cambisol 

Of sandstone, 
sandstone and flint 
rubble and 
solifluction soils  

25 Q1 Regosol, partly 
(Locker)Syrosem 

Regosol Of slope debris, 
partly 
anthropogenically 
redeposited debris  

26 R1 Rendzina Leptosol From limestone and 
dolomite, partly 
from slope or 
alluvial debris  

27 R2 Rendzina und 
Pararendzina 

Leptosol From slope debris, 
partly from landslide 
debris  

28 R3 Rendzina und Terra 
fusca-Rendzina 

Leptosol From river gravels  

29 R4 Rendzina Leptosol From calcareous tuff 
and tertiary 
freshwater 
limestone  

30 S1 Pseudogley, 
Braunerde- 
Pseudogley, Pelosol- 
Pseudogley 

Planosol- 
Cambisol 

From solifluction 
soils, partly 
Pleistocene alluvial 
debris  

31 S2 Pseudogley, 
Parabraunerde- 
Pseudogley 

Planosol- 
Luvisol 

Of loess loam and 
loess-loam-rich 
solifluction soils  

32 S3 Pseudogley, 
Kolluvium- 
Pseudogley 

Planosol From alluvial 
deposits  

33 SS1 Stagnogley, 
Moorstagnogley 

Gleysol From solifluction 
soils, basin 
sediments and 
alluvial deposits  

34 X1 Disturbed terrain  Original soils often 
heavily modified  

35 Y1 Rigosol Anthrosol From solifluction 
soils, loess and 
various solid rocks  

36 YY1 Deposit soil  From different 
substrates  

37 Z1 Pararendzina, 
Pelosol- 
Pararendzina, 
Braunerde- 
Pararendzina 

Leptosol- 
Vertisol 

From solifluction 
soils and slope 
debris, partly from 
landslide masses  

38 Z2 Pararendzina Leptosol Of loess and sandy 
loess, partly washed 
away or periglacially 
redeposited  

39 Z4 Pararendzina Leptosol From flood deposits, 
alluvial debris, river 
and meltwater 
gravels  

40 Z7 Pararendzina, 
Braunerde- 
Pararendzina 

Leptosol- 
Cambisol 

From volcanic 
weathering, partly 
covered by 
sedimentary 
material  
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(between 1e − 7 and 1e − 1). We used 500 configurations as the opti
mization budget and trained each network using Adam (Kingma and Ba, 
2015; Loshchilov and Hutter, 2018) with a fixed batch size of 1024 on 
70 % of the training data and used the obtained accuracy on the 30 % 
validation set (obtained via a stratified split from the subsampled train 
dataset) as the optimization objective. For the remaining analysis, the 
best performing network configuration, shown in 3 with a weight decay 
of 0.008394464526246698 and a learning rate of 
0.006203468269518196 was used. 

After optimization, we made the decision to use the ANN with an 
early stop triggered when the ANN predicted the training accuracy, 
measured as the percentage of pixels where the model correctly predicts 
the outcome, to be above 90 % and the accuracy of the test data set did 
not increase significantly. 

3. Results & discussion 

3.1. Loss and accuracy of the ANN 

It is important to note that our research’s aim is not to outperform 
other state-of-the-art ANNs in digital soil mapping. Instead, our goal was 
to provide a realistic representation of the model’s capabilities and 
limitations, especially when dealing with predictions in new areas with 
different soil types. We deliberately kept the model architecture simple 
and performed only a brief tuning process to simulate a real-life situa
tion where quick predictions with a prepared ANN are required. At the 
same time, we focused on a specific scenario where we had two well- 
sampled areas: one for training the model and the other for testing. 
For the rest of the study area, we assume that we have no information on 
soil types. The developed model achieved a low loss of 0.07, which can 
indicate its effectiveness. The training accuracy of 95.11 % and the 
validation accuracy of 94.37 % also indicate that the model is capable of 
performing well within the specific training area, which only includes a 
deliberate selection of soil types. By limiting the training data to a 
geographically enclosed area with similar soil characteristics, we could 
assess how well the model generalizes to unseen similar regions. The test 
area, while geographically close to the training area, had some differ
ences in soil types and their distribution, as shown in Fig. 3. Even with 
these variations, the model’s test accuracy was 47.95 %, which was 
expected and still can be considered as good. Comparing our model to 
other ANNs used in digital soil mapping, particularly for predicting soil 
classes, it performed at an average level, which aligns with our expec
tations based on previous studies (Bagheri et al., 2015; Behrens et al., 
2005; Bodaghabad et al., 2015; Boruvka and Penizek, 2006; Zhu, 2000). 

3.2. Prediction of the ANN 

3.2.1. Predicted soil type map 
When we directly compare the map generated by the neural network 

prediction in Fig. 4 (Plot A) with the ground truth map derived from the 
LGRB in Fig. 2 (Plot A), several significant results emerge. Not all soil 
types occur in the prediction, which is expected, as certain soil types 
were not in the chosen training domain (see Table 4 column two). 
Consequently, the neural network was unable to predict these missing 
soil types because it had no knowledge of them. The decision to consider 
a specific area as our training data, where some soil types are missing, 
stems from the recognition that even within a relatively small 
geographical region, there can be significant variability and transitions 
between different soil types (Warrick, 2001). In such complex land
scapes, it is entirely plausible that certain soil types may not have been 
sampled due to their close proximity or subtle variations that might have 
been overlooked during the sampling process (Heuvelink and Webster, 
2001). By deliberately incorporating this aspect into our training data
set, this approach provides valuable insights into how the ANN responds 
to such common scenarios and assesses its ability to generalize and 
extrapolate predictions across the entire area, including regions with 

Table 2 
Overview of the covariates for the neural network.  

Environmental 
input data  

Definition after 

Topographic 
variables 

Altitude above channel 
network 

Behrens et al. (2010),  
Conrad et al. (2015)  

Eastness   
Northness   
Catchment area   
Convergence index   
Crest index for lowlands   
Crest index for mountain areas   
Diffuse radiation   
Direct radiation   
Elevation   
Elevation below culmination 
line for lowlands   
Elevation below culmination 
line for mountain areas   
Horizontal curvature   
Mean slope   
Plan curvature   
Profile curvature   
Projected distance to stream   
Relative elevation   
Relative hillslope position for 
lowlands   
Relative hillslope position for 
mountain areas   
Steepest slope   
Terrain classification index for 
lowlands   
Topography  

Spectral variables Brightness index Hounkpatin et al. (2018)  
Colouration index   
Hue index   
Normalized difference 
vegetation index   
Redness index   
Saturation index  

Geological 
variables 

Geological map LGRB Baden- 
Württemberg  

Table 3 
Architecture of the Artificial Neural Network.  

Layer Number of neurons Activation function 

Input layer  30 ReLU 
Layer 1  395 ReLU 
Layer 2  510 ReLU 
Layer 3  489 ReLU 
Output layer  41 Softmax  

Table 4 
Distribution of soil types in data subsets.   

Ground truth Training and 
validation area 

Test area 

classes in the 
area 
concerned 

0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 
14, 15, 16, 17, 18, 
19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 
39, 40 

0, 1, 2, 3, 4, 6, 7, 10, 
13, 15, 17, 18, 19, 20, 
21, 23, 25, 30, 31, 32, 
35, 36, 37, 38 

0, 2, 3, 6, 7, 
10, 13, 15, 
17, 18, 20, 
21, 23, 30, 
31, 32, 33, 
34, 36 

Total number of 
classes 

41 24 19 

classes that 
change 
compared to 
previous 
column 

– 5, 8, 9, 11, 12, 14, 16, 
22, 24, 26, 27, 28, 29, 
33, 34, 39, 40 

1, 4, 19, 25, 
33, 34, 35, 
37, 38  
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missing soil types (Meyer and Pebesma, 2022). In our study the absent 
soil types include the soil family Terra fusca (class 5, 8, and 9), a specific 
soil type of the Rendzina family (class 29) and the Pararendzina family 
(class 39 and 40), which are typical soil types from SJ. The other part of 
the soil family Rendzina (classes 26, 27 and 28) is also typical for the SJ 
region and is also found at the border to the BF, specifically in the 
Oberen Gäue and along the upper course of the Neckar. In addition, 
some soil types are only found in specific areas. For instance, Pelosol 
(classes 11 and 12) and Gley (class 14) occur exclusively within the SJ 
region and the northern area of the Neckar valley. Conversely, classes 
16, 22, 33, and 34 are sparsely distributed throughout the entire area. 
Lastly, the soil type Podsol (class 24) is typical for the BF. Because these 
soil types are only found in the specific regions SJ (southeast) and BF 
(northwest), it was anticipated that the SJ and BF areas have incorrect 
predictions for these soil types. The results in Fig. 4B illustrate this, 
where each green pixel represents a correctly predicted soil type. 

The square in the centre of the Fig. 4B, with a high number of 
correctly predicted pixels, corresponds to the training area where the 
model performed very well. Additionally, when observing the diagonal 
of the image, which corresponds to areas similar to the training region, 
the predictions are also accurate. Notably, in the SJ area in the south
east, class 17 is the only one that was partially predicted correctly. Class 
17 contains soils that are a result of human land use, including slope 
sediments from soil erosion (Colluvisol), soils that have been formed by 
mixing of natural material through human activity (Anthrosol) and al
luvial deposits along creeks and rivers. All these azonal soils lack a close 

relation to natural soil forming factors as described by Jenny (1983) and 
used in the SCORPAN model by McBratney et al. (2003) except topog
raphy. They occur in any populated landscape, which is true for our full 
prediction area. This result demonstrates that the spatial pattern of the 
occurrence of azonal soils like Colluvisols and Anthrosols strongly re
lates to their topographic position (Penizek and Boruvka, 2008). This 
facilitates a transfer of the model results to other areas. In addition, it 
can be understood as an indicator for process proximity of a neural 
network, in that basic process-based rules of soil formation are recog
nized and reproduced by the model, as indicated before from several 
studies (Carter and Ciolkosz, 1991; Moore et al., 1993; Osat et al., 2016). 

Consequently, as observed from the predicted map, it is evident that 
certain soil types occur more frequently and are more widely distrib
uted, while others are less prevalent compared to the ground truth map. 
A detailed breakdown of the soil types classes from the soil truth map 
and their descriptions can be found in Table 1. The most substantial 
increase in predicted pixels compared to ground truth pixels, both in 
absolute numbers and relative proportions, was observed for classes 0, 6, 
13, and 20. Additionally, in relative numbers, there was an increase in 
classes 3, 31, and 15. A more moderate increase was noted for classes 2, 
10, 30, 32, and 36. On the other hand, a decrease was observed mainly in 
absolute numbers for classes 7, 17, 19, 21, and 37, and in relative pro
portions for classes 1 and 4. A minor decrease was recorded for classes 
18, 35, 38, 25, and 23. Despite these decreases, it is essential to note that 
they are not as significant as the increases observed in some other 
classes. 

Fig. 3. Histograms of the distribution of soil types in the training, validation and test area.  

Fig. 4. (A) Prediction map of the soil types in our study area by the ANN, (B) Comparison of the prediction with the ground truth: green means correct prediction of 
the soil type. 

K. Rau et al.                                                                                                                                                                                                                                     



Science of the Total Environment 944 (2024) 173720

8

The noticeable increase in the occurrence of classes 0, 6, and 20 can 
be attributed to the fact that our training data set is unbalanced. These 
particular classes are more frequently represented in the training set 
compared to other soil types. As a result, the neural network tends to 
predict them more often in the output (Johnson and Khoshgoftaar, 
2019). During the prediction, not only are soil types that are absent in 
the training area assigned to certain regions, but also less frequently 
occurring soil types, as clearly shown in Fig. 5. The increase in the 
occurrence of certain soil classes in our ANN is not a random phenom
enon. For instance, even though class 0 exists in the Swabian Jura region 
in the ground truth, it is not predicted there by our ANN. Instead, classes 
6 and 20 dominate in that region. Both represent the two most 
commonly occurring soil types in Central Europe, making it reasonable 
for the ANN to classify areas about which it has no information (Ame
lung et al., 2018). The occurrence of Class 13 in the prediction is not 
accounted for by the frequency of it the training data. When we closely 
examine its distribution in the prediction, we find that this class is 
predicted for the high ridges around the BF. Previously, these areas were 
dominated by classes 6, 7, and 30, but now they are predicted as class 
13, along with classes 17 and 0. Both Class 13 and Class 17 share similar 
characteristics to those in the ground truth soil types. For example, Gley 
soils can indeed occur in the BF as associated soils, although not as 
extensively as depicted in the prediction (Bleich et al., 1982). The 
overestimation of Class 17 in the region is not surprising, as Colluvium is 
a correlated sediment of soil erosion, and it can occur independently of 
climate and geology, primarily in depressions and valleys, just as shown 
in the prediction (Kopecky-Hermanns et al., 2022). Another significant 
change is observed in classes 1 to 4, which collectively represent the 
soils in the floodplains. The increase in class 3 is a result of soil types 1 
and 2 being assigned to it. On the other hand, the decrease in class 4 is 
because this soil type is now primarily predicted as class 2. Despite these 
shifts, it is important to note that overall, the soil types in classes 1 to 4 
have remained within their respective soil family. The prediction map 
highlights this phenomenon, particularly in the upper course of the 
Neckar and its tributaries, where class 3 is predicted, and in the Nagold 
valley, which is located in the BF. Meanwhile, the middle and lower 
Neckar valley are primarily predicted as class 1. These predictions 
support the notion that the floodplain soils retain their general charac
teristics, even with some changes in specific soil type assignments. The 
repetitive nature of river systems, with their well-defined channels and 
floodplain areas, provides a distinct and recognizable pattern that can be 
learned effectively by the neural network during training (Wiechmann, 
2000). 

3.3. Confidence and uncertainty of the ANN 

Based on the previous results, especially the incorrect prediction of 
soil types in the SJ and BF regions, the next step is to analyse the con
fidence of the ANN in predicting the soil type. In the case of an ANN, 
apart from cross-validation methods and other techniques, a common 
step is to assess the probability of the predicted class (Wadoux et al., 
2020). This probability can be interpreted as the model’s confidence in 
its predictions. In Fig. 5A, this confidence value is plotted. 

A value of 1 indicates high confidence in the corresponding pixel’s 
predicted class, while a value of 0 indicates low confidence in the pre
diction. This information provides insights into the reliability of the 
model’s predictions for each specific pixel and the corresponding pre
dicted class. One striking observation is the presence of three areas 
where pixels with high confidence are concentrated. The central area 
corresponds to the training region of the ANN, and it aligns with pre
vious results, indicating that over 90 % of the pixel predictions in this 
region were accurate. However, it is not the area with the highest overall 
confidence, as we would expected it. Instead, the regions of SJ in the 
southeast and BF in the northwest show almost uniform high confidence 
values approaching one, despite the ANN’s poor performance in these 
areas. These regions are geographically and in terms of soil types distant 
from the training area and in addition the predicted classes often differ 
from the ground truth labels. As previously mentioned, ANNs tends to be 
overconfident in situations where it lacks sufficient training data, 
leading to inaccurate interpretations (Kasiviswanathan et al., 2018; 
Hein et al., 2019). Looking specifically at the pixels where the ANN 
correctly predicted soil types, we find that the mean confidence is 93 %. 
Interestingly, even for the wrong predictions, the mean confidence re
mains relatively high at 92 %. This indicates that the ANN assigns high 
confidence to both correct and incorrect predictions, further exacer
bating the problem of overconfidence. Furthermore, in the surrounding 
regions of our training area, there are lower confidence values for the 
prediction of classes, particularly extending along the diagonal from 
southwest to northeast. This is also problematic because this area 
outside the training domain is where the prediction worked well 
previously. 

Our examination of the confidence distribution of the probability of 
the predicted classes for each individual class reinforces a similar 
pattern, as visually depicted in Fig. 6. The confidence distribution is 
represented by the blue curve on the left-hand side of the axis at each 
class. The soil types shown here correspond to those in the training set, 
as only these could be taken into account by the ANN in its prediction 
and thus in the confidence distribution. Strikingly, for each class, there is 
a peak near the value of 1, indicating that most confidence values for 

Fig. 5. (A) probability of the class in our study area predicted by the ANN calculated with the SoftMax function, interpreted as confidence of the ANN (B) probability 
after applying the LLLA, interpreted as uncertainty of the ANN. 
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these classes lying there. As well, as the confidence values decreases, the 
number of points lying around the lower values rapidly decreases, 
approaching zero. However, we noticed a distinct pattern for classes 4, 
23, and 25, where a wider distribution of confidence values was 
observed. This can be attributed to the fact that these soil types appear 
infrequently in the predictions and are located in a diagonal region on 
the map, where we have a more heterogeneous representation of the 
model’s confidence. Interestingly, classes 1, 19, 21, 35 to 38, which are 
also situated in this diagonal region, exhibit a weakly spread confidence 
distribution. Given the characteristics of the confidence distributions 
observed, it is evident that conducting a reliable analysis of the pre
dictions made by the ANN is challenging. The presence of sharp peaks 
near 1 for most classes, suggests that the ANN is generally highly 
confident in its predictions. But as shown before, this high confidence 
may not always be well-calibrated or reliable, which is to be expected 
due to the absence of these soil types in the training area (Kramer and 
Leonard, 1990; Gal et al., 2016). These findings emphasize the need to 
address the issue of overconfidence in the ANN, particularly for distant 
regions from the training area, and to improve the model’s confidence 
prediction with an uncertainty measurement in the surrounding regions 
where it previously showed correct predictions. These further in
vestigations and adjustments are necessary to enhance the reliability 
and applicability of ANNs. 

3.4. Uncertainty of the ANN due to Last-Layer Laplace Approximation 

As described in Section 2.5, the application of the LLLA method has 
allowed us to obtain uncertainty statements for our model’s predictions, 
effectively addressing the issue of overconfidence commonly associated 
with ANNs (Kristiadi et al., 2020). Following the post-processing of the 
model confidence with the LLLA method, we obtained Plot B in Fig. 5, 
where lighter shades represent higher uncertainty. In the plot, we 
observe distinctive patterns among different regions. The training area 
stands out prominently with low uncertainty, boasting the lowest overall 
uncertainty levels across the map. This aligns with the predictions in the 
training area, as it has the highest concentration of correctly predicted 
soil types. Conversely, the SJ region now exhibits the highest uncer
tainty in the plot, indicating a higher level of uncertainty for the pre
dicted soil types in that area. This observation is consistent with our 
knowledge that this area could not be predicted accurately because its 
main soil types were not provided to the ANN during training (Gal et al., 
2016). However, it is worth noting that the few correctly predicted 
pixels belonging to class 17 in the SJ area have the lowest uncertainty 
there. This is again consistent with the previously observed fact that the 

model correctly observed the soils and remains confident after applying 
LLLA with the correctly predicted class 17 representing the colluvisols, 
which also simplifies the application of the model by adding LLLA to 
different regions. Similar to the SJ area, we also observe the BF region 
with a relatively high uncertainty, except for the Nagold valley, where 
the uncertainty is notably lower. This indicates that the model’s pre
dictions in the BF region are generally less reliable, except for the spe
cific area of the Nagold valley where the model exhibits higher 
confidence. In the southwest region, we encounter a more diverse pic
ture with varying levels of uncertainty. As in the previous cases, there is 
surprisingly little uncertainty in the Neckar Valley. Upon closer exami
nation, we find that the predicted soil type for both the Neckar valley 
and the Nagold valley corresponds to the previously described soil type 
number 3. Although this prediction was incorrect, the low uncertainty in 
these cases can be explained by the fact that the original soil types in 
both valleys belong to the same soil type family as class 3. Even though 
they are ultimately incorrect, this similarity in soil type family allows 
the model to be more certain in its predictions (Rossiter et al., 2017). 
The area in the diagonal of the map, which is the most similar to the 
training area, has now slightly higher uncertainty after the application 
of LLLA. Nevertheless, these uncertainty values are still higher than 
those observed in the SJ and BF regions. The slight increase in uncer
tainty after LLLA is acceptable, even if it is the most correct prediction 
after the training range. Considering the other results we have obtained, 
this increase in uncertainty is still within an acceptable range. Upon 
revisiting the mean uncertainty of all correctly predicted pixels, we find 
that it has dropped to 60.4 %, which is significantly less than before. If 
we instead examine the mean uncertainty of incorrectly predicted 
values, we observe a decrease of nearly 20 %, indicating that we are able 
to detect the uncertainty even on average. 

When we delve into more detail by examining the corresponding part 
in Fig. 6, which is depicted in orange on the right side of the axis for each 
class, we gain a more diverse and informative understanding compared 
to the previous representation. The plots are wider, indicating a broader 
distribution of uncertainty values. Notably, Class 3 stands out distinctly, 
as it is the only class with a peak of uncertainty surpassing 90 %. This 
aligns with the previous knowledge that Class 3 is found in the valleys, 
precisely representing the locations where the uncertainty is lowest. 
Additionally, the only other wider plot at higher values belongs to Class 
1, which belongs to the soil family of floodplains as Class 3, and exhibits 
similar behaviour. It has been further observed that class 2 and class 4, 
also belonging to this soil family, show a notable concentration of un
certainty values around the average, unlike all the rest of the classes. 
These clear patterns of uncertainty within the alluvial soil family 

Fig. 6. Confidence and uncertainty distribution of the soil type classes individually, illustrated with the help of a kernel density estimate and additionally by quartiles 
of the distribution of each predicted class (blue shows the distribution before the application of LLLA, salmon afterwards). 
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underline the ability of the LLLA uncertainty measurement to recognize 
subtle geographical and pedological features. This shows that the model 
not only recognizes that these soil types belong to the alluvial soil 
family, but also distinguishes them from other soil types with different 
characteristics. 

The analysis of Class 0 reveals that its uncertainty values span a wide 
range from nearly 0 to 1, but there is a significant concentration at low 
values. Similar patterns are observed for other classes, specifically Class 
6 and Class 20. This is a positive outcome compared to the previous 
situation, as these soil types were previously consistently overpredicted 
with high confidence at the SJ, but at the same time still well predicted 
in the other areas. The uncertainty statement thus covers both situations 
well for these classes. This shows that the uncertainty measurement can 
better classify the spatial variability of the soil classes and is not only 
based on the fact that these classes occur with the highest number of 
data points in the training data, which is important for a reliably pre
diction with an imbalanced dataset (Meyer and Pebesma, 2022). 
Another important observation is related to Classes 13 and 17, which 
now exhibit distributions concentrated at the lowest confidence values, 
indicating higher uncertainty for these classes. This increased uncer
tainty now captures the fact that these classes were completely over
estimated in the BF region, leading to their relative increase in the 
number of pixels in the prediction range. In summary, the integration of 
the Bayesian method LLLA has allowed us to obtain more reliable un
certainty estimates for the model’s predictions, which has proven to be 
in line with other Baysian methods for predicting soil variables (Poggio 
et al., 2016). The distinct patterns observed in the uncertainty values for 
different regions provide valuable insights into the model’s performance 
and its reliability in various areas. 

4. Implication on soil management 

In the field of soil management, the integration of artificial neural 
networks (ANNs) is promising to improve precision and efficiency 
(Khaledian and Miller, 2020). However, a major challenge is to address 
the problem of overconfidence in ANNs, which can lead to inaccurate 
predictions and suboptimal decision-making. To combat this, we can 
leverage the Last-Layer Laplace Approximation method, which gener
ates reliable uncertainty statements from ANNs. This method allows us 
to create uncertainty maps that play a crucial role in decision-making 
processes (McBratney, 1992; Heuvelink and Webster, 2023). Uncer
tainty maps allow soil mappers to target and prioritize areas to increase 
efficiency. By incorporating targeted sampling in regions with high 
uncertainty into the prediction workflow, we can quickly improve the 
quality of soil maps generated by ANNs (Stumpf et al., 2017; Richer-de 
et al., 2019). Thereby optimizing soil management practices by 
providing the dual benefit of broader spatial coverage and targeted re- 
sampling. In addition, exploring the potential transferability of a 
trained ANN to similar regions with comparable soil classes is of great 
interest (Mirzaeitalarposhti et al., 2022). When an ANN trained in one 
region is applied to another with similar soil characteristics, it is crucial 
to understand how well the model performs in the new context. A map 
indicating areas of greater uncertainty can directly show where the ANN 
may not function effectively. This visualization of uncertainty is crucial 
as it helps us understand the limitations and constraints of the model in 
practical applications. Such information provides essential insights for 
future investigations and improvements in both data collection and 
model development. 

5. Conclusion 

The primary objective of this research was to develop a reliable and 
straightforward method for quantifying uncertainty in Artificial Neural 
Networks (ANNs) used in digital soil mapping, particularly for soil type 
predictions in order to make the predictions more reliable and inter
pretable. This also includes the correction of overconfidence of ANNs, a 

tendency of ANNs to make overconfident predictions, especially in re
gions with limited data. This issue is particularly concerning in soil 
mapping because accurate and precise soil information is essential for 
effective soil management. To tackle the issue of insufficient uncertainty 
measurements for ANNs, we introduced a technique named Last-Layer 
Laplace Approximation (LLLA). The LLLA method is designed to pro
duce more trustworthy uncertainty statements for the specified study 
area predicted by ANN. By incorporating LLLA into the ANN modelling 
process, the study demonstrates its effectiveness in showing of the areas, 
where the ANN erroneously has a high confidence and thereby preserves 
the low uncertainty in the correctly predicted areas. This improvement 
in uncertainty estimation ensures that the model’s predictions are more 
reliable and trustworthy. This is crucial, because it helps users under
stand the level of confidence they can place in the model’s predictions 
and therefore make decisions. Additionally, this research provides 
valuable insights into identifying knowledge gaps by analyzing areas 
with limited data support and high uncertainty. This information guides 
researchers in prioritizing data collection efforts in regions where the 
model’s predictions are less reliable. Moving forward, we plan to apply 
the ANN with the LLLA approach to real soil samples and compare the 
results with maps generated by soil mappers. This comparison will 
further enhance our understanding of the underlying processes. In 
conclusion, the incorporation of Last-Layer Laplace Approximation into 
ANN modelling offers a promising solution to improve uncertainty 
estimation, making digital soil mapping predictions more reliable, 
interpretable, and actionable for effective soil management. 
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Hérault, J. (Eds.), Neurocomputing. Springer, Berlin Heidelberg, Berlin, Heidelberg, 
pp. 227–236. 

Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards Jr., T.C., 2015. 
Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 
239, 68–83. 

Carter, B.J., Ciolkosz, E.J., 1991. Slope gradient and aspect effects on soils developed 
from sandstone in Pennsylvania. Geoderma 49 (3), 199–213. https://doi.org/ 
10.1016/0016-7061(91)90076-6. https://www.sciencedirect.com/science/article/p 
ii/0016706191900766. 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., 
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