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Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment 
plans to uncertainties can be quantified and mitigated with robust/min-max 
and stochastic/probabilistic treatment analysis and optimization techniques. 
Those methods usually rely on sparse random, importance, or worst-case 
sampling. Inevitably, this imposes a trade-off between computational speed 
and accuracy of the uncertainty propagation.

Here, we investigate analytical probabilistic modeling (APM) as an 
alternative for uncertainty propagation and minimization in IMPT that does 
not rely on scenario sampling. APM propagates probability distributions over 
range and setup uncertainties via a Gaussian pencil-beam approximation into 
moments of the probability distributions over the resulting dose in closed form. 
It supports arbitrary correlation models and allows for efficient incorporation 
of fractionation effects regarding random and systematic errors.

We evaluate the trade-off between run-time and accuracy of APM uncertainty 
computations on three patient datasets. Results are compared against reference 
computations facilitating importance and random sampling. Two approximation 
techniques to accelerate uncertainty propagation and minimization based on 
probabilistic treatment plan optimization are presented. Runtimes are measured 
on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to 
a sampling-based benchmark (5000 random samples).

APM accurately propagates range and setup uncertainties into dose 
uncertainties at competitive run-times (GPU � 5 min). The resulting standard 
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deviation (expectation value) of dose show average global γ3%/3 mm pass rates 
between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance 
sampling strategies provided less accuracy at higher run-times considering 
only a single fraction. Considering fractionation, APM uncertainty propagation 
and treatment plan optimization was proven to be possible at constant time 
complexity, while run-times of sampling-based computations are linear 
in the number of fractions. Using sum sampling within APM, uncertainty 
propagation can only be accelerated at the cost of reduced accuracy in variance 
calculations. For probabilistic plan optimization, we were able to approximate 
the necessary pre-computations within seconds, yielding treatment plans of 
similar quality as gained from exact uncertainty propagation.

APM is suited to enhance the trade-off between speed and accuracy in 
uncertainty propagation and probabilistic treatment plan optimization, 
especially in the context of fractionation. This brings fully-fledged APM 
computations within reach of clinical application.

Keywords: proton therapy, uncertainty, setup error, range error, probabilistic 
optimization, treatment planning, robustness

(Some figures may appear in colour only in the online journal)

1.  Introduction

The physical characteristics of dose deposition in intensity-modulated proton therapy (IMPT) 
allow for better dose conformity than in photon therapy, however, at the cost of an increased 
sensitivity to uncertainties (Lomax 2008a, 2008b). While photon dose distributions subject 
to uncertainty can be described by the static dose cloud approximation (van Herk et al 2000, 
Bortfeld et al 2004), the assumption of a spatially invariant dose distribution covering a vari-
able patient anatomy usually fails for protons. Consequently, conventional photon margin 
concepts alone do not suffice to achieve robustness for protons.

Besides extensions or generalizations of photon margin concepts for application with 
protons in combination with single-field-uniform-dose techniques (Knopf et  al 2013, 
Fredriksson and Bokrantz 2016), many approaches to achieve robustness rely on the computa-
tion of a case specific uncertainty metric. This can be a worst-case dose distribution to be used 
for robust optimization (Chu et al 2005, Pflugfelder et al 2008, Fredriksson et al 2011, Chen 
et al 2012, Liu et al 2012) or an expected dose distribution along with its standard deviation 
to be used for probabilistic optimization (Unkelbach et al 2009).

While those techniques generate more robust treatment plans and can also provide robust-
ness indicators, both rely on the repeated simulation of different treatment scenarios. Such 
a sampling process inevitably imposes limitations regarding the accuracy of the uncertainty 
metric due to computational cost. E.g. worst case dose distributions are solely calculated for 
fully correlated shift scenarios (more sophisticated correlation models easily result in prohibi-
tive combinatorics), expected dose distributions and dose standard deviations are estimated 
on ten samples during each optimization step (Unkelbach et al 2009) (higher sampling rates 
linearly increase computation time), and the interplay of systematic and random errors in the 
context of fractionated radiation therapy are often neglected (because they would have to be 
modeled separately (Lowe et al 2016)). So far, methods addressing these computational and 
conceptual limitations are sparse and still rely on sampled scenarios at their basis; i.e. Sobotta 
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et al (2012) and Perkó et al (2016) build surrogate models from sampled scenarios, enabling 
for example the incorporation of fractionation effects, while not necessarily generalizing to 
optimization.

Previously, Bangert et al (2013) introduced analytical probabilistic modeling (APM) for 
probabilistic IMPT planning, enabling closed-form uncertainty propagation for range and 
setup errors without scenario sampling. APM uses an analytical, Gaussian representation of 
a pencil beam dose calculation algorithm facilitating analytical integration against Gaussian 
probability densities. Thereby, APM yields an analytical mapping of pencil beam weights to 
the expectation value and covariance of dose in IMPT, directly generalizing to probabilistic 
optimization. APM implicitly supports the implementation of arbitrary correlation assump-
tions on the uncertainty model. Additionally it differentiates between systematic and random 
sources of uncertainty in the context of fractionation at constant computational complexity.

There are three main contributions in this paper. (1) We investigate the accuracy for APM 
computations of the expectation value and the standard deviation of an IMPT dose distribution 
subject to range and setup uncertainties. (2) We study the computational complexity of APM 
moment calculations as well as probabilistic optimization with a particular focus on frac-
tionation. (3) We introduce new approximations that achieve a significant reduction in com-
putational cost in APM while incuring only minor decrease in quality. For all investigations, 
sampling-based uncertainty propagation techniques serve as benchmark solutions. Hence, this 
paper also provides a quantitative basis for a general discussion of the trade-off between speed 
and accuracy in uncertainty quantification.

2.  Analytical probabilistic modeling

The overarching idea of APM is to describe uncertainty in treatment plan quality indicators by 
the moments of the underlying probability distribution (Bangert et al 2013). E.g. uncertainty 
in dose is described by its expectation value and (co-)variance. The APM formalism is based 
on a functional approximation of the dose calculation algorithm that enables closed-form 
propagation of Gaussian probability distributions describing uncertain input parameters (i.e. 
range ∆z and patient setup ∆x/y) through all numerical computations.

A detailed introduction to APM is given by Bangert et al (2013). At this point, we only 
summarize the main findings which are directly relevant for present study.

2.1.  Moment calculation

Conventional dose optimization usually employs a dose influence matrix D whose elements 
Dij map the weight wj of pencil beam j to the dose di in voxel i. With APM, it is possible to 
compute a probabilistic analogue D that provides a linear mapping from pencil beam weights 
to the expected dose E[d]. Given the probability densities p(∆x/y) over setup errors and p(∆z) 
over range errors, for the first raw moment, we need to solve

Dij =

∫ ∫ ∫
p(∆x) p(∆y) p(∆z)Dijd∆xd∆yd∆z,� (1)

to obtain an expected dose influence matrix Dij, and map the spot weights w to the expectation 
value of dose E[d] via

E[di] =
∑

j

wjDij.� (2)

N Wahl et alPhys. Med. Biol. 62 (2017) 5790
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For the second central moment, we compute the raw moment contribution Ṽijlm to get a 4th 
order (co)variance influence tensor

Vijlm = Ṽijlm −DijDlm =

∫ ∫ ∫
p(∆x) p(∆y) p(∆z)DijDlmd∆xd∆yd∆z −DijDlm

�

(3)

describing the influence of a pairwise pencil beam combination jm in the (co)variance of dose 
on voxels i and l via

Cov [di, dl] =
∑

jm

wjwmVijlm,� (4)

σ2 [di] = Cov [di, di] =
∑

jm

wjwmVijim.� (5)

We solve the integrals (1) and (3) by assuming Gaussian probability densities and accurately 
approximating the pencil beam algorithm of Hong et al (1996) by solely relying on (superpo-
sitions of) Gaussians. This results in Dij and Vijlm taking the form of a sum over one and two 
dimensional Gaussian Kernels as detailed in appendix A.

2.2.  Probabilistic optimization

Equations (2) and (4) represent a closed-form expression of the expectation value and covari-
ance of the dose. Together they can be used to model uncertainty in the dose with a multivari-
ate normal distribution. This allows for the closed form formulation (and optimization) of the 
expected value E[F ] of a piece-wise squared objective function F = (d − d∗) TP (d − d∗) 
(Oelfke and Bortfeld 2001)

E[F(w)] = tr(PΣd)︸ ︷︷ ︸∑
i pi

∑
jm Vijimwjwm

+(E[d]− d∗)TP(E[d]− d∗)︸ ︷︷ ︸
∑

i pi(
∑

j Dijwj−d∗
i )

2
� (6)

where P = diag ( p1, p2, · · · , pnV ) is a diagonal optimization penalty matrix and d∗ is the pre-
scribed or desired dose distribution (compare Bangert et al 2013, equation (36)).

Storage of the full (nV × nB × nV × nB)-sized tensor V , where nV and nB are number of 
voxels and beamlets, respectively, is despite its sparsity and symmetry infeasible. For the 
optimization of E[F ], however, we do not need to compute the elements where i �= l, and can 
omit storage of the remaining voxel dimension by performing the product with the penalty 
matrix P on the fly (compare Bangert et al 2013, equation (38)).

Ωjm =
∑

i

piVijim,� (7)

The resulting matrix Ω is only of size nB × nB  and maps pairwise spot-combinations to the 
penalty-weighted integral variance in dose via the quadratic form

tr
(
PΣd) =

∑
i

pi

∑
jm

Vijimwjwm = wTΩw =
∑

VOI∈VOIs

pVOIwTΩVOIw� (8)

which is used to compute the variance term in equation (6) for optimization. By separating 
into VOI-based matrices ΩVOI during summation, re-optimizations with changed optimization 
penalties pVOI  can be performed without recomputing Ω.

N Wahl et alPhys. Med. Biol. 62 (2017) 5790
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2.3.  Uncertainty model

In this paper, for all computations except for the validation (see section 3) we adopt the ‘ray-
wise’ uncertainty model described in Unkelbach et al (2009) and Bangert et al (2013); errors 
are spatially independent, all beamlets belonging to the same beam underlie perfectly cor-
related lateral setup errors (corresponding to full beam shifts) and all beamlets on the same 
central ray (thus penetrating the same tissue) underlie perfectly correlated range errors. If not 
stated otherwise, we assume random setup errors of 2 mm with a random range error of 1 mm 
and a systematic setup error of 1 mm with a relative systematic depth error of 3.5%.

2.4.  Fractionation

Within the APM formalism, fractionation effects can be incorporated with a correlation model 
over two different sources of uncertainty (Bangert et al 2013, section 3.5). Therefore, sys-
tematic preparation errors are considered as perfectly correlated through all fractions while 
random execution errors are considered as uncorrelated through all fractions. While the expec-
tation value is independent from the correlation assumptions and therefore F, the raw moment 
contribution Ṽijlm in equation (3) is now composed out of two terms weighted by the fraction 
count F:

Vijlm =
Ṽcorr

ijlm + (F − 1) Ṽuncorr
ijlm

F
−DijDlm.� (9)

The term Ṽcorr
ijlm  includes the systematic and random covariance components, i.e. the full uncer-

tainty model with potential correlation for a single fraction, while Ṽuncorr
ijlm  is evaluated based 

on the systematic correlation model but assuming always uncorrelated random components to 
model behavior across fractions.

For F  >  1 the respective Gaussian kernels have to be evaluated twice and not F times. 
Hence, the evaluation of V  (and therefore σ2[d]) is independent of the number of fractions F.

2.5.  Implementation

We implemented APM within a C++ research treatment planning plugin for MITK (Wolf 
et  al 2005). The radiological depth is modeled with a point-of-interest (POI) ray-casting 
(Schaffner et  al 1999, Siggel et  al 2012). For optimization we use IPOPT (Wächter and 
Biegler 2006). Section  4 and appendix B elaborate on the computationally challenging 
implementation of V  and Ω on CPU and GPU.

2.6.  APM computations in 3D

Earlier, APM computations have only been demonstrated for one- or two-dimensional prob-
lems (Bangert et al 2013). To prove the applicability of APM to 3D patient data, we analyzed 
three patient datasets: an intra-cranial case, a para-spinal case and a prostate case which are 
quantified in table C1.

Figure 1 shows a physical dose distribution, its expectation value and standard deviation 
before and after probabilistic optimization for 5 fractions, demonstrating the reduction of 
standard deviation within the target and the OARs.

To emphasize the effect of the fraction number on σ[d] with and without probabilistic 
planning, we show standard deviation volume histograms (SDVH) (as used by Unkelbach 
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et al 2009, Perkó et al 2016) of all three patient cases in figure 2 for two different fractiona-
tion schemes. As expected, the standard deviation in the target is significantly decreased by 
probabilistic optimization. Due to a consistent influence of systematic uncertainties, we also 
observe considerable uncertainty decrease in the delivered dose for 30 fractions.

3.  Validation of APM moment calculations

3.1.  Methods

While Bangert et al (2013) validated the Gaussian approximation of the proton depth dose 
component, the accuracy of pencil beam algorithms is generally limited in the presence of 
pronounced density heterogeneities in the beam path—for particles this is especially reflected 
around the Bragg peak region. However, our use of a POI ray-casting yields reasonable first 
order approximation of the Bragg peak distortions (Schaffner et al 1999). For APM dose vari-
ance calculations there is, however, an implicit additional approximation that may compro-
mise accuracy: As the calculation of the radiological depth is limited by the POI ray-cast in the 
nominal scenario, potential range changes induced by lateral positioning errors are neglected.

Here, we investigate the accuracy of this approximation in comparison to sampling based 
approaches, where radiological depth and the dose influence are explicitly recomputed for 
each sampled scenario. Multivariate random sampling with large sample number nS serves 
as a benchmark. We use the global γ-criterion (Low et  al 1998), providing a distance-to-
agreement metric between two distributions, for validation and comparison of the moment 
computations and measure their bias.

3.1.1.  Random sampling benchmark.  The number nS of random samples has to be chosen 
high enough to ensure a sufficiently accurate result for the sample mean d̄  and standard devia-
tion σ[d] of dose. For the sample mean this is given by its standard error σ[d̄] = σ[d]/√nS . 

Figure 1.  Exemplary axial slice for a prostate plan displaying d , E[d] and σ[d] for a 
conventional optimization ((a)–(c)) and a probabilistic optimization ((d)–(f)) for F  =  5 
fractions. (a) d  in Gy, conv. (b) E[d] in Gy, conv. (c) σ[d] in Gy, conv. (d) d  in Gy, APM 
opt. (e) E[d] in Gy, APM opt. (f) σ[d] in Gy, APM opt.

N Wahl et alPhys. Med. Biol. 62 (2017) 5790



5796

The error σ [σ [d]] of the sample standard deviation σ[d] is obtained by the approximation 
σ [σ [d]] ≈ σ [d]/

√
2 (nS − 1) valid for large nS (Squires 2001). We use nS  =  5000 samples, 

where the expected relative error of the standard deviation drops below  ≈1% and the standard 
error of the mean drops below  ≈1.4% of σ[d].

To restrict computations for sampling, we only use non-fractionated treatment (F  =  1) for 
the validation. Also, we use a ‘beam-wise’ correlation model where all pencil beam uncertain-
ties are perfectly correlated within the same beam, and uncorrelated otherwise, enabling use 
of simple spatial shifts and radiological depth scaling for the individual beams.

3.2.  Importance sampling in the beam space

To decrease the number of samples, importance sampling is often used instead of random 
sampling, where the samples are chosen systematically from a grid in a multivariate uni-
form distributed error space and weighted with the probability density of the corresponding 
uncertainty model. In random sampling, the multivariate space is covered inherently, since the 
sample is selected from the full multivariate distribution. Multivariate importance sampling 
using grids, however, is not trivial; coverage of the complete multivariate space requires the 
evaluation of combinations of the scenarios along each independent grid dimension.

In case of independent beam shifts or, more general, uncertainty models that implement 
non-perfect correlation assumptions, the amount of combinations quickly becomes infeasible 
for sampling, and some combinations need to be neglected. In the presented case, the uncer-
tainty space is composed of nB independent beams from which each can be shifted or scaled 
along d  =  3 independent dimensions. The number of scenarios per dimension is denoted per 
nP. For nP  =  3, we investigate the influence of neglecting spatial and beam-wise combinations 
completely (nS = nP · d · nB − (d − 1), labeled WI from here on), using only spatial combina-
tions (nS = nd

P · nB, WII) and sampling spatial and beamwise combinations (nS = nd·nB
P , WIII), 

on accuracy of the resulting central moments and its influence on computation time. Applying 
WIII on the para-spinal case with nB  =  3, however, would already require nS ≈ 2 × 104, and 
will therefore not be evaluated.

Figure 2.  Standard deviation volume histograms for a respective target (blue) and an 
OAR (orange) of all three patient cases. Curves for a conventional plan (dotted) and a 
probabilistic plan (solid) are compared for 1 fraction ((a)–(c)) and 30 fractions ((d)–(f)). 
(a) Intra-cranial, one fraction. (b) Para-spinal, one fraction. (c) Prostate, one fraction. 
(d) Intra-cranial, 30 fractions. (e) Para-spinal, 30 fractions. (f) Prostate, 30 fractions.
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3.3.  Results

Figure 3 shows γ3%/3 mm-index calculations for all cases of E[d] and σ[d] of APM and the 
sample mean and standard deviation of the importance sampling strategies WI−III with respect 
to the benchmark values gained from randomly sampling nS  =  5000 treatment scenarios, as 
well as the mean error to quantify bias. γ-distributions and an absolute difference map from 
the para-spinal case were selected for illustration, since this case showed the most significant 
difference; violations of the γ-criterion are mostly clustered in regions, where the analytical 
calculation of pencil-beams passing lung-tissue was cut off in depth. In most cases the mean 
error indicates a systematic underestimation of the standard deviation, which is especially 
pronounced for the more sparse importance sampling strategies WI, II. For APM, the underes-
timation can be mainly attributed to cut-off effects from the analytical dose engine, while for 
importance sampling this directly results from neglecting (parts of) the multivariate nature of 
the underlying uncertainty model. The expectation value/sample mean of dose is independent 
of the correlation model, and therefore accurately represented by importance sampling as well 
as by APM.

Validation of APM with a more strict γ-criterion, i.e. 2%/2 mm, led to slightly lower γ 
pass rates (99.9%, 96.9% and 99.6% for intra-cranial, para-spinal and prostate case) for E[d], 
and a decrease to 98.5%, 82.4% and 91.3% for σ[d]. Those pass rates, however, need to be 
critically interpreted under consideration of data resolution (since no interpolation was used 
for γ-calculation) and, especially for σ[d], the standard error of the sample standard deviation 
(≈1%) and mean (≈1.4% of σ[d]).

Figure 3.  γ-index distributions of E[d] (a) and σ[d] (b) of APM compared to random 
sampling for the para-spinal case. For both E[d] and σ[d] the global γ-criterion 3% / 
3 mm is used. (c) shows the absolute difference of APM’s σ[d] to random sampling. 
(d) adds comparison to importance sampling (WI−III) and shows γ pass rates and 
the mean absolute differences / bias for APM and importance sampling for all 
three cases. 

N Wahl et alPhys. Med. Biol. 62 (2017) 5790



5798

4.  Computational performance of APM

4.1.  Methods

For calculation of the variance influence elements Vijim, we use a voxel-based approach to avoid 
finding the voxels belonging to a single pencil beam combination jm. To enable an efficient 
voxel-based variance influence calculation, we cache the respective pencil beam-specific voxel 
properties from the Dij-calculations. Even though the computation of D still underlies the same 
complexity (O(nbnv) with number of pencil beams nb and number of voxels nv), caching and 
uncertainty evaluation increases the run-time compared to D. The computation of the variance 
influence elements Vijim, however, is of complexity O(nvn2

b) and thus squared in number of pencil 
beams nb. As the computation of V utilizes the same bivariate Gaussian kernel for each element, 
it is especially suitable for parallelization. We implemented a CPU and a GPU algorithm to inves-
tigate speed-up. A more detailed description of both implementations is given in appendix B.

4.1.1.  Fast approximations via sampling.  Both variance and the integral variance influence 
matrix are computed by inner products of V  with w (equations (5) and (7)), resulting in a large 
sum along one or more tensor dimensions. These sums can be estimated by taking random 
samples from the respective sum. The following paragraphs detail these sampling processes 
for computing approximations of (1) the standard deviation distribution σ[d] or (2) the optim
ization matrix Ω.

Approximating σ[d ].  For estimating the standard deviation of dose σ [di] in a voxel i, we 
define a set JM containing all pencil beam combinations where j  >  m (since Vijim = Vimij). 
First, equation (5) is approximated by evaluating all summands where j  =  m (since they are 
consistent along any correlation assumptions and the evaluation is only of linear complexity), 
and estimate the contribution from the other summands JM by randomly sampling a subset 
ĴM . The estimated variance σ̂2[di] in voxel i is then given by

σ̂2[di] =
∑

j

wjwjVijij + 2 · nJM

nĴM

∑

jm∈ĴM

wjwmVijim� (10)

where nJM and nĴM  are the number of combinations in the population and the sample, respec-
tively. Due to sampling we might have negative results for σ̂2[d] which are projected to zero 
before computing the approximate standard deviation σ̂[d] =

√
σ̂2[d]. The noise in σ̂[d] may 

be reduced by application of a denoising filter. In this work, we heuristically chose the total 
variation denoising implemented in MITK4 with only 2 iterations and λ = 0.1.

Theoretically, computation of an estimate of Ω is feasible via importance sampling in par-
allel. We choose, however, not to elaborate this issue since the random selection of index 
combinations jm does not guarantee the estimate of Ω to be positive semi-definite, which is 
required for optimization.

Approximating Ω.  We can estimate the Ω-matrix corresponding to a VOI, or more general a 
voxel population I by only evaluating a sample ̂I from the sum over all voxels ΩI =

∑
i∈I piVijim. 

The estimated matrix Ω̂I is then given by

Ω̂I =
nI

nÎ

∑

i∈Î

piVijim� (11)

4 http://docs.mitk.org/2016.03/classitk_1_1TotalVariationDenoisingImageFilter.html
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where nI and nÎ are the number of voxels in the population and the sample, respectively. By 
choosing adequate voxel populations, we can vary the sample size across different VOIs or 
VOI types (i.e. targets and OARs). We investigate the difference between the resulting plans 
computed with Ω and Ω̂ as well as the performance gain depending on sample size.

4.2.  Results

4.2.1.  Performance of APM.  We evaluate the performance of probabilistic planning work-
flows with APM on a desktop machine5 (PC) with 8 parallel threads and 1 GPU and a worksta-
tion6 (WS) with 32 parallel threads and 2 GPUs.

Runtimes.  Table 1 summarizes the run-time analysis for full APM calculations (without sam-
pling approximations) on all three patient cases for a fractionated treatment (as presented in 
figure 1).

The computations underlying σ[d] and Ω are in principle identical. However, as we neglect 
unclassified normal tissue for optimization, we see a reduction in computation time by 
approximately a factor three to eight. This does not directly correspond to the reduction factor 
in number of voxels, since target voxels may exhibit many more pencil-beam contributions 
(and thus combinations), making those voxels more computationally demanding than others.

Ω- and σ[d]-calculations prove to scale very well between PC and WS; their ratio corre-
sponds roughly to the ratio of number of threads times ratio of CPU clock. The GPU code is 
up to a magnitude faster than the CPU code, while the speed-up is more pronounced on the 
PC, despite using two older high-performance GPUs on the WS. Due to the older architecture, 
this also indicates reasonable scaling of the GPU code.

Runtime differences between PC and WS for d  and E[d] and for optimizations are 
neglectable, since less distinguished effort was made to tune the respective algorithms. 
Comparing optimization of F  and E[F ] run-times range in the same time scale, while E[F ] 
optimization showed, in terms of iterations, faster convergence with the same convergence 
criteria. Since D has about 25% more non-zero elements than the nominal D matrix, time for 
objective function evaluations increase accordingly. A single wTΩVOIw-matrix product adds 
about additional 20% (of time needed for a Dw product) per objective function and gradient 
evaluation, depending on the number of spots.

Table 1.  Runtimes (in seconds) for nominal and probabilistic dose/moment calculation 
and optimization for fractionated treatment plans of all three patient cases. The 
table  differentiates between PC and Workstation (WS) run-times and between CPU 
and GPU implementations for the full σ[d]-calculation and the Ω-matrix calculation 
without normal tissue for optimization (in parentheses).

Patient & machine d E[d]

σ[d] (Ω)

F  opt. E[F ] opt.CPU GPU

Intra-cranial PC 10.1 32.1 490.0 (75.2) 85.0 (14.7) 17.6 9.6
WS 8.9 32.0 117.8 (17.7) 63.6 (11.7) 15.7 9.0

Para-spinal PC 16.2 40.3 1173.2 (512.9) 223.9 (110.8) 30.1 47.1
WS 13.8 38.7 269.0 (127.8) 176.5 (83.8) 27.5 33.2

Prostate PC 31.2 111.2 1492.1 (472.7) 202.1 (75.3) 41.8 33.7
WS 29.6 101.7 364.2 (116.2) 155.7 (58.8) 37.9 28.9

5 Windows 7, Intel� CoreTM i7-2600 CPU @ 3.4 GHz, nVidia GTX 970.
6 2  ×  Intel� Xeon� E5-2687W0 @ 3.10 GHz, 2  ×  nVidia Tesla K20.
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Performance in the context of fractionation compared to sampling.  In table  1 run-times 
are shown for a fractionated treatment (F  >  1) with APM. On the CPU, this corresponded 
to an average overhead of 75% to computations with F  =  1, on the GPU the difference was 
neglectable. Figure  4 compares run-times of full APM calculations to the number of dose 
calculations needed for the sampling strategies depending on F. Using our ray-wise correla-
tion model, APM run-time on the CPU equals 30–40 dose calculations on average. Applying 
the beam-wise perfect correlation model (as in the validation computations) the run-time rises 
approximately tenfold. In all cases, the most accurate sampling computations obtained by the 

Figure 4.  Run-time equivalent curves for APM and sampling strategies. A point (F, ns,T) 
in the diagram corresponds to the run-time of calculating ns,T · F dose distributions, 
corresponding to sampling ns,T treatments with F fractions. Hence the filled blue 
area contains all ns,T and F combinations that can be computed faster than an APM 
E[d] + σ[d] CPU calculation with a beam-wise perfect correlation model (solid blue 
line). The dashed blue line shows the run-time equivalent for the ray-wise correlation 
model. The GPU break-even is displayed as dotted blue line and independent of the 
correlation model. Since APMs moment calculations are independent of F, its run-time 
equivalent curves decrease with F, while the sampling strategies realize as horizontal 
(black) lines. (a) Intra-cranial. (b) Para-spinal. (c) Prostate.

Figure 5.  σ[d] distributions from exact (a) and sampled (b-c) calculations for the 
prostate case at relative sample sizes s. (d) compares to exact calculation for all patient 
cases depending on s. (a) Exact σ[d]. (b) σ[d], s = 25%. (c) σ[d], s = 5%. (d) RMSE 
(Gy) and γ pass rates for approximated σ[d]-distributions of all cases.
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random benchmark or WIII are clearly outperformed. The GPU implementation was faster than 
any investigated sampling set-up and is independent of the correlation model.

4.2.2.  Quality of approximated σ-distributions.  We estimated standard deviation distributions 
σ[d] for different beamlet combination sample sizes with equation (10). We present exemplary 
transversal slices for the prostate case from the respective σ[d]-distributions in figures 5(a)–(c) 
to illustrate the increasing noise. Root-mean-square error (RMSE) and γ3%/3 mm pass rates 
of the sampled distributions with respect to the exact calculations for all cases are shown in 
figure 5(d). The noise, represented by the RMSE, increases with decreasing sample size, as 
expected, reaching values of  ≈3% of the maximum standard deviation. γ pass rates are com-
parable or better than the ones achieved with importance sampling approaches in section 3.3. 
Before application of the total variation filter, RMSE was approximately three times higher, 
with 3–10% smaller γ pass rates.

4.2.3.  Quality of probabilistic plans optimized with approximated Ω-matrix.  Figure 6 exam-
ines the differences between plans resulting from probabilistic optimization with an exactly 
computed Ω-matrix to the ones achieved with an estimated Ω̂-matrix via voxel sampling as 
described in equation (11). While the sampling error in the estimated Ω̂ is random in nature, 
each realization of Ω̂ systematically influences subsequent probabilistic optimization. The 
resulting variations in w manifest as lateral difference ‘streaks’ in figures 6(a)–(c). For the 
prostate case, variations up to  ±2 Gy in d  (less present in E[d] and σ[d]) occured across mul-
tiple sampling runs of Ω̂. Yet global plan variability is maintained, as seen in the SDVHs in 
figures 6(d)–(e). Since σ[d] is not available from the voxel sampling, it needed to be recom-
puted for analysis.

Figure 6.  Difference (in Gy) of nominal dose (a), expected dose (b) and standard 
deviation (c) between a probabilistic prostate plan d  optimized with exactly computed 
Ω-matrix and a probabilistic plan ds optimized with an estimated Ω̂-matrix. The relative 
sample size was 1.6% and F  =  5 fractions were used. ((d)–(f)) show corresponding 
SDVHs for all three patients optimized with Ω (solid) and with Ω̂ (dash-dotted) compared 
to the conventional plan (dotted). (d) Intra-cranial. (e) Para-spinal. (f) Prostate.

N Wahl et alPhys. Med. Biol. 62 (2017) 5790



5802

4.2.4.  Performance of the sampling methods.  We evaluated the performance of the approx
imation methods for the CPU implementation on the PC by linear regression, since in the 
optimal case relative sample size s should depend on relative run-time t via s  =  mt  +  c with 
m  =  1 and c = 0%. For approximation of Ω with voxel sampling, we found nearly linear 
decrease (m  =  0.99) with minimum overhead (c = 1.02%) averaged over all three cases. The 
pencil-beam combination sampling shows more significant run-time overhead (c = 7.33%) 
and therefore also suboptimal decrease (m  =  0.93). The lowest tested relative sample size for 
the Ω-estimation was 1.6%, leading to absolute run-times of a few seconds.

We omit detailed analysis on GPU and WS since the sampling implementation does not 
affect interior APM computations and should thus scale similarly on the WS and, for voxel 
sampling of the Ω-matrix, also on the GPUs.

5.  Discussion

5.1.  Accuracy

Section 3 with figure 3 in particular show that APM accurately propagates the uncertainty to 
expectation value and standard deviation of dose. For the head-case and the prostate case, γ 
pass rates for expectation value and standard deviation of dose were almost 100%. Only for the 
para-spinal case, the global gamma pass-rate dropped to 94%, with violations of the criterion 
mainly in low-dose regions outside the target. For the standard deviation calculation, APM 
outperformed any applied importance sampling approach, which was only able to reproduce 
accurate expectation value of dose and underestimated the standard deviation significantly 
when neglecting combinations of errors in the multivariate space. Due to the otherwise too 
large number of samples, we did only use three scenarios per dimension. Using more sce-
narios per dimension would improve accuracy, but not reduce the bias for WI−II .

Arguably, the sample numbers do not escalate the same way when shifts in the patient 
coordinate frame are used. For example, Perkó et al (2016) showed that only a few hundred 
dose calculations are sufficient to construct an accurate meta-model of dose for a fractionated 
treatment with polynomial chaos expansion by numerical integration. It is however debatable 
if a low-dimensional uncertainty model in the patient coordinate frame is representative in 
modern clinical systems combining gantries with robotic patient tables with many degrees of 
freedom. In these scenarios, APM facilitates accurate impact analysis of different uncertainty 
models on conventional and probabilistic planning through its ability to allow high-dimen-
sional linearly correlated multivariate random variables as input.

Our study examined the accuracy of the uncertainty propagation with respect to the underly-
ing pencil beam dose model, which could be refined further by using multiple lateral Gaussian 
components (Parodi et al 2013) up to fine-/sub-sampling methods using a tight lateral grid of 
narrow Gaussian components (Soukup et al 2005). Extension to non-Gaussian input uncer-
tainties could also be approached by superimposing multiple Gaussians. Yet APM stays, con-
trary to most sampling based techniques, limited to the class of analytically approximable 
dose models. Thus further validation, preferably by sampling Monte-Carlo engines, has to be 
performed to weigh accuracy of the dose model against accuracy of uncertainty propagation, 
apart from run-time issues discussed in section 5.3.

5.2.  Performance

While APMs computation of the expected dose influence matrix is of same complexity as a 
nominal dose influence matrix computation, the variance calculation of APM is of squared 
complexity in the number of pencil beams, making it is sensitive to the corresponding plan 
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parameters. APM proved, however, to be well suited for parallelization, leading to run-times 
within a few minutes in all three presented cases with comparably cheap desktop GPUs, while 
also maintaining scalability to high-end hardware in workstations (table 1). Once variance 
influence matrix are available, they enable probabilistic optimization at minimum overhead 
compared to conventional optimization. Thus, all computations for a probabilistic planning 
workflow can be carried out in minutes (up to 30 min for the in our study most demanding 
prostate case on the PC, and in less than 10 min on a workstation). As a consequence, the pre-
sented run-times are not only competitive in a research environment but also regarding clinical 
systems, where calculating hundreds or thousands of samples might not be applicable.

Additionally, APM efficiently incorporates fractionation effects, outperforming even the 
most sparse importance sampling approach considered for treatments with more than approxi-
mately 4 fractions, as shown in figure 4. APM can directly map the random and systematic 
errors of the input space to the expectation value and variance of dose for any given number 
of fractions, without the need of neglecting systematic or random components (i.e. Lowe et al 
2016) or sampling fractions (i.e. Park et al 2013). Technically, models of the complete frac-
tionation spectrum of σ[d] and Ω could be calculated in a single pass with minimum overhead, 
making APM an interesting tool to investigate the dose uncertainty depending on the frac-
tionation schemes, or perform probabilistic optimizations for several fractionation schemes at 
low computational cost.

5.3.  Accuracy to run-time trade-off

Uncertainty propagation and probabilistic or robust treatment plan optimization inevitably 
define a trade-off between speed and accuracy. In an ideal world, we would simply generate a 
sufficiently large number of random Monte Carlo samples within seconds (here we used 5000 
to achieve a 1% standard error of the standard deviation for a single fraction treatment). While 
this may be feasible in clouds or high-performance computing centers, on available desktop 
machines or workstations in the clinic and common research environments, other solutions 
at decreased accuracy must be accepted. Even for conventional treatment plan optimization, 
Monte Carlo computations are often considered too costly and optimization is performed with 
dose influence computed by pencil-beam approximations.

In contrast to sampling approaches, APM introduces a new layer of abstraction, which 
may complicate its application within established systems. Yet it broadens flexibility for plan-
ning and analysis within a high-dimensional multivariate space of linearly correlated input 
random variables. APM showed better trade-off in accuracy and speed than importance sam-
pling approaches, often outperforming them in both quantities, especially in fractionated treat-
ments. Further, APM computations are not subject to statistical variations compared with the 
results from sampling techniques.

With the introduced sub-sampling methods for standard deviation and variance influence 
estimation, different trade-offs can be explicitly defined depending on application and per-
formance of the available system. Approximated σ[d]-distributions were noisy at suboptimal 
run-time benefit and may be useful for fast qualitative analysis, but not for quantitative study. 
For optimization with approximated Ω-matrices, however, figure 6 and section 4.2.4 showed 
that even with low-accuracy approximations nearly similarly robust plans would be gener-
ated within  ≈2% of the run-time needed for an exact calculation. Random differences across 
resulting plans could be minimized or controlled by using regionally weighted sample sizes 
or other, e.g. grid-based, voxel selection schemes. The potential of using very sparse voxel 
information for estimating variance contributions also needs further investigation; it relativ-
izes the importance of variance information with respect to the expectation value, which APM 
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provides at comparably low computational cost, in probabilistic optimization. Therefore, 
sampling approximations might also prove valuable regarding the application of APM for 
more complex and clinically relevant objective functions, e.g. based on dose-volume points or 
equivalent uniform dose. These objectives, however, may require the solution and/or approxi-
maiton of novel Gaussian integrals that also depend on covariance elements of V , which is part 
of ongoing research in our group.

6.  Conclusion

We have evaluated accuracy and performance of a robustness analysis and probabilistic planning 
tool using analytical probabilistic modeling for three patient datasets. The expectation value E[d] 
and standard deviation σ[d] calculations were benchmarked with 5000 random samples, show-
ing γ pass-rates between 94.2% and 100.0%. We showed that APM is suited for fast probabilis-
tic planning work-flows with run-times of  ≈1–3.5 min by exploiting sampling approximations. 
During all APM computations, random and systematic errors in fractionated treatment could 
be efficiently incorporated at constant time complexity in the number of fractions. The results 
showed a competitive accuracy to run-time trade-off for research and clinical use cases.
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Appendix A.  Gaussian kernels for analytical probabilistic modeling

A.1.  Expectation value of dose influence D

A matrix element Dij describing the influence of pencil beam j on the expectation value of 
dose in voxel i is given by

Dij = Lx
ijL

y
ijZij� (A.1)

with the lateral components

Lx
ij =

1√
2π

(
λ2

ij +Σx
jj

) · e
(xij−µx

j )
2

2(λ2
ij+Σx

jj)� (A.2)

where λ2
ij corresponds to the local variance of the Gaussian component describing the lateral 

dose fall off of pencil beam j in voxel i.
Σx is the covariance matrix of the pencil beam setup error in the spatial dimension x. The 

depth component is evaluated with the superposition of 10 Gaussian components and given by

Zij =
∑
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where now δ2
jk and µjk  are the variance and mean, respectively, of the kth Gaussian depth 

component and for spot j.

A.2.  Covariance of dose influence: V

An element of the covariance influence tensor Vijlm describing the influence of pencil beams j 
and m to the covariance in voxels i and l is given by

Vijlm = Υx
ijlmΥ

y
ijlmΞ

x
ijlm −DijDlm� (A.4)

with the lateral components

Υx
ijlm =

e−
1
2 (xijlm−µx
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2π
√
|Λijlm +Σ jm|

.� (A.5)
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The depth component is given by

Ξijlm =
∑
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Appendix B.  Details on the CPU and GPU implementations of APM

B.1.  CPU implementation of the variance calculation

On the CPU, we exploit parallelization with OpenMP 2.07 (e.g. Dagum and Menon (1998)), 
by distributing the individual voxels across multiple threads. The assignment of voxels to 
threads is handled dynamically, since the run-time per voxel differs based on the number of 
impinging pencil beams and their respective correlations. Additionally, we can exploit sym-
metry in V  for evaluating equations (5) and (7) since Vijim = Vimij.

B.2.  GPU implementation of the variance calculation

For implementation on the GPU we use nVidia CUDA 7.5 (e.g. Nickolls et al 2008). Contrary 
to the CPU implementation, for each voxel we sequentially start a kernel that evaluates all 
impinging spot combinations in parallel. While a kernel for a voxel is running, the data for the 

7 Specifications by the OpenMP Architecture Review Board at www.openmp.org/drupal/mp-documents/cspec20.pdf 
(accessed 2016-22-11).
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next voxel is prepared in host memory, leaving only the memory management overhead of a 
single memory copy operation per voxel to the device. If multiple devices are available, the 
voxels are in parallel dynamically distributed to the devices. The GPU implementation does 
not exploit correlation models but evaluates every single pair-wise pencil-beam combination 
influencing the variance in a voxel. Consequently, the runtime is independent from the under-
lying correlation model.

Appendix C.  Patient data information
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