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Abstract

Many inference problems involving questions of optimality ask for the maximum
or the minimum of a finite set of unknown quantities. This technical report derives
the first two posterior moments of the maximum of two correlated Gaussian variables
and the first two posterior moments of the two generating variables (corresponding to
Gaussian approximations minimizing relative entropy). It is shown how this can be
used to build a heuristic approximation to the maximum relationship over a finite set
of Gaussian variables, allowing approximate inference by Expectation Propagation on
such quantities.

1 Introduction

Many optimization problems involve inference on the maximum or minimum of a set of vari-
ables. This very broad class includes shortest path problems [Burton and Toint, 1992], Rein-
forcement Learning [Dearden et al., 1998], and scientific inference in Seismology [Neumann-
Denzau and Behrens, 1984], to name but a few. Often, there is a corresponding inverse
optimization problem [Ahuja and Orlin, 2001, Heuberger, 2004], where the optimal solution
is known with some uncertainty and the question is about the quantities generating this opti-
mum. Most contemporary algorithms for this case aim to provide a point estimate (typically
the least-squares solution), but have trouble offering an error estimate on this estimate as
well.
This work derives (Section 2) mean and variance of the posterior of the maximum of two cor-
related Gaussian variables (for forward optimization problems), and the mean and variance
on the posterior of the Gaussian variables generating the maximum (for inverse optimization
problems). These two moments correspond to the approximation within the exponential fam-
ily of Gaussian distributions minimizing the Kullback-Leibler Divergence (relative entropy)
to the true posterior. It will be shown how these results can be used to build a heuristic
approximation to the max of a finite set of normal variables (Section 3). Together, this
provides the necessary results for Expectation Propagation [Minka, 2001] on graphs involv-
ing the “max” relationship. Because maximum and minimum obey the simple relationship
max({xi}) = −min({−xi}), this also allows inference on the minimum where necessary.
Limitations of this approximation are examined in Section 4.
The moments of the normalized likelihood function of the maximum of two normal variables
have previously been derived by Clark [1961]. To my best knowledge, this is the first publi-
cation deriving the full posterior, and the first to report the posterior for the inverse problem
(see also Section 2.4.3).

2 The Maximum of Two Gaussian Variables

2.1 Notation

We consider two normally distributed variables x1 and x2, forming the vector x. Let there
be some prior (i.e. outside) information Ig giving rise to the belief x, Ig

1

ar
X

iv
:0

91
0.

01
15

v1
  [

st
at

.M
L

] 
 1

 O
ct

 2
00

9



p(x1, x2|Ig) = N (x;µg,Σg) =
1

2πσg1σg2(1− ρ2)1/2
exp

(
−1

2
(x− µg)TΣ−1

g (x− µg)
)

(1)
over their values. Here we have defined a mean vector µg = (µg1, µg2)T and a covariance
matrix Σg. The latter has the form

Σg =
(

σ2
g1 ρσg1σg2

ρσg1σg2 σ2
g2

)
and thus Σ−1

g =
1

σ2
g1σ

2
g2(1− ρ2)

(
σ2

g2 −ρσg1σg2

−ρσg1σg2 σ2
g1

)
(2)

with the linear coefficient of correlation ρ

ρ =
cov(x1, x2)
σg1σg2

(3)

(for notational convenience, the index g is dropped from ρ because there will be no chance for
confusion). We further introduce the variable m which is defined through m = max(x1, x2),
and we assume that there is some outside prior information Im on the value of m as well: m, Im

p(m|Im) = N (m;µm, σ
2
m) (4)

The inference problems to be solved are

I The posterior over m given both Im and Ig (jointly called Ic):

p(m|Ic) =
p(m|Im)

∫
p(x|m)p(x|Ig) dx∫ [

p(m|Im)
∫
p(x|m)p(x|Ig) dx

]
dm

= Z−1p(m|Im)
∫
p(x|m)p(x|Ig) dx

(5)
with the normalization constant Z =

∫∫
p(x,m|Ic) dx dm. This problem will be called

the “forward” problem here.

I The posterior over x given Ic,

p(x|Ic) =
p(x|Ig)

∫
p(m|x)p(m|Im) dm∫ [

p(x|Ig)
∫
p(x|m)p(m|Im) dm

]
dx

= Z−1p(x|Ig)
∫
p(m|x)p(m|Im) dm

(6)
This problem will be called the “inverse” problem.

Throughout the derivations, the notation N , φ,Φ

N (x;µ, σ2) ≡ 1√
2πσ2

exp

[
−1

2

(
x− µ
σ

)2
]

φ(x) ≡ 1√
2π

exp
(
−x

2

2

)
Φ(x) ≡

∫ x

−∞
φ(t) dt =

1
2

[
1 + erf

(
x√
2

)] (7)

will be used to denote the general and standard normal probability density functions (PDF)
and the standard normal cumulative distribution function (CDF).

2.2 Some Integrals

The derivations in this paper will repeatedly feature certain integrals. The first two incom-
plete moments of the standard Gaussian are∫ y

−∞
tφ(t) dt = −φ(y)∫ y

−∞
t2φ(t) dt = Φ(y)− yφ(y)

(8)

this is obvious directly from differentiation. A simple substitution gives∫ y

−∞
tN (t;α, β2) dt = αΦ

(
y − α
β

)
− βφ

(
y − α
β

)
(9)∫ y

−∞
t2N (t;α, β2) dt =(α2 + β2)Φ

(
y − α
β

)
−(α+ y)βφ

(
y − α
β

)
(10)
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Further, we will use the integrals∫ ∞
−∞

Φ
(
x− a
b

)
N (x;α, β2) dx = Φ(z)∫ ∞

−∞
xΦ
(
x− a
b

)
N (x;α, β2) dx = αΦ(z) +

β2

b
√

1 + β2/b2
φ(z)

∫ ∞
−∞

x2Φ
(
x− a
b

)
N (x;α, β2) dx = (α2 + β2)Φ(z) +

[
2α

β2

b
√

1 + β2/b2
− z β4

b2 + β2

]
φ(z)

where z =
α− a

b
√

1 + β2/b2

(11)
A derivation of these results can, for example, be found in Rasmussen and Williams [2006,
section 3.9]

2.3 Analytic Forms

2.3.1 Forward Problem

Neither of the posterior distributions are normal themselves. The forward posterior is ν1, ν2

p(m|Ic) = Z−1p(m|Im)
∫∫ ∞
−∞

p(x|m)p(x|Ig) dx

= Z−1p(m|Im)
∫ ∞
−∞

[∫ x1

−∞
δ(x1 −m)p(x|Ig) dx2 +

∫ ∞
x1

δ(x2 −m)p(x|Ig) dx2

]
dx1

= Z−1 p(m|Im)
∫ ∞
−∞

δ(x1 −m)
∫ x1

−∞
p(x|Ig) dx2 dx1︸ ︷︷ ︸

ν1

+ Z−1 p(m|Im)
∫ ∞
−∞

δ(x2 −m)
∫ x2

−∞
p(x|Ig) dx1 dx2︸ ︷︷ ︸

ν2

(12)
For a motivation of the change in the integration ranges from the second to the third line in
Equation (12), consider the sketch in Figure 1. Since the two summands are related to each

x1

x2

Figure 1: Sketch of the integration range for ν2. The open set (x1, x2) ∈ ((−∞,∞), (x1,∞)) is
identical to the open set (x1, x2) ∈ ((−∞, x2), (−∞,∞)).

other through the symmetry x1 ↔ x2, consider only the first term, ν1. To solve the integrals,
note that the bi-variate Gaussian p(x|Ig) can be re-written as

p(x1, x2|Ig) = p(x1|Ig)p(x2|x1, Ig)

=
1√

2πσ2
g1

exp

[
−1

2

(
x1 − µg1

σg1

)2
]

1√
2πσ2

g2(1− ρ2)
exp

[
− 1

2σ2
g2(1− ρ2)

(
x2 −

(
µg2 + ρ

σg2

σg1
(x1 − µg1)

))2
]
(13)
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So we can simplify ν1 to

ν1 = p(m|Im)N (m;µg1, σ
2
g1)
∫ m

−∞

1√
2πσ2

g2(1− ρ2)
exp

[
− 1

2(1− ρ2)

(
x2 − µg2

σg2
− ρm− µg1

σg1

)2
]

dx2

= p(m|Im)N (m;µg1, σ
2
g1)
∫ m

−∞

1√
2πσ2

g2(1− ρ2)
exp

−1
2

(
x2 − µg2 − ρσg2

σg1
(m− µg1)

σg2(1− ρ2)1/2

)2
dx2

(14)
We introduce the substitution

t(x2) ≡
x2 − µg2 − ρσg2

σg1
(m− µg1)

σg2(1− ρ2)1/2
with Jacobian

dt
dx2

=
1

σ2(1− ρ2)1/2
(15)

Which allows us to solve the integral and find the posterior up to normalization

p(m|Ic) = Z−1N (µm;µg1, σ
2
m + σ2

g1)N (m;µc1, σ
2
c1)Φ

(
(σg1 − ρσg2)m− σg1µg2 + ρσg2µg1

σg1σg2(1− ρ2)1/2

)
+ Z−1N (µm;µg2, σ

2
m + σ2

g2)N (m;µc2, σ
2
c2)Φ

(
(σg2 − ρσg1)m− σg2µg1 + ρσg1µg2

σg2σg1(1− ρ2)1/2

)
(16)

Where we have used the abbreviations µc, σ
2
c

σ2
c1 ≡

σ2
g1σ

2
m

σ2
c1 + σ2

m

and µc1 ≡

(
µg1

σ2
g1

+
µm

σ2
m

)
σ2

c1 (17)

for the mean and variance of the product of two Gaussians1, and analogously for µc2 and
σc2. To find the normalization constant Z, we use the first identity in Equation (11) to get Z

Z = N (µm;µg1, σ
2
m + σ2

g1)Φ(k1) +N (µm;µg2, σ
2
m + σ2

g2)Φ(k2) (19)

with k1, k2

k1 =
(σg1 − ρσg2)µc1 − σg1µg2 + ρσg2µg1[
σ2

g1σ
2
g2(1− ρ2) + (σg1 − ρσg2)2σ2

c1

]1/2 and k2 =
(σg2 − ρσg1)µc2 − σg2µg1 + ρσg1µg2[
σ2

g1σ
2
g2(1− ρ2) + (σg2 − ρσg1)2σ2

c2

]1/2
(20)

2.3.2 Inverse Problem

The conditional probability of x on m is

p(x1, x2|m) = Θ(x1 − x2)δ(x1 −m) + Θ(x2 − x1)δ(x2 −m) (21)

where Θ(y) is Heaviside’s step function. Therefore, the conditional of x on Im is

p(x1, x2|Im) =
∫ ∞
−∞

p(m|x1, x2)p(m|Im) dm

= Θ(x1 − x2)N (x1;µm, σ
2
m) + Θ(x2 − x1)N (x2;µm, σ

2
m)

(22)

which is a proper (i.e. normalizable) distribution, but becomes normalizable after multipli-
cation with the prior:

p(x|Ic) = Z−1 Θ(x1 − x2)N (x1;µm, σ
2
m)N (x;µg,Σg)︸ ︷︷ ︸

ξ1

+ Z−1 Θ(x2 − x1)N (x2;µm, σ
2
m)N (x;µg,Σg)︸ ︷︷ ︸

ξ2

(23)

Figure 2 illustrates the shape of these functions by way of some concrete examples.
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Figure 2: Illustrative plots for the analytical form of the forward and inverse posteriors. Left:
Inference on m. Prior distribution and marginals on xi. Posteriors for five different values of ρ:
-0.9 (most peaked), -0.5, 0.0 (thick line), 0.5 and 0.9 (broadest). As an experimental verification,
a histogram of 20,000 samples from the posterior (generated by rejection sampling, with ρ = 0) is
shown in blue. Right: Inference on the inverse problem: Prior with µg = (1, 1)T, σg1 = σg2 = 1
and ρ = −0.5. Data on m with µm = 1, σm = 1 gives the posterior in red. Note the bimodality
arising in this particular case.

m p(m|Im) = N (m;µm, σ
2
m)

I[m = max(x1, x2)]

x

cov(x1, x2) = ρ ρ

x1p(x1|Ig) = N (m;µg1, σ
2
g1) x2 p(x2|Ig) = N (m;µg2, σ

2
g2)

Figure 3: Factor graph representation of the functional relationships in the inference problems

2.4 Moment Matching

The analytical forms derived in the preceeding sections are clearly not members of the normal
exponential family. If x has more than two elements, they also quickly take on complicated
forms that are expensive to evaluate. If the application in question allows, it might thus be
desirable to find Gaussian approximations to the posteriors. This section contains derivations
for the first two moments of both posteriors. The Gaussian distributions q matching these
moments minimize the Kullback-Leibler divergence DKL(p||q) =

∫
p(y) log(p(y)/q(y)) dy to

the correct posterior p within the Gaussian family [see, e.g. Bishop, 2006, Section 10.7]).

2.4.1 Forward Problem

We will denote the mean and variance of the posterior of the max as µm(12) and σ2
m(12) for

reasons that will become clear in Section 3. The corresponding integrals to solve are

〈m〉 ≡ µm(12) =
∫ ∞
−∞

mp(m|Ic) dm = Z−1

∫
m(ν1 + ν2) dm

〈m2〉 − 〈m〉2 ≡ σ2
m(12) =

∫ ∞
−∞

m2p(m|Ic) dm
(24)

1This is using the standard result that

N (x; a1, b21)N (x; a2, b22) = N (a1; a2, b21 + b22)N
"
x;

„
a1

b21
+

a2

b22

«„
1

b21
+

1

b22

«−1

,

„
1

b21
+

1

b22

«−1
#

(18)

which can be derived by completing the square, a simple proof that is omitted here
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Comparison with Equation (16) shows that these two integrals are solved by Equation (11).
The solutions are thus, after some algebra,

µm(12) = w1

[
µc1 + σc1

b1
a1

φ(k1)
Φ(k1)

]
+ w2

[
µc2 + σc2

b2
a2

φ(k2)
Φ(k2)

]
σ2
m(12) = w1

{[
µ2

c1 + σ2
c1

]
+
[
2µc1σc1

b1
a1
− k1σ

2
c1

b21
a2
1

]
φ(k1)
Φ(k1)

}
+ w2

{[
µ2

c2 + σ2
c2

]
+
[
2µc2σc2

b2
a2
− k2σ

2
c2

b22
a2
2

]
φ(k2)
Φ(k2)

}
− µ2

m(12)

(25)

where wi, ai, bi

w1 = Z−1N (µm;µg1, σ
2
m + σ2

1)Φ(k1) w2 = Z−1N (µm;µg2, σ
2
m + σ2

2)Φ(k2) (26)

a1 =
[
σ2

g1σ
2
g2(1− ρ2) + (σg1 − ρσg2)2σ2

c1

]1/2
a2 =

[
σ2

g1σ
2
g2(1− ρ2) + (σg2 − ρσg1)2σ2

c2

]1/2
(27)

b1 = σc1(σg1 − ρσg2) b2 = σc2(σg2 − ρσg1) (28)

2.4.2 Inverse Problem

The derivation for the inverse problem is just slightly more involved. We are interested in the
moments of the marginals p(x1|Ic) and p(x2|Ic), and will denote these means and variances
with µ1(m2), σ2

1(m2), et cetera. From Equation (23), we get

µ1(m2) = 〈x1〉Ic =
∫ ∞
−∞

x1

∫ x1

−∞
N (x1;µm, σ

2
m)N (x;µg,Σg) dx2 dx1

+
∫ ∞
−∞

∫ x2

−∞
x1N (x2;µm, σ

2
m)N (x;µg,Σg) dx1 dx2

(29)

The first integral is in fact identical to the first term of µm(12). The second term, however,
involves the first incomplete moment:∫ ∞
−∞

∫ x2

−∞
x1N (x2;µm, σ

2
m)N (x;µg,Σg) dx1 dx2

=
∫ ∞
−∞
N (x2;µm, σ

2
m)N (x2;µg2, σ

2
g2)
∫ x2

−∞
x1N

[
x1;µg1 + ρ

σg1

σg2
(x2 − µg2), σ2

g1(1− ρ2)
]

dx1 dx2

(30)
The inner integral can be solved using the result given in Equation (10), leading to an
expression solved by Equation (11). After a bit of algebra, we arrive at the final result

µ1(m2) = w1

[
µc1 + σc1

b1
a1

φ(k1)
Φ(k1)

]
+ w2

[(
µg1 + ρ

σg1

σg2
(µc2 − µg2)

)
+
A

a2

φ(k2)
Φ(k2)

]
σ2

1(m2) = w1

{[
µ2

c1 + σ2
c1

]
+
[
2µc1σc1

b1
a1
− k1σ

2
c1

b21
a2
1

]
φ(k1)
Φ(k1)

}
+ w2

{
σ2

g1

[(
µg1

σg1
+ ρ

(µc2 − µg2)
σg2

)2

+ (1− ρ2) + ρ2 σ
2
c2

σ2
g2

]

+
[

B

h(1 + σ2
c2/h

2)1/2
− C

h3(1 + σ2
c2/h

2)3/2

]
φ(k2)
Φ(k2)

}
− µ2

1

(31)

where

A = ρσ2
c2σg1

(
1− ρσg1

σg2

)
− σ2

g1σg2(1− ρ2)

B = 2ρ2
σ2

g1

σ2
g2

σ2
c2(µc2 − µg2) + ρ

σg1

σg2

(
2σ2

c2µg1 + µg2

σ2
g1σg2(1− ρ2)
σg2 − ρσg1

)
− µg1σ

2
g1(1− ρ2)

σg2

σg2 − ρσg1

C = ρ2
σ2

g1

σ2
g2

σ4
c2(µc2 − f) + σ2

g1(1− ρ2)
(

1 + ρ
σg1

σg2

)
σg2

σg2 − ρσg1
(µc2h

2 + fσ2
c2)

(32)
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with

f =
σg2µg1 − ρσg1µg2

σg2 − ρσg1
and h =

σg1σg2(1− ρ2)1/2

σg2 − ρσg1
(33)

The corresponding result for the posterior marginal on x2 can be derived trivially from these
results by exchanging the indices 1 and 2. Note that, as mentioned above, the first terms
of these mixtures are shared with the posterior for m. Intuitively, this can be interpreted
as follows: For the posterior on m, the first term (ν1) corresponds to the statement that
“if x1 > x2” (the probability of this is encoded by the cumulative density term in Equation
(16)) “then m is distributed like x1” (represented by the product of the probability density
functions in (16)). This part of the relationship features in the inverse problem as well:
If x1 > x2, then x1 is distributed like m. The second term in the posterior marginal on
x1 corresponds to the statement that “if x1 < x2, then x2 is distributed like m and x1 is
distributed such that its distribution fits with the updated marginal of x2 given the correlation
between x1 and x2 and the prior marginal on x1.

2.4.3 Related Work

The moments of the likelihood of the max have been derived before by Clark [1961]. That
is, for σm →∞, the posterior p(m|Ic) reported here simplifies to a result reported by Clark:

µm(12) → Φ(k)
[
µg1 + σg1

(σg1 − ρσg2)
a

φ(k)
Φ(k)

]
+ Φ(−k)

[
µg2 + σg2

(σg2 − ρσg1)
a

φ(−k)
Φ(−k)

]
σ2
m(12) → Φ(k)

{[
µ2

g1 + σ2
g1

]
+
[
2µg1σg1

(σg1 − ρσg2)
a

− kσ2
g1

(σg1 − ρσg2)2

a2

]
φ(k)
Φ(k)

}
+ Φ(−k)

{[
µ2

g2 + σ2
g2

]
+
[
2µg2σg2

(σg2 − ρσg1)
a

+ kσ2
g2

(σg2 − ρσg1)2

a2

]
φ(−k)
Φ(−k)

}
− µ2

m(12)

where a =
√
σ2

g1 + σ2
g2 − 2ρσg1σg2 and k =

µg1 − µg2

a
(34)

As expected, the posterior of the inverse problem simply becomes equal to the prior in this
case. From Equation (31) we find

µ1(m2) → Φ(k)µ1 + σ1
σ1 − ρσ2

a
φ(k) + Φ(−k)µ1 − σ1

σ1 − ρσ2

a
φ(−k)

= Φ(k)µ1 + σ1
σ1 − ρσ2

a
φ(k) + (1− Φ(k))µ1 − σ1

σ1 − ρσ2

a
φ(k)

= µ1

(35)

and similarly for the variance.
The max-factor is also part of the Infer.net software package [Minka and Winn, 2008] (to
my knowledge, the derivations for this code have not been published yet). However, their
implementation can only handle two independent Gaussian inputs (Section 3 introduces the
max over a finite set of correlated variables). So their implementation corresponds to the
case of ρ = 0, which leads to the following simplifications, presented here for reference:

k1 =
µc1 − µg2

(σg1 + σc2)1/2
a1 = σg1(σg1 + σc2)1/2 b1 = σc1σg1 (36)

A = σ2
g1σg2 B = −µg1σ

2
g1 C = σ2

g1(µc2σ
2
g1 + µg1σ

2
c2) (37)

f = µg1 h = σg1 (38)

Figure 4 shows some of these approximations. The parameter settings used in this figure
represent a worst case (e.g., the posterior over x is rarely so strongly bimodal.)

3 The Maximum of a Finite Set

3.1 Analytic Form

Extending the analysis of Section 2.3, we can write the posterior over the max m of a finite
set {xi}i=1,...,N of variables, distributed according to an N -dimensional version of Equation

7
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Figure 4: Illustrative plots for the Gaussian approximations to the posteriors. Same beliefs in Ic

as in Figure 2. Left: For the sake of readability, only the cases ρ = −0.9 (broadest), ρ = 0 and
ρ = 0.9 are plotted here. In red, dashed lines the corresponding three Gaussian approximations.
Note the varying quality of fit. Right: Gaussian approximation (with µ1(m2) = 1.06 and σ2

1(m2) =
0.94) indicated by shaded area.

m p(m|Im) = N (m;µm, σ
2
m)

I[m = max(x1, x2)]

x

cov(xi, xj) = Σij Σ

xk

p(xi|Ig) = N (m;µgi, σ
2
gi)

k = 1, . . . , N

Figure 5: Factor graph representation of the inference problem on a finite set. The dashed “plate”
represents N copies of generating variable nodes.

(1), with a new normalization constant ZN , as

p(m|Ic) = ZNp(m|Im)
∫
p(x|m)p(x|Ig) dx

= ZNN (m;µm, σm)

 N∑
i=1

∫ ∞
−∞

δ(m− xi)p(xi|Ig)
∫
· · ·
∫ xi

−∞
p({xj}j 6=i|xi, Ig)

∏
j 6=i

dxj dxi


= ZN

∑
i

[
N (µm;µgi, σ

2
m + σ2

gi)N (m;µci, σ
2
ci)
∫
· · ·
∫ xi

−∞
N (x\i;µg\i(xi),Σg\i) dx\i

]
(39)

where x\i = (x1, . . . , xi−1, xi+1, . . . , xN ). The conditional mean is [see e.g. Bishop, 2006,
Section 2.3.2] (

µ\i(xi)
)
j

= µgj + ΣgjiΣ−1
gii(xi − µgi) = µgj + ρij

σgj

σgi
(xi − µgi) (40)

with the linear coefficient of correlation ρij = Σgij/(σgiσgj). The conditional covariance
matrix is the Schur complement of Σgii = σ2

gi in Σg:

Σg\i,kj = Σgkj − Σgkiσ
−2
gi Σgij (41)

In principle, it would be possible to follow the path laid out in the previous sections to calcu-
late the first two moments of this distribution. However, while the univariate Gaussian CDF
(essentially an evaluation of the error function) has computational cost comparable to eval-
uating an exponential function, computationally efficient ways of calculating a multivariate
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Gaussian CDF are not generally available. So this approximation would need to involve an
undesirable numerical integration.

3.2 A Heuristic Approximation

Another, cheaper option is to use an iterative procedure initially proposed by Clark [1961].
The idea is to start out with the approximation for only two of the generating variables.
W.l.o.g., let these be x1 and x2, resulting in m(12) = max(x1, x2). Next, estimate m(123) =
max(x3,m(12)) and so on up to m(1...N). For the intermediate maxima, the likelihoods
presented in Equation (34) suffice, and the prior is included in the last step (using Equation
(25)) to gain an approximate posterior over the maximum of the whole set. Of course, this
necessitates an analytic expression for the correlation coefficient ρi(1...i−1) between the i-th
variable and the max over the preceding variables. This was derived by Clark. Adopted to
the notation used here and made more explicit, his result is

ρ3(12) = σ−1
(12)

(
σ1ρ31Φ(k(12)) + σ2ρ32Φ(−k(12))

)
(42)

where ρij = Σij/σiσj , the index g has been dropped for simplicity and k(12) = (µ1 −
µ2)/

√
σ2

1 + σ2
2 is the simplified version of k1 arising from Equation (20) under σm → ∞.

Using this, we can build a recursive algorithm to calculate ρi(1...j) with j < i as

ρi(1...j) = σ−1
(1...j) ·

{
σjρij if j = 1
Φ(−k(1...j))σjρij + Φ(k(1...j))ρi(1...j−1) else

(43)

this necessitates a list k[j] = (k(12), . . . k(1...i−1)) which is available at the necessary point in
time from the calculation of previous maxima over the preceding parts of the set. Note that
calculating ρi(1...i−1) involves i−1 recursive function calls, so building the full approximation
over the max of N variables is of complexity O(N2), as might be expected (although there
are only (N − 1) uses of the results in Equation (25)). If all correlation coefficients are the
same, ρij = ρ ∀ij, then the recursive evaluations can be re-used in consecutive evaluations
and the complexity drops to O(N).

3.2.1 Inverse Problem

The same iterative scheme can be used to provide an approximation for the inverse problem’s
posterior. First, the list k[j] is build as in the preceding section. Then, approximations to
the posterior marginals are build iteratively, starting with q(xN |Ic), ending with q(x2|Ic)
and q(x1|Ic). At each intermediate step, we use the EP approximation [Minka, 2001]: To
get q(xi|Ic), use q(m(1...i)|Im) = q(m(1...i)|Ic)/q(m(1...i)|Ig) as an approximation to the prior
over the subset max, and q(m(1...i−1)|Ig) as the approximation on the max over the subset
up to xi−1.

4 Discussion of the Approximation’s Quality

Figure 6 gives some intuition on the quality of the approximation. For the purpose of this
comparison, uncorrelated Gaussians were used because this allows the analytic evaluation
of the true posterior (the CDF factorises into individual one-dimensional CDFs). The fit is
reasonably good if the beliefs over the xi are either very similar (Figure 6 top right), or if the
beliefs are “separated”, in the sense that one of the xi provides a dominant contribution to the
overall mixture (top left). The fit becomes bad when the mixture has many modes (bottom
left) or a strong asymmetry (bottom right). The corresponding worst case distributions
shown here were generated by setting µgi = a + b−i and σ2

gi = b−i (left, a = −1, b = 16) or
µgi = ci and σ2

gi = id + 1 (right, c = −1, d = 16). More quantitatively, consider Equation
(34) or Equation (16), the case of the max of only two Gaussians. The two cases of good fit
described above correspond to

1. one mixture component dominating the mixture

|k12| =
|µg1 − µg2|√

σ2
g1 + σ2

g2 − 2ρσg1σg2

� 0 (44)
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Figure 6: Quality and failure modes of the EP approximation. Max of five uncorrelated Gaussians.
Top row: examples of good fits. Left: well separated beliefs. Right: similar beliefs. Bottom row:
worst case examples. Left: high certainty contributions within the center. Right: high uncertainty
in one tail. In all plots, beliefs over the xi as slim black lines. True posterior over m in thick red,
approximation in thick dashed blue. For simplicity, p(m|Im) was set to an uninformative value.
See text for details.

The likelihood then has one clearly dominating Gaussian component and the fit is good.
In this case, the inverse problem is also a good fit, as each of the generating variables
x1, x2 has one dominating component in its posterior.

2. the two mixture components being almost identical:

µg1 ≈ µg2 and σg1 ≈ σg2 (45)

the likelihood then consists of two roughly identical Gaussian components with roughly
the same weights, and is therefore roughly Gaussian. However, the approximation is
bad for the inverse problem here, as the true posterior marginals become bimodal (c.f.
Figure 2, right). This effect is particularly pronounced if the mean of the prior and the
likelihood differ significantly.

These observations suggest a potential increase in the quality of the approximation to be
gained from calculating all N(N − 1) weight-generators kij as defined in Equation (44) and
iteratively choosing the pair ij with maximal kij . However, this re-ordering has to be updated
after each incremental two-component max operation, involving a re-calculation of up to N
correlation coefficients. It thus raises the complexity of calculating the approximation for the
overall max from O(N2) to O(N3). Initial experiments suggest that the potential gain in fit
is almost always negligible.

5 Conclusion

This technical report derived the first two moments of the posterior over the maximum of a
pair of Gaussian variables, and over the posterior over the two generating variables. These
moments can be used for approximate Inference on their own, or as part of a larger graphical
model using Expectation Propagation. I have also shown how to extend the usefulness of these
approximations to finite sets of Gaussian variables using a heuristic iterative approximation.
The quality of the approximation depends on the location and precision of the belief over the
generating variables relative to each other, but is always good enough to provide a meaningful
point estimate and error measure. It is sufficiently robust to deal with inconsistent belief
assignments and large numbers of generating variables (see Figure 7).
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Figure 7: Illustrative examples for the use of the approximation in EP message passing. p(xi|Ig) in
black dashed lines. p(m|Im) in red dotted. Marginals after EP message passing as corresponding
solid lines. Top left: Max over 5 uncorrelated variables. Only the two variables contributing
significantly to the max change their beliefs. Top right: same as previous, but with ρij = 0.9 for
all ij. The change in belief over the dominating xi now also effects the other beliefs, as expected.
Bottom left: The approximation is well-behaved under inconsistent beliefs. p(m|Im) was set
inconsistently low relative to the beliefs on the xi (all ρij = 0.2). Note that the belief over the
largest xi extends beyond the belief over m as a result of the moment-matching. Bottom right:
The approximation is stable for large values of N . Maximum over 50 correlated normals, all ρij
were set to 0.5.
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