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Abstract

Linear partial differential equations (PDEs) are an important, widely applied class of
PDEs, describing physical processes such as heat transfer, electromagnetism, and wave
mechanics. In practice, virtually all PDEs are solved using specialized numerical methods
with discretization at their core. However, these algorithms largely fail to return useful
estimates of the inherent approximation error. Moreover, classical PDE solvers generally
assume all model parameters, such as initial and boundary conditions, and the right-hand
side of the PDE, to be known exactly. In this thesis, we develop a general mathematical
framework for incorporating mechanistic knowledge in the form of linear PDEs into
Gaussian process (GP) models. Our approach frames solving a linear PDE as Bayesian
inference given affine observations. Crucially, this allows us to (1) quantify discretization
error; and (2) propagate uncertainty in the model parameters to the solution. En route,
we generalize a widely used theorem for conditioning GPs on finite-dimensional linear
observations to observations made via a bounded linear operator. Demonstrating the
applicability of our framework, we show how it recovers existing algorithms and how
it can be used in practice to solve stochastic boundary value problems involving linear
PDEs.In summary, our results enable the seamless integration of mechanistic models as
modular building blocks into probabilistic models by blurring the boundaries between
numerical analysis and Bayesian inference.
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Zusammenfassung

Lineare partielle Differentialgleichungen (PDEs) sind eine wichtige, weit verbreitete Klas-
se von PDEs, die genutzt wird, um physikalische Prozesse wie zum Beispiel Wärmetrans-
port, Elektromagnetismus und Wellenmechanik zu beschreiben. In der praxis werden
PDEs fast immer mit speziellen numerischen Methoden gelöst, die die Gleichung diskre-
tisieren. Allerdings, stellen diese Algorithmen fast nie Schätzer des inhärenten Appro-
ximationsfehlers in der numerischen Lösung zur Verfügung. Zudem nehmen klassische
numerische Löser für PDEs im Allgemeinen alle Modellparameter wie etwa Anfangs- und
Randwerte und die rechte Seite der PDE als gegeben an. Diese Arbeit entwickelt einen
allgemeines mathematischen Gerüst für Methoden, die mechanistisches Wissen in Form
einer linearen PDE in probabilistische Modelle basierend auf Gaußprozessen (GPs) inte-
griert. Hierfür wird das numerische Lösen einer PDE als Bayessche Inferenz mit affinen
Observationen formuliert. Dieser Ansatz erlaubt es Diskretisierungsfehler zu quantifi-
zieren und Unsicherheit in den Modellparametern auf die Lösung zu propagieren. Als
theoretische Grundlage wird ein Satz formuliert und bewiesen, der es erlaubt Gaußpro-
zesse auf Observationen durch einen beschränkten linearen Operator zu konditionieren.
Es wird gezeigt, dass existierende klassische und probabilistische Methoden für lineare
PDEs Spezialfälle der hier entwickelten Methode sind. Die Anwendbarkeit des Ansatzes
wird durch ein praktisches Beispiel demonstriert, in dem ein physikalisches System durch
Lösung einer linearen PDE mit stochastischen Randwerten und unsicherer rechter Seite
simuliert wird. Zusammenfassend ermöglichen unsere Resultate die nahtlose Integration
von mechanistischen Modellen als modulare Blöcke in probabilistische Modelle, indem
die Grenzen zwischen numerischer Analysis und Bayesscher Inferenz aufgeweicht werden.
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1. Introduction

In the natural sciences, particularly physics, but also in applied fields such as engineering
and medicine, partial differential equations (PDEs) are powerful mechanistic models for
the behavior of static and dynamic systems with continuous spatial interactions [Borth-
wick, 2018]. Examples of physical phenomena that can be simulated by such models
include heat diffusion, electromagnetism, quantum mechanics, and various branches of
continuum mechanics, including fluid and solid mechanics. More specifically, the solu-
tions of PDEs are physically accurate descriptions of e.g. the temperature distribution
in a piece of metal, the concentration of chemicals in a liquid during a reaction, the
electric potential due to a given distribution of charges, or the magnetic field in the core
of a transformer caused by an alternating current in one of its coils, all as functions
of time and space [Demtröder, 2015, 2013]. In medical applications, PDE-based fluid
dynamics models can be used to analyze the hemodynamics (blood flow) around a me-
chanical heart valve, aiding engineers in minimizing its thrombogenic potential, i.e. the
chance of the device causing blood clots [Dumont et al., 2007]. Moreover, in mechani-
cal engineering, PDEs provide powerful continuous models of material behavior, e.g. its
deformation, under the influence of heat and/or strain, for instance when simulating car
crashes. However, PDEs can not only be used to simulate physical phenomena, but they
find a wide range of applications in pure and applied mathematics (see e.g. [Särkkä and
Solin, 2019, Chapter 5], [Müller, 1966], or [Evans, 2010, Chapter 8]). An example in the
field of mathematical finance, is the famous Black-Scholes equation which predicts price
dynamics of certain types of so-called options [Øksendal, 2003, Section 12.3]. In practice,
mechanistic models based on linear PDEs are mainly used for two purposes:

1. Simulation: Given a model of a physical system in the form of a partial differential
equation, we can simulate the system’s state or evolution by finding the solution
of this equation subject to a given set of initial and/or boundary conditions. This
is useful for predicting the behavior of the system under known conditions. For
instance, given all relevant material parameters and all forces involved, a PDE can
predict the deformation of and the stress in a metal beam under load. This task is
also often referred to as the solution of the forward problem.

2. Inverse Problem: Often, the parameters of the PDE are not known, which renders
simulation impossible. In this case, we can usually gather a finite set of measure-
ments of the modeled phenomenon in an experiment. Subsequently, the parameters
of the PDE can be estimated by identifying parameter values which produce sim-
ulations consistent with the measured data. Identifying the parameters of a PDE
from measurements of its solution is commonly referred to as an inverse problem.
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1. Introduction
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Figure 1.1.: Gaussian process posterior modeling the stationary temperature distribution
in an idealized hexa-core CPU die subjected to sustained computational load.
The Gaussian process integrates prior knowledge about the temperature dis-
tribution, mechanistic knowledge about heat conduction in the form of a
linear PDE, and empirical knowledge in the form of noisy temperature mea-
surements (XDTS, uDTS) taken by so-called digital thermal sensors (DTSs)
on the CPU die into a common probabilistic model. The surface plot shows
the mean function of the Gaussian process, while the 1D slice shows its
95% marginal credible interval along with a few samples. See section 2.4
and chapter 3 for more details about this model.

In the previous example, measurements of the beam’s deformation provide informa-
tion about the material parameters. Typically, solving the inverse problem involves
simulating the system repeatedly, which makes inverse problems more difficult to
solve than simulation problems.

Unfortunately, hardly any practically relevant PDE can be solved analytically [Borth-
wick, 2018]. By extension, the same holds true for the solutions to inverse problems.
This means that one must generally resort to using numerical solution methods. These
algorithms come with several severe downsides.

Problems of Numerical Algorithms Virtually all methods for the numerical solution of
PDEs have discretization at their core. This means that the solution estimates produced
by these algorithms are inherently subject to approximation error. Generally speaking,
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the approximation error can be decreased by choosing a finer discretization, resulting in
a trade-off between accuracy of the simulation and computational cost.

Typically, numerical PDE solvers require vast amounts of computational resources to
produce accurate results. This is especially problematic in classical approaches to solving
inverse problems, since multiple forward solves are typically required, which multiplies
the high demand for computational resources. As a result, parameter estimates obtained
from these methods might have low accuracy given a fixed computational budget and a
PDE which is difficult to solve.

A vast number of solution methods and preconditioners have been proposed in the
literature, each featuring different properties and capabilities while making different as-
sumptions about the problem to be solved. To combat both approximation error and
computational resource requirements, these methods often exploit problem structure and
are hence often highly specialized to a particular type of PDE or even one specific equa-
tion. In larger computational pipelines, these solvers are, more often than not, used as
monolithic black boxes, which is due to their considerable complexity. While there is
often an abundance of knowledge about the problem structure in applied scenarios, it is
hence very difficult to tailor the PDE solver to the specific use-case at hand.

While there are error estimation techniques for PDE solvers, the solution estimates are
often used as is, especially if the solver is embedded in a larger computational pipeline
and the PDE solution is further processed downstream. On the one hand, this is due
to the fact that PDE solvers are, as stated above, often implemented as black boxes,
while simultaneously failing to provide interpretable and calibrated error estimates by
default. However, on the other hand, even when estimates of the approximation error are
available, it is not straightforward to find uses for them in downstream computations.

In simulation, the mathematical formulation of the model typically requires its pa-
rameters to be known exactly. Examples of such parameters include the position and
strength of heat sources or the local charge density in a given region of space, material
parameters such as thermal conductivity or dielectric permittivity at every point within
some object, or how well a thermal insulator blocks heat flow in and out of a device or
experimental setup. This is highly unrealistic in practice, since most of these parameters
are only available through noisy experimental measurements or the previous solution of
an inverse problem, in which noisy observational data and lacking identifiability lead to
errors in the parameter estimation. In larger computational pipelines, these estimation
errors propagate and might amplify downstream.

Why Uncertainty? The presence of discretization and estimation errors is particularly
severe if decisions are made on the basis of simulation results. To illustrate this, we con-
sider the case of electrical impedance tomography (EIT), a non-invasive medical imaging
method, in which local electrical properties such as impedance of tissue inside a patient’s
body are inferred from voltage and current measurements from electrodes placed on the
patient’s skin [Holder, 2005]. This technique has for instance been applied to detect
breast cancer and to provide brain imaging for treating epilepsy and strokes [Holder,
2005]. Essentially, EIT is an inverse problem, in which local material parameters of
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1. Introduction

Maxwell’s equations are estimated from the measurements. Due to measurement noise
and the fact that measurements can only be made on the surface of the body, i.e. usu-
ally far away from the region of interest, the image predicted by EIT will always be a
highly uncertain estimate, possibly with large estimation errors. Calibrated estimates of
the error/uncertainty in the prediction is crucial in clinical applications, since decisions
about invasive diagnostic or treatment options may need to be made on the basis of
such imaging. For instance, in breast cancer screening, a false positive tumor detection
could lead to unnecessary biopsy or curative surgery, while failure to detect a tumor is
potentially lethal.

Bayesian Methods as Remedies A promising remedy for all of these shortcomings
is to equip the solver with the capability to quantify its own uncertainty about the
solution of the PDE, both arising from discretization error and from poorly identified
model parameters. A very natural way to achieve this is by means of Bayesian statistics,
since this framework is designed to estimate unknown quantities by integrating noisy
data and uncertain prior knowledge into a common model, while providing consistent
uncertainty estimation for all of its predictions. Specifically, we phrase the problem as
statistical inference of the unknown solution function, where the data is the observation
that the PDE holds. By placing a prior probability measure over the PDE’s solution and
integrating the observed data by computing the corresponding conditional measures, we
obtain a posterior probability measure quantifying the algorithm’s uncertainty within
a whole set of solution candidates. This is in contrast to the single point estimate
returned by classical PDE solvers. The approach outlined above is pursued in the field
of probabilistic numerics [Hennig et al., 2015, Cockayne et al., 2019, Oates and Sullivan,
2019, Owhadi et al., 2019].

Typically, the aforementioned prior and conditional probability measures take the form
of random processes. These in- and output objects turn out to be a very powerful encod-
ing of the solution estimates when integrating Bayesian PDE solvers in larger computa-
tional pipelines. This is due to the fact that the associated probability measures virtually
never collapse down to a point estimate, which means that the structured uncertainty
they provide can be used to aggregate diverse sources of information from all steps in
a computational pipeline in a modular fashion. In other words, using the language of
random processes to communicate intermediate results in a computational pipeline es-
sentially alleviates the need for the individual components of the pipeline to be aware of
one another, e.g. for the purposes of uncertainty propagation.

The assumption of prior knowledge is often criticized in the context of Bayesian ma-
chine learning. In the context of PDEs however, there is often an abundance of prior
knowledge about the solution. At the very least, this includes mathematical information
such as the space of functions in which the solution must lie, because the equation is only
well-defined if certain regularity properties such as (weak) differentiability are fulfilled.
Moreover, since PDEs often model concrete physical systems, we usually have access to
expert knowledge a-priori, including well-studied general physical properties of the sys-
tem as well as more subjective estimates from previous experience with similar systems.
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Additionally, solutions of related but simpler PDEs or, in the context of inverse problems,
a previous solve of a PDE with slightly altered parameters might also provide useful prior
information, especially if they come with calibrated uncertainty quantification.

Linear PDEs and Gaussian Processes Linear PDEs are an important subclass of par-
tial differential equations, encompassing many widely-used models of the aforementioned
phenomena. Moreover, linearization is a common way to approximate more complex
nonlinear phenomena. More precisely, a linear PDE is an equation of the form

D [u] = f, (1.1)

where D is a linear differential operator (see definition B.2) [Evans, 2010]. Essentially,
this means that D is a linear map between vector spaces of functions, where D [u] (x) is
a linear combination of partial derivatives and the function value of u at x. Note the
similarity to a linear system Ax = b. A prototypical example of a linear PDE used in
thermodynamics, electrostatics and Newtonian gravity is given by the Poisson equation
[Evans, 2010, Demtröder, 2015]

−∆u = f, (1.2)

where ∆u =
∑d

i=1
∂2u
∂x2

i
is the so-called Laplacian.

It is a well-known fact that finite-dimensional Gaussian distributions are closed under
linear maps and conditioning on linear observations [Bishop, 2006]. It has been also been
observed that the same holds for Gaussian processes and linear maps that apply to the
sample paths such as derivatives or integrals [Rasmussen and Williams, 2006, Särkkä,
2011]. However, even though the latter is a nontrivial statement, to the best of our
knowledge, no proof has been provided in the literature. Hence, at this point, this is
rather a conjecture than a fact and crucial information such as assumptions under which
the statement holds is unavailable.

Bayesian inference in linear-Gaussian models is tractable in closed-form, which makes
Gaussian processes a natural choice for the prior when solving linear PDEs. This is
why, in this article, we will focus on this type of equation. In essence, when choosing a
Gaussian process prior u over the solution, a Bayesian PDE solver for linear PDEs aims
at computing u | D [u]− f = 0. Since this is usually intractable, we will, in the following,
develop a general framework for principled approximation of this conditional process,
which aims at propagating approximation error to its uncertainty estimate.
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2. Inferring the Solutions of Linear PDEs
from Gaussian Process Priors

Consider the linear PDE
D [u] = f, (2.1)

where D : U → V is a linear differential operator between spaces U , V of real-valued
functions defined on some domain D ⊂ Rd, and f ∈ V is the known right-hand side
function. Our goal is to find u ∈ U which satisfies equation (2.1) for given D and f . Any
such u is called a solution to the PDE. Since there is generally no closed-form expression
for the solution u [Borthwick, 2018], we need to estimate it. For illustrative and motiva-
tional purposes, we will strongly focus on PDEs which describe physical phenomena such
as thermal conduction. In this case, u usually describes the value of some (measurable)
physical quantity as a function of space and time, which describes the dynamics of the
system exhaustively. Hence, we often have D = [0, T ]×D′, where D′ ⊂ R3 describes the
spatial extent of a physical body.

Example 2.1 (Thermal Conduction and the Heat Equation). Assume that we want to
simulate heat conduction in a solid physical body, e.g. a piece of metal. In other words, we
want to find a function u : [0, T ]×D → R of time and space, describing the temperature
distribution in a rigid body, whose spatial extent is given by D ⊂ R3. Neglecting heat
transport due to radiation and convection, we can describe this phenomenon by means of
the heat equation [Lienhard and Lienhard, 2020], a second-order linear PDE. Its most
general form is given in equation (B.3), but assuming spatially and temporally uniform,
isotropic material parameters cp, ρ, κ ∈ R, a simpler equivalent version is given by

cpρ
∂u

∂t
− κ∆u = q̇V . (2.2)

Here, the right-hand side function f = q̇V is the so-called volumetric heat source in units
of Wm−3 describing the density of incoming heat energy due to heat sources like electric
currents, entering the system at each point of the physical body. This is indeed a linear
PDE whose linear differential operator is given by

D = cpρ
∂

∂t
− κ∆, (2.3)

where ∆ =
∑d

i=1
∂2

∂x2 is the Laplacian.

Note however that our focus on PDEs from physics is merely used to provide intuition.
The methodology presented in this article applies to any linear PDE.
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2. Inferring the Solutions of Linear PDEs from Gaussian Process Priors

2.1. PDEs are Indirect Observations of Their Solution

Typically, we think of observations of a physical system as a finite number of direct
measurements of the value of the function u, corrupted by noise due to imperfect, finite-
precision sensors. It is important to note that u is not uniquely defined by finitely many
measurements unless additional assumptions about the function are made. This is due
to the fact that, when unconstrained, u could behave arbitrarily complex in between
measurements. Contrasting the aforementioned notion of an observation, it is very com-
mon to formulate the laws of physics as so-called conservation laws, i.e. observations
that physical quantities like mass, momentum, charge or energy are conserved over time
Borthwick [2018]. These observations have been made in numerous representative exper-
iments and are generally assumed to transfer to any comparable system. Conservation
laws from physics are usually formalized in the language of PDEs, which are linear in
many practically important cases.

Example 2.1 (continuing from p. 7). The assumption that the heat equation (2.2) holds
in a physical body expresses that energy is conserved over time. In particular, it states
that the local change of thermal energy at every point in the body is the difference of the
thermal energy flowing into the point and the thermal energy flowing out of the point due
to thermal conduction and independent local heat sources Lienhard and Lienhard [2020].
It turns out very useful to rearrange the heat equation into

cpρ
∂u

∂t︸ ︷︷ ︸
∆Etherm

− κ∆u︸︷︷︸
conduction/

diffusion

− q̇V︸︷︷︸
heat

sources

= 0. (2.4)

The net-zero balance shows that no energy is lost or gained. Any energy flowing into
a region due to diffusion or local heat sources must be accounted for by an increase in
internal energy of the material.

Note that this is, generally speaking, an infinite set of observations, since we usually
assume that the conservation law holds at each point in time and every point of the
domain. In conclusion, using a mechanistic model based on a PDE to simulate a physical
system u often amounts to an indirect observation of u, i.e. that a quantity derived from
u is conserved in the system.

We can generalize this notion to more abstract PDEs. For instance, as in equation (2.4),
we can rearrange the general form of a linear PDE from equation (2.1) into

D [u]− f = 0. (2.5)

We can interpret this as an indirect mathematical observation of the function u, where
we observe some local mathematical property of u. To be precise, we observe that the
image of u under the affine map

I [u] := D [u]− f (2.6)

8



2.2. Solving PDEs as Statistical Estimation

has a known value 0 at every point of the domain, which provides information about the
unknown function u. In the probabilistic numerics literature, the affine map I is known
as an information operator [Cockayne et al., 2019]. A concrete example of a (potentially
non-affine) information operator which is the analogue of I in the context of ordinary
differential equations is given in Tronarp et al. [2019]. Note that the measurement process
defined by the information operator assumes a noise-free observation.

2.2. Solving PDEs as Statistical Estimation

Interpreting a PDE as an indirect local observation of its own solution as above directly
entails a fresh perspective on the process of solving these equations. Having established
that the information operator (2.6) defined by the PDE provides information about
the unknown function u, we can heavily draw on the statistical estimation toolbox.
More precisely, we can phrase the numerical problem of finding the solution to a partial
differential equation as a statistical estimation problem of an unknown function u from
noise-free but indirect observations or measurements u made through I.

Fortunately, in practice, the solution u is not hopelessly unconstrained, but we usually
have some a-priori information about it at our disposal. At the very least, we know
the space of functions U in which we search for u, but such information might also
include noisy measurements of function values u(xi) at a finite set of points {xi}ni=1

from an experiment, expert knowledge about the rough shape and value range of u, and
solutions to related, but different (e.g. simpler) PDEs, just to name a few. This makes
the problem particularly amenable to the framework of Bayesian statistics, in which we
can incorporate this prior knowledge, be it imprecise or even vague, by means of a prior
probability measure over u.

Given such a prior probability measure over u, Bayesian statistics provides us with a
principled way to update our knowledge given the information from the measurements
induced by the PDE. Namely, in the language of probability theory, enforcing the PDE
equation (2.1) means to posit that the event I [u] = D [u]− f = 0 has occurred. Hence,
the appropriate way to incorporate this information into our belief about u is by means
of conditioning, i.e. computing the random variable u | D [u]− f = 0 or, equivalently, u |
I [u] = 0.

2.3. Solving PDEs by Gaussian Process Inference

In this article, the prior over u will always be a Gaussian process

u ∼ GP (m, k) (2.7)

with mean function m : D → R and covariance function k : D × D → R. Gaussian
processes are well-suited to represent uncertainty over the solution of a linear PDE, since

1. for certain choices of the covariance function, Gaussian processes define probability
measures over the function spaces, in which the PDE’s solution is sought.

9



2. Inferring the Solutions of Linear PDEs from Gaussian Process Priors

2. measurement noise often follows a Gaussian distribution.

3. the language of positive kernels, which are used as covariance functions, makes GPs
a powerful modeling toolkit for incorporating prior information.

However, the most important reasons for our choice of a Gaussian process prior are its
favorable closure properties under linear operations. Among those is the fact that, under
certain assumptions,

(
u D [u]− f

)⊤ is a multi-output Gaussian process(
u

D [u]− f

)
∼ GP

((
m

D [m]− f

)
,

(
k kD∗

Dk DkD∗

))
, (2.8)

and that the conditional process u | D [u] − f = 0 is again a Gaussian process with
closed-form expressions for its mean and covariance functions available (see theorem 1).
Unfortunately, the closed-form expressions for these mean and covariance functions in-
volve computing the pseudoinverse of the operator DkD∗, which is at least as difficult as
solving the PDE directly.

For this reason, we have to approximate the conditional process by a tractable alter-
native. Recalling our characterization of the PDE as an observation of a local property
of the function u at every point in the domain, we can immediately give a somewhat
canonical example of such an approximation. Concretely, we can condition u on the fact
that the PDE holds at a finite sequence of well-chosen domain points, i.e. we compute
u | D [u] (X) − f(X) = 0, where X = {xi}ni=1 ⊂ int (D). Intuitively speaking, if the set
X of domain points is dense enough, we obtain a reasonable approximation to the exact
conditional process. This approach, the probabilistic meshfree method [Cockayne et al.,
2017] is analogous to existing non-probabilistic approaches to solving PDEs, commonly
referred to as collocation methods, wherein the points X are called collocation points. In
this case, we can apply corollary 2 to see that the conditional process is again a Gaussian
process

u | D [u] (X)− f(X) = 0 ∼ GP
(
mu|D[u](X)−f(X)=0, ku|D[u](X)−f(X)=0

)
, (2.9)

whose moments

mu|D[u](X)−f(X)=0(x) := m(x) + (kD∗)(x,X)⊤(DkD∗)(X,X)† (f(X)−D [m] (X)) ,
(2.10)

and

ku|D[u](X)−f(X)=0(x1, x2) := k(x1, x2)− (kD∗)(x1, X)⊤(DkD∗)(X,X)†(Dk)(X,x2),
(2.11)

with

(kD∗)(x1, x2) := Dk(x1, t2)|t2=x2
(2.12)

(Dk)(x1, x2) := (kD∗)(x2, x1) (2.13)
(DkD∗)(x1, x2) := D

(
Dk(t1, t2)|t1=x1

)∣∣
t2=x2

(2.14)

are now tractable. We will now give an illustrative example on how to apply this method
to a concrete problem.
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2.4. Example: Modeling the Temperature Distribution in a CPU

2.4. Example: Modeling the Temperature Distribution in a
CPU

Modern central processing units (CPUs) are pieces of computing hardware that are con-
strained by the vast amounts of heat they dissipate under load. Surpassing the maximum
temperature threshold a CPU is rated for a prolonged period of time will likely result in
permanent hardware damage or considerable decrease of its longevity [Michaud, 2019].
To counteract overheating, air or water cooling systems are attached to the CPU when
deployed. These cooling systems are controlled by temperature sensors on the CPU die,
such that, the more heat is dissipated by the die, the more heat is extracted from it by
the cooler. Unfortunately, these sensors only provide local measurements of the die’s
temperature and it is still possible that the temperature surpasses a critical threshold on
unmonitored areas of the chip.

In the following, we will develop a probabilistic model for the temperature distribution
in an idealized hexa-core CPU die to showcase the capabilities of the methodology devel-
oped in this article. For illustrative purposes, we will keep this model deliberately simple.
However, there are several possible practical use cases for more realistic and hence more
involved versions of this model. For instance, a simulation of the temperature distribu-
tion in the whole CPU die based on the temperature measurements mentioned above
might aid in monitoring the global maximum of the die temperature while keeping the
amount of monitoring hardware at bay. Moreover, should one of the temperature sensors
fail, its reading could be replaced by a simulated value.

For simplicity, we assume that the CPU is subjected to sustained computational load
and that the cooler is controlled in such a way that the die reaches thermal equilibrium.
In thermal equilibrium, the temperature distribution becomes stationary, i.e. it does
not change over time. Temperature distributions of systems in thermal equilibrium are
modeled by the stationary heat equation (2.15).

Example 2.1 (continuing from p. 7). Often, we only care about the temperature distri-
bution after it has reached a steady state, i.e. once it is at thermal equilibrium. Assuming
that we ever reach such a state, at thermal equilibrium, it must hold that ∂u

∂t = 0 [Lienhard
and Lienhard, 2020]. Enforcing this constraint turns the heat equation into the stationary
or steady-state heat equation

−κ∆u− q̇V = 0. (2.15)

Due to our choice of material parameters, the steady-state heat equation is, in this case,
equivalent to the Poisson equation (1.2) with f = q̇V/κ. We will use this equation as a
recurring illustrative PDE-based model throughout the first few chapters of this article.

In order for the temperature distribution to remain stationary, the total amount of
heat flowing into the CPU must be equal to the amount of heat being drawn from it.
In this simulation, we assume that the CPU cores are the only heat sources, while the
cooler extracts all heat produced by the cores uniformly over the whole surface of the
CPU. These assumptions are expressed by the volumetric heat source q̇V visualized as a
heat map in the top part of figure 2.1(a). This function acts as right-hand side function
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2. Inferring the Solutions of Linear PDEs from Gaussian Process Priors

in the stationary heat equation. Note that q̇V integrates to 0 over the whole die, which
means that our assumptions about the heat flow are consistent with the assumption of
stationarity.

We mostly restrict ourselves to simulating the temperature distribution in a 1D slice
across the surface of the CPU, which is visualized in the top part of figure 2.1(a). This
is due to the fact that conceptual visualizations of the methodology for two- or three-
dimensional models are much harder to read and understand than those of their one-
dimensional counterparts. However, this does not mean that our approach is limited to
one-dimensional models. In fact, figure 1.1 shows how our approach can be used to sim-
ulate the temperature distribution across the full surface of the CPU die. Nevertheless,
one might justify the one-dimensional version of the simulation as an approximation to
the temperature distribution, which assumes uniformity along its other two dimensions.
Indeed, figure 1.1 indicates that this assumption is reasonable, since the temperature
distribution is fairly uniform in x2-direction. The bottom part of figure 2.1(a) shows the
values of the volumetric heat source in the slice.

We posit a Gaussian process prior u ∼ GP
(
m,σ2k

)
with a Matérn-72 covariance func-

tion k over the temperature distribution in the slice whose mean function m and output
scale σ are chosen in a realistic range. Figure 2.1(b) shows the prior process u on the top,
along with its image D [u] ∼ GP

(
D [m] , σ2DkD∗) under the PDE’s differential operator

D = −κ∆ on the bottom. A draw from D [u] can be interpreted as the distribution of
heat sources (and sinks) that must have generated the temperature distribution given by
the corresponding draw from u, assuming that the PDE holds. If u solves the PDE, then
the uncertainty in D [u] collapses to 0 and D [u] and q̇V coincide.

We can now inform the Gaussian process prior about the mechanistic information
encoded in the PDE by choosing a set of collocation points XPDE = {xPDE,i}ni=1 and
then conditioning on the observation that the PDE holds (exactly) at these collocation
points, i.e. the event −κ∆u (xPDE,i)− q̇V (xPDE,i) = 0 for all i = 1, . . . , n. In other words,
we update our belief about the temperature distribution in the slice by computing the
physically-informed random process u | PDE := u | −κ∆u (xPDE,i) − q̇V (xPDE,i) = 0.
The result of this operation is visualized in figure 2.2(a). First of all, we can see that
the resulting conditional process indeed solves the PDE exactly at the collocation points
(in the lower part of the figure). While the samples exhibit much more similarity to
the mean function and as well as less spatial variation, the marginal uncertainty hardly
decreases. The latter is mostly due to the fact that the PDE does not identify a unique
solution. Indeed, adding any affine function to u does not alter its image under the
differential operator, since ∆(a⊤x + b) = 0. This suggests that there is an at least
two-dimensional subspace of functions which can not be observed. Classical approaches
to formulating PDE-based models resolve this ambiguity by introducing boundary con-
ditions. For simplicity, we will impose so-called Dirichlet boundary conditions [Evans,
2010], which fix the values of the solution at the boundary, i.e. u|∂D = g for some known
function g : ∂Ω → R. In our particular setup, the values of the function g can be thought
of as measurements of the CPU’s temperature in a lab setup. Interpreting the Dirichlet
boundary conditions as measurements strongly hints at the canonical way of enforcing
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(a) The CPU cores are assumed to be the only
heat sources, while the CPU cooler ex-
tracts heat uniformly over the whole sur-
face of the CPU. The lower subplot shows
the magnitude of heat sources (and sinks)
in the 1D slice indicated by the orange line
in the upper subplot.
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(b) Gaussian process prior over the tempera-
ture distribution in the CPU die. If the
prior were an exact model of the tempera-
ture distribution, then the marginal credi-
ble interval of −κ∆u would collapse to zero
and its mean and all samples would coin-
cide with q̇V .

Figure 2.1.: We model the stationary temperature distribution in a CPU die under a
sustained computational load. For illustrative purposes, we limit ourselves
to the 1D slice along the surface of the die visualized in the top part of fig-
ure 2.1(a), assuming a spatially uniform temperature distribution along its
other extents. The lower part of figure 2.1(a) shows the assumed volumet-
ric heat source arising from the CPU’s thermal dissipation and the cooler
acting as a heat sink. To infer the solution of the corresponding PDE in
our Bayesian framework, we posit a Gaussian process prior with a Matérn-
7
2 covariance function over the unknown temperature distribution (see fig-
ure 2.1(b)).
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2. Inferring the Solutions of Linear PDEs from Gaussian Process Priors

u|∂D = g in our belief. Namely, we can simply interpret the Gaussian process u | PDE as
a physics-informed prior and condition on the values of g as in standard GP regression.
The resulting conditional process

u | PDE,BC := (u | PDE)
∣∣ u|∂D = g (2.16)

= u
∣∣−κ∆u (xPDE,i)− q̇V (xPDE,i) = 0, u|∂D = g (2.17)

is visualized in figure 2.2(b). The remaining uncertainty in u is due to the approximation
error introduced by only conditioning on a finite number of collocation points. This can
also be seen in the lower part of the figure, since the image of u | PDE,BC under the
differential operator induces a probability measure over possible right-hand sides which
are consistent with u | PDE,BC under the PDE. Intuitively speaking, this also shows
that a larger set of collocation points would reduce the uncertainty in u | PDE,BC.
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(b) Belief after conditioning on the PDE and
the boundary values.

Figure 2.2.: We integrate mechanistic knowledge about the system by conditioning our
prior belief u about the temperature distribution in the CPU (see fig-
ure 2.1(b)) on PDE observations −κ∆u (xPDE,i) − q̇V (xPDE,i) = 0 at the
collocation points xPDE,i (see figure 2.2(a)), resulting in the conditional pro-
cess u | PDE := u | −κ∆u (xPDE,i) − q̇V (xPDE,i) = 0. The large remain-
ing uncertainty illustrates that the PDE does not identify a unique solu-
tion. By conditioning the physics-informed process u | PDE on boundary
values g : ∂D → R (see figure 2.2(b)), we obtain a posterior process u |
PDE,BC := u

∣∣ −κ∆u (xPDE,i) − q̇V (xPDE,i) = 0, u|∂D = g whose uncer-
tainty is solely due to discretization error.
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3. Propagating Uncertainty in the Input
Data to the Solution

In the previous chapter, we inferred the solution of a linear PDE subject to Dirichlet
boundary conditions by conditioning a Gaussian process on the observation that the
PDE holds at finite number of domain points and on observations of the boundary values.
However, in practice, the values of the PDE’s right-hand side as well as the initial and
boundary values are usually not known exactly. For instance, they might be derived from
noisy measurements of some physical quantity or they might be rough estimates arising
from experience with related systems. This means that simply conditioning on a point
estimate of these values will likely propagate errors to the solution estimate without
increasing its uncertainty estimate. Hence, the uncertainty in the resulting belief is
not a calibrated estimate of the error in the solution, compared to its true value in an
experiment. In our example, underestimating uncertainty in the temperature distribution
might lead to overheating of parts of the CPU, which can in turn cause permanent
hardware damage, especially if this happens over a longer period of time. Boundary
conditions, initial conditions, the right-hand side of the PDE and the coefficients α of
the differential operator (see definition B.2) are sometimes collectively referred to as the
input data [Borthwick, 2018]. We argue that the ability to handle uncertainty in the
input data is vital in practical applications, since the assumption that they are known
exactly is hardly ever fulfilled. In this chapter, we will show that our GP-based approach
admits a natural solution of PDE boundary value problems with uncertain input data
by consistently propagating the uncertainty to the solution estimate.

3.1. Uncertain Boundary Conditions

Returning to our sample model of the temperature distribution in a CPU from section 2.4,
we note that the boundary conditions constitute somewhat unrealistic assumptions about
the typical deployment of such devices. We restricted ourselves to scenarios in which the
values u|∂D of the unknown function on the boundary ∂D of the domain D are given as a
boundary function g : ∂D → R, i.e. we imposed Dirichlet boundary conditions. This was
due to the fact that, in classical approaches to PDE-based modeling, boundary conditions
are required to render the problem well-posed by ensuring that a unique solution exists. In
practice, these values could for instance be obtained through experimental measurements.
Unfortunately, the absence of a suitable sensor at the boundaries of a deployed CPU
entails that the temperature in these locations is generally unavailable in our example
model.
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3. Propagating Uncertainty in the Input Data to the Solution

We might however assume that the CPU cooler extracts heat (approximately) uni-
formly from all exposed parts of the CPU’s surface, i.e. also from the sides, rather than
just from its top surface. Instead of directly specifying the value of the temperature
distribution, this assumption provides access to the density q̇A of heat flowing out of
each point on the CPU’s boundary. We can use another thermodynamical law to turn
this assumption into information about the temperature distribution:

Example 2.1 (continuing from p. 7). Fourier’s law states that the local density of heat
q̇A flowing through a surface with normal vector ν is proportional to the inner product of
the negative temperature gradient and the surface normal ν, i.e.

q̇A = −κ ⟨ν,∇u⟩ , (3.1)

where k is the material’s thermal conductivity in Wm−1K [Lienhard and Lienhard, 2020].

Assuming sufficient differentiability of u, the inner product above is equal to the direc-
tional derivative ∂νu of u in direction ν. We can assign an outward-pointing or exterior
normal vector ν(x) to (almost) every point x ∈ ∂D on the boundary of the domain.
Since the boundary of the CPU domain is exactly its surface, we can summarize all the
above in a boundary condition −κ∂ν(x)u (x) = q̇A(x) for x ∈ ∂D. This is an example of
a so-called Neumann boundary condition [Evans, 2010], which specifies the value of the
exterior normal derivative at every point of the boundary ∂D of the domain.

Both types of boundary conditions presented above are instances of a much larger class
of linear boundary conditions B [u]−g = 0, where B : U → W is the linear boundary oper-
ator mapping functions u ∈ U onto functions B [u] : ∂D → Rd defined on the boundary.
Choosing B such that B [u] = u|∂D, i.e. the restriction of u onto ∂D, recovers Dirichlet
boundary conditions as a special case, while we can realize Neumann boundary condi-
tions with B [u] (x) := ∂ν(x)u (x). Under mild assumptions, we can again use corollary 2
to condition our GP belief about u on linear boundary conditions.

While being more realistic than Dirichlet boundary conditions, our assumptions about
the value of q̇A in the CPU example above are a crude approximation to the true value
(for multiple reasons). Consequently, enforcing the resulting Neumann boundary condi-
tions would likely introduce estimation error. Fortunately, our probabilistic framework
allows us to turn a point estimate of q̇A into a distributional estimate, quantifying our
uncertainty about the true value of q̇A. Specifically, for the 1D case, we assume a bivari-
ate normal distribution over q̇A := (q̇A(0), q̇A(wCPU)). We can then use corollary 2 once
more to condition u |PDE on the Neumann boundary condition, using the distributional
estimate of q̇A. The resulting belief is visualized in figure 3.1(a). The structure of the
samples in figure 3.1(a) illustrates that most of the remaining uncertainty about the so-
lution lies in a one-dimensional subspace of U corresponding to constant functions. This
is due to the fact that two Neumann boundary conditions on both sides of the domain
only determine the solution of the PDE up to an additive constant. Hence, we need an
additional data source to address the remaining degree of freedom.
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(b) Belief after conditioning u | PDE,NBC on
noisy temperature measurements.

Figure 3.1.: Updated belief about the temperature distribution in the CPU obtained by
successively conditioning the physics-informed process u | PDE on different
sources of noisy observational data. We first impose uncertain Neumann
boundary conditions, approximating the outgoing heat flux at the respective
boundary surface elements of the CPU (see figure 3.1(a)). Moreover, since
the Neumann boundary conditions only identify the solution of the PDE up
to an additive constant, we condition on noisy measurements of the CPU’s
temperature obtained from digital thermal sensors (DTSs) located at xDTS,i,
i.e. inside the CPU cores (see figure 3.1(b)).

19



3. Propagating Uncertainty in the Input Data to the Solution

3.2. Direct Measurements of the Solution

Fortunately, CPUs are equipped with digital thermal sensors (DTSs) located close to
each of the cores [Michaud, 2019], which provide (noisy) local measurements of the core
temperatures. These measurements can be straightforwardly accounted for in our model
by performing standard GP regression using u | PDE,NBC from figure 3.1(a) as prior.
The resulting belief about the temperature distribution is visualized in figure 3.1(b). We
can see that integrating the interior measurements effectively reduces the uncertainty
due to the remaining degree of freedom, but the conditional measure does not contract
completely. The remaining uncertainty is mostly due to the model’s consistent accounting
for noise in the DTS readings, which is visualized by the fact that the 95% credible interval
agrees perfectly with the error bars of the measurements. However, the uncertainty in
the Neumann boundary conditions and the discretization error incurred by only choosing
a relatively small set of collocation points are also accounted for.

The conditional Gaussian process in figure 1.1 is the two-dimensional analogue of u |
PDE,NBC,DTS from figure 3.1(b). For this model, we use a tensor product of Matérn-
7/2 kernels as prior covariance function, a constant prior mean, and the volumetric heat
source visualized as a heat map in the top part of figure 2.1(a). The markers in the
(x1, x2)-plane show the locations XPDE of the PDE collocation points, the locations
XDTS of the thermal sensors, and the locations XNBC of the collocation points for the
Neumann boundary conditions. The latter are now necessary, since the boundary is now
the union of four line segments, i.e. an infinite set of points, and hence, enforcing exact
boundary conditions is no longer possible. Note that there is hardly any variation in the
temperature distribution along the x2 axis. This can be seen as justification that the
one-dimensional model is a reasonable approximation to the temperature distribution,
since it implicitly assumes uniformity along the x2 axis.

3.3. Uncertainty in the Right-hand Side

Above, we always assumed the right-hand side of the PDE to be known exactly. However,
in practice, this assumption is just as unrealistic as the assumption that the values of the
heat flux q̇A across the boundary surface are known exactly. The function q̇V used up until
now is an idealized, crude approximation of the true heat source term. A straightforward
attempt at relaxing this assumption is to replace q̇V by a Gaussian process prior whose
mean is given by the estimate of q̇V used above. Note that, technically speaking, replacing
the right-hand side function by a Gaussian process turns the PDE into a stochastic partial
differential equation (SPDE).

Physical Consistency Recall that, in order to get rid of the time-dependence, we as-
sumed in section 2.4 that the temperature distribution in the CPU is stationary, i.e. not
changing over time. Unfortunately, a naive prior over q̇A will break the model assump-
tion. This is due to the fact that the temperature distribution can only be stationary if
the amount of heat entering the CPU is equal to the amount of heat leaving the CPU via
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3.3. Uncertainty in the Right-hand Side

its surface. If this were not the case, then the CPU would either heat up or cool down.
Mathematically, we can express this constraint as

Q̇ [q̇V , q̇A] :=

∫
D2D

q̇V (x) dx−
∫
∂D2D

q̇A(x) dA = 0, (3.2)

where D2D := [0, wCPU] × [0, hCPU] ⊂ R2 (see top part of figure 2.1(a)). The (jointly)
linear functional Q̇ computes the net amount of thermal energy that the CPU gains per
unit time. We can use this fact and corollary 1 to construct a joint GP prior for q̇V
and q̇A, which is consistent with the assumption of stationarity. Namely, we can posit
a multi-output Gaussian process prior over q̇V and q̇A, and condition both on the fact
that equation (3.2) holds. This is possible because both integrals are linear functionals
acting on the paths of the Gaussian processes. In this section, we choose q̇V ⊥⊥ q̇A.

In the one-dimensional model developed above, we can simplify equation (3.2) by
assuming that heat is drawn uniformly from the sides of the CPU. In this case, the GP
prior over q̇V turns into a four-dimensional Gaussian random vector(

q̇A,N q̇A,E q̇A,S q̇A,W

)⊤ ∼ N (mq̇A ,Σq̇A)

and the stationarity constraint is equivalent to

hCPU

∫
D1D

q̇V (x) dx− hCPU (q̇A,E + q̇A,W )− wCPU (q̇A,N + q̇A,S) = 0, (3.3)

where D1D = [0, wCPU]. The effect of this constraint on the prior over q̇V is visualized in
figure 3.2(b). The conditional mean is the same as the prior mean, since the prior mean
is explicitly constructed to fulfill equation (3.3). However, note that the samples and the
marginal credible interval change substantially. Prior samples seem to lie consistently
above or below the mean, indicating that there is a net increase or decrease in thermal
energy. In contrast, each sample from the conditional process balances values above and
below the mean function. This shows that samples from the conditional process q̇V , q̇A |
STAT conserve the amount of thermal energy in the system.

Note that the prior over q̇A in section 3.1 can also be inconsistent with the assumption
of a stationary temperature distribution, which is why we constructed q̇V and q̇A from
section 3.1 such that equation (3.3) is fulfilled. This also means that q̇V from section 3.1
is different from q̇V in section 2.4 and figures 2.1(a), 2.2(a) and 2.2(b).

Since q̇V (XPDE), q̇A(XNBC) |STAT is a Gaussian random vector, we can use corollary 1
to condition our GP prior u on the event(

−κ∆u(XPDE)− q̇V (XPDE)
−κ∂ν(XNBC)u(XNBC)− q̇A(XNBC)

)
= −κ

(
∆ [·] (XPDE)

∂ν(XNBC)[·](XNBC)

)
[u]−

(
q̇V (XPDE)
q̇A(XNBC)

)
.

(3.4)
It is important to note that, due to the correlations between q̇V (XPDE) | STAT and
q̇A(XNBC) | STAT, this is not equivalent to sequentially conditioning on the PDE and
the boundary conditions as before. The resulting conditional GP u | PDE,NBC, STAT
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(a) GP prior over the volumetric heat source
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tion of a stationary temperature distribu-
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Figure 3.2.: Construction of a joint prior over the volumetric heat source q̇V inside the
CPU and the outgoing surface heat flux q̇A on its sides, which is consistent
with the assumption of a stationary temperature distribution. We start from
independent Gaussian process priors over q̇V (see figure 3.2(a)) and q̇A and
then condition both on the fact that the heat energy entering the system and
the heat energy leaving the system (via the surface) are in balance, i.e. on
equation (3.3). The result is a joint (correlated) prior q̇V , q̇A | STAT, whose
marginal q̇V | STAT is shown in figure 3.2(b).
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measurements, subjective knowledge (pri-
ors over u, q̇V , q̇A) and mechanistic knowl-
edge (PDE, boundary conditions, station-
arity condition equation (3.3))

Figure 3.3.: We integrate knowledge from the joint prior q̇V , q̇A |STAT over the right-hand
side of the PDE and the values of the Neumann boundary conditions into
our belief about the temperature distribution by conditioning on said PDE
and boundary conditions. Afterwards, we use standard GP regression to
also take the direct measurements from section 3.2 into account. Note that,
technically speaking, we do not solve a regular PDE, but rather a stochastic
partial differential equation (SPDE) here.

23



3. Propagating Uncertainty in the Input Data to the Solution

uq̇V q̇A

D [u]− q̇V B [u]− q̇A
u(XDTS)

+
ϵDTS

Q̇ [q̇V , q̇A]

Figure 3.4.: Representation of the CPU model from section 3.3 as a directed graphical
model [Bishop, 2006, Chapter 8]. As discussed in chapters 2 and 3, infer-
ence in this model becomes tractable if we approximate D [u] − q̇V = 0
with D [u] (XPDE)− q̇V (XPDE) = 0 and B [u]− q̇A = 0 with B [u] (XNBC)−
q̇A(XNBC) = 0. The inference procedure described in section 3.3 is equiv-
alent to the junction tree algorithm [Bishop, 2006, Section 8.4.6] applied to
this approximation to the graphical model above. Hence, we perform exact
inference in an approximate model.

is shown in figure 3.3(a). Comparing figures 3.1(a) and 3.3(a), we can see that, due to
the uncertainty in the right-hand side q̇A of the PDE, the samples exhibit much more
spatial variation. Moreover, subjecting the sample paths of −κ∆u | PDE,NBC, STAT
from the lower part of figure 3.3(a) to close scrutiny, one can observe that the GP
posterior over u learns about the stationarity constraint imposed on q̇V , even from a finite
number of observations. Finally, we can, as above, integrate the direct measurements of
u from section 3.2 using standard GP regression. This yields the posterior GP shown in
figure 3.3(b).

Note that the inference procedure outlined above is a special case of the so-called
junction tree algorithm applied to (an approximation to) the directed graphical model
shown in figure 3.4.

3.3.1. Implementation Details

While it is in principle possible to use automatic differentiation (AD) to compute the
kernels Dk, kD∗, DkD∗ and then evaluate equations (2.10) and (2.11) naively, we found
that this is detrimental to the performance of the algorithm, especially when performing
multiple successive conditioning steps as above. This mostly comes down to two prob-
lems. For one, in this example, DkD∗ contains fourth derivatives, which are expensive
to compute when using AD. For another, with each additional conditioning step, the
expressions for the conditional mean and covariance need to be substituted into equa-
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3.3. Uncertainty in the Right-hand Side

tions (2.10) and (2.11), which leads to increasingly complex expressions. Our solution to
both of these problems relies heavily on block-matrix inversion. Suppose that a GP prior
u ∼ GP (m, k) has already been conditioned on observations of the form L1 [u]+ b1 = y1,
where L1 maps into Rn1 and b1 ∼ N (µ1,Σ1). Assume that we additionally want to
condition on L2 [u] + b2 = y2, where L2 maps into Rn2 and b2 ∼ N (µ2,Σ2) such that
b2 ⊥⊥ b1. Then, by corollary 1, the conditional mean and covariance functions of u |
L1 [u] + b1 = y1,L2 [u] + b2 = y2 are given by

m1:i+1(x) = m(x) +
(
(kL1)

∗(x) (kL∗
2)(x)

)
G−1

(
y1 − (L1 [m]− µ1)
y2 − (L2 [m]− µ2)

)
(3.5)

k1:i+1(x1, x2) = k(x1, x2) +
(
(kL1)

∗(x1) (kL∗
2)(x1)

)
G−1

(
(L1k)(x2)
(L2k)(x2)

)
, (3.6)

with

G =

(
G11 G12

G⊤
12 G22

)
:=

(
L1kL∗

1 +Σ1 L1kL∗
2

L2kL∗
1 L2kL∗

2 +Σ2

)
. (3.7)

Since u | L1 [u] + b1 = y1 is precomputed, we can assume to have access to G−1
11 =

(L1kL∗
1 + Σ1)

−1, e.g. in the form of a Cholesky decomposition. We can leverage this to
compute G−1 by block matrix inversion

G−1 =

(
G−1

11 +G−1
11 G12S

−1G⊤
12G

−1
11 −G−1

11 G12S
−1

−S−1G⊤
12G

−1
11 S−1

)
, (3.8)

where S = G22 −G⊤
12G

−1
11 G12 is the so-called Schur complement of G11 in G [Boyd and

Vandenberghe, 2004]. Moreover, if a Cholesky factorization G11 = L11L
T
11 is available,

we can compute the Cholesky factorization of the full matrix G by

G =

(
L11 0

G⊤
12(L

⊤
11)

−1 LS

)(
L⊤
11 L−1

11 G12

0 L⊤
S

)
, (3.9)

where S = LSL
⊤
S is the Cholesky factorization of the Schur complement. Computing

inverses and Cholesky factors in this two-step fashion has the same complexity as a direct
computation. However, by implementing it this way, we have access to the intermediate
conditional process right before the second process at no additional cost. By induction,
this result applies to symmetric positive definite block matrices with arbitrary numbers
of blocks.

Note that, in the expressions above, we only need to apply the linear operators to the
prior kernel and mean function. We use this to alleviate the need for automatic differen-
tiation. Namely, we manually implement L [m], Lk, kL∗, and LkL∗ for all combinations
of linear operator L, prior mean m and prior covariance function k that we wish to use
for inference, with optional fallbacks to an AD framework if a particular combination is
not (yet) implemented.

These two techniques lead to a significant speed-up during inference.
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3. Propagating Uncertainty in the Input Data to the Solution

3.4. Discussion

In this chapter, we showed how

• exact mechanistic knowledge in the form of a linear PDE subject to Neumann
boundary conditions and an integral equation enforcing physical consistency (equa-
tion (3.2)),

• uncertain subjective knowledge given by the prior over the temperature distribution
u and the priors over the right-hand side q̇V of the PDE and the boundary heat
flux q̇A, and

• noisy empirical measurements

can be fused into a common probabilistic model through Gaussian process inference.
We have seen that our model meaningfully accounts for the uncertainties in all sources
of information named above. All of this is possible due to the fact that we discard the
paradigm of isolating a single solution function. Instead, our method produces an infinite
set of solution candidates (the sample paths of the posterior GP) together with a proba-
bility measure quantifying our belief that any one of these functions is the true solution
to the PDE. While it is possible to obtain such infinite sets of solution candidates in a
non-probabilistic approach, the probability is crucial for this to be practically useful. To
illustrate this, consider the conditional Gaussian processes from figures 3.1(a) and 3.3(a).
When conditioning on the PDE at the collocation points with a known right-hand side,
i.e. with no observation noise, we essentially enforce a hard constraint on the paths of the
conditional GP. As a result, we remove solution candidates from the set of hypotheses
provided by the samples of the prior. Assuming the right-hand side to be a Gaussian pro-
cess amounts to adding Gaussian observation noise to the PDE observations. Since the
Gaussian has support on the entire real line, we can not exclude any solution candidates
in this case, which means that the set of solution candidates induced by the conditional
GP is the same as the one induced by the prior. However, we can clearly see that the
GP is influenced by the PDE observations (and the observations of the boundary condi-
tions). This is due to the fact that the probability measure now prioritizes sample paths,
which best explain the observations. In general it is computationally expensive or even
intractable to operate on such infinite sets of candidate solutions. Fortunately, Gaussian
processes induce probability measures on their sample path spaces for which the type of
inference presented above is computationally efficient.

It is possible to obtain "canonical" point estimates of the solution from the probabil-
ity measure, e.g. by computing the mean function, which is useful in low-uncertainty
scenarios such as figure 2.2(b). Nevertheless, what makes the approach powerful is the
structured uncertainty captured in samples or the covariance function. For instance, this
structured uncertainty makes it possible to further narrow down the uncertain output
of a Bayesian PDE solver using additional information in downstream computation. We
can see an example of this in figure 3.3(b), where we use the conditional process from
figure 3.3(a) as prior and condition on measurements of the solution which amounts to
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3.4. Discussion

standard GP regression. The prior, which is essentially the output of a Bayesian PDE
solver, encodes the information that sample paths which agree with the SPDE and bound-
ary conditions are more probable to be the solution. As above, we observe that most of
the uncertainty lies in a subspace corresponding to constant functions, since these lie in
the null space of both the differential and the boundary operator. The conditioning step
then selects paths which additionally agree with the temperature measurements. This
reduces the uncertainty in the subspace of constant functions, without interfering with
the more certain parts of the prior. As a result, samples from the posterior GP still agree
with the PDE and the boundary conditions up to the uncertainty in q̇V and q̇A. If the
output of the solver were a point estimate, it would not be evident how we could modify
the output so as not to break the fact that it solves the PDE.

We have seen that computational pipelines such as the one presented in this example
can be elegantly expressed as directed graphical models. Since our inference algorithm
amounts to Gaussian belief propagation on the junction tree of this graphical model, it
is evident that the Bayesian PDE solver is a local computation in the global inference
procedure on the tree. This shows that GP-based PDE solvers can be implemented in
a highly modular fashion, since the implementation of the solver does change based on
what happens to the solution estimate and the input data in either upstream or down-
stream computations. All this information is already handily encoded in the structured
uncertainties of the Gaussian processes.

All in all, we argue that Gaussian processes are a powerful modeling language, which
makes it possible to implement highly modular computational pipelines aimed at solving
potentially ill-posed problems involving linear PDEs by fusing diverse sources of empiri-
cal, mechanistic and prior information.
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4. Gaussian Process Inference with
Affine Observations of the Sample
Paths

Throughout chapters 2 and 3 we conditioned Gaussian process priors on affine observa-
tions of their paths. More precisely, given a (multi-output) GP prior f ∼ GP (m, k) with
index set X ⊂ Rd, a linear operator L : paths (f) → Rn acting on the paths of f , and a
Gaussian random vector g ∼ N (µ,Σ) in Rn with g ⊥⊥ f , we computed the conditional
random process

f | L [f ] + g = y (4.1)

for some y ∈ Rn. Formally, this object is defined as the family

(f | L [f ] + g = y ) := {fx | E}x∈X , (4.2)

where (Ω,B (Ω) ,P) is the probability space on which both f and g are defined, E is the
event E := h−1({y}) ∈ B (Ω) and h is the random variable

h : Ω → Rn, ω 7→ L [f(·, ω)] + g(ω). (4.3)

We refer to appendices A.1 and A.2 for definitions of the objects mentioned above. For
instance, in chapter 2, we use L := (D [·] (xi))ni=1, where D is a linear differential operator,
as well as L

[
f̃
]
:= (f̃(xi))

n
i=1, and, in chapter 3, we additionally use

L
[
f̃
]
=

∫
D
f̃(x) dx. (4.4)

It is well-known that h is a Gaussian random vector

h ∼ GP (L [m] + µ,LkL∗ +Σ), (4.5)

where LkL∗ ∈ Rn×n with

(LkL∗)ij = L
[
t 7→ L [k(t, ·)]j

]
i
, (4.6)

and that the conditional random process is a Gaussian process

f | L [f ] + g = y ∼ GP (mh=y, kh=y) (4.7)

with conditional moments given by

mh=y(x) = m(x) + L [k(·, x)]⊤ (LkL∗ +Σ)−1 (y − (L [m] + µ)) , (4.8)
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4. Gaussian Process Inference with Affine Observations of the Sample Paths

and

kh=y(x1, x2) = k(x1, x2) + L [k(·, x1)]⊤ (LkL∗ +Σ)−1 L [k(·, x2)] (4.9)

and this result is widely-used in the literature (see e.g. Graepel [2003], Rasmussen and
Williams [2006], Särkkä [2011], Särkkä et al. [2013], Cockayne et al. [2017], Raissi et al.
[2017], Agrell [2019], Albert [2019], Krämer et al. [2022]). Unfortunately, to the best of
our knowledge, no complete proof of the result has been published yet. Since the above
are nontrivial claims about potentially ill-behaved infinite-dimensional objects, a proof
would however be highly important, be it just to identify a precise set of assumptions
about the objects at play, which are requires so that the result holds. For instance, it is
possible that h is not a random variable (because it might not measurable), i.e. E might
not be measurable.

To remedy this situation, a major contribution of this work are theorem 1 and corol-
laries 1 and 2 and their proof in appendix A, which provide a sequence of increasingly
results capturing the claims above as a special case. Hence, besides being the theoretical
basis for this work, theorem 1 and corollaries 1 and 2 also provide theoretical backing for
many of the publications cited above.

Our results identify a set of mild assumptions, which are easy to verify and widely-
applicable in practical applications. Assumption 1 constitutes the common set of as-
sumptions shared by theorem 1 and corollaries 1 and 2. See section 4.1 for information
on how to verify assumption 1 in a practical scenario.

Assumption 1. Let
f ∼ GP (mf , kf ) (4.10)

be a Gaussian process prior with index set X on the Borel probability space (Ω,B (Ω) ,P),
whose mean function and sample paths lie in a real separable Hilbert function space H ⊂
RX with Hk ⊂ H and with continuous point evaluation functionals. Let L : H → HL be
a bounded linear operator mapping the paths of f into a separable Hilbert space HL.

We start our exposition here by presenting theorem 1, our most general result. Us-
ing theorem 1, it is possible to condition Gaussian processes on affine observations of
their paths, which take values in arbitrary and potentially infinite-dimensional separable
Hilbert spaces. For instance, this means that conditioning on observations of a whole
function (instead of just a finite number of function evaluations) is possible, given that
the assumptions of theorem 1 are fulfilled. The formulation of this theorem heavily relies
on the theory of Gaussian measures on separable Hilbert spaces, some of which is detailed
is appendix A.3 and appendix A.6.

Theorem 1 (Affine Gaussian Process Inference). Let assumption 1 hold. Then ω 7→
f(·, ω) is an H-valued Gaussian random variable on (Ω,B (Ω) ,P) with mean m and
covariance operator h 7→ Cf [h] (x) = ⟨k(x, ·), h⟩H. We also write f ∼ N (m, Cf ). Let
g ∼ N (mg, Cg) be an HL-valued Gaussian random variable on (Ω,B (Ω) ,P) with g ⊥⊥ f .
Then (

f
L [f ] + g

)
∼ N

((
mf

L [mf ] +mg

)
,

(
Cf CfL∗

LCf LCfL∗ + Cg

))
, (4.11)
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with values in H×HL and hence

L [f ] + g ∼ N (L [mf ] +mg,LCfL∗ + Cg). (4.12)

If ran (LCfL∗ + Cg) is closed, then for all h ∈ HL

f | L [f ] + g = h ∼ GP
(
mf |L[f ]+g=h, kf |L[f ]+g=h

)
, (4.13)

where the conditional mean and covariance function are given by

mf |L[f ]+g=h(x) = mf (x) +
〈
L [kf (·, x)] , (LCfL∗ + Cg)† [h− (L [mf ] +mg)]

〉
HL

,

(4.14)

and

kf |L[f ]+g=h(x1,x2) = kf (x1, x2)−
〈
L [kf (·, x1)] , (LCfL∗ + Cg)† L [kf (·, x2)]

〉
HL

, (4.15)

respectively.

Unfortunately, especially in the context of PDEs, theorem 1 is difficult to apply in
practice, since the operator LCfL∗ is infinite-dimensional and its pseudoinverse (if it ex-
ists) usually has no analytic form. However, as seen in chapters 2 and 3, its corollaries
can, in practical scenarios, be applied to great effect. Corollary 1 enables affine obser-
vations, in which the GP sample paths enter through one or multiple continuous linear
functionals. For example, we used corollary 1 in section 3.3 to condition on observations
of a GPs. To state the result conveniently, we introduce some notation.

Notation 1. Let k : X × X → R be a positive-definite kernel and let Li : Hk → Rni for
i = 1, 2 be bounded linear operators. We define the functions

L1k : X → Rn1 , x 7→ L1 [k(·, x)] , (4.16)
kL∗

2 : X → Rn2 , x 7→ L2 [k(x, ·)] , (4.17)
(4.18)

and the matrix1L1kL∗
2 ∈ Rn1×n2 with entries

(L1kL∗
2)ij := L2 [(L1k)i]j (4.19)

= L1 [(kL∗
2)j ]i . (4.20)

1This notation is motivated by lemma A.7, which also shows that the two different ways to compute
the entries of L1kL∗

2 are consistent.
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4. Gaussian Process Inference with Affine Observations of the Sample Paths

Corollary 1. Let assumption 1 hold for HL = Rn and let g ∼ N (µg,Σg) be an Rn-valued
Gaussian random variable on (Ω,B (Ω) ,P) with g ⊥⊥ f . Then

L [f ] + g ∼ N (L [mf ] + µg,LkfL∗ +Σg) (4.21)

and
f | L [f ] + g = h ∼ GP

(
mf |L[f ]+g=h, kf |L[f ]+g=h

)
, (4.22)

with conditional mean and covariance function given by

mf |L[f ]+g=h(x) = mf (x) + L [kf (x, ·)]⊤ (LkfL∗ +Σg)
† (h− (L [mf ] +mg)) , (4.23)

and

kf |L[f ]+g=h(x1, x2) = kf (x1, x2)− L [kf (x1, ·)]⊤ (LkfL∗ +Σg)
† L [kf (·, x2)] . (4.24)

Finally, we turn to corollary 2, which is the result that is most widely-used throughout
the literature [Graepel, 2003, Särkkä, 2011, Särkkä et al., 2013, Cockayne et al., 2017,
Raissi et al., 2017, Agrell, 2019, Albert, 2019, Krämer et al., 2022]. It shows how Gaussian
processes can be conditioned on point evaluations of the image of their paths under a
linear operator, provided that the linear operator is bounded and maps into a Hilbert
function space, on which point evaluation is continuous. Moreover, it shows that, under
these conditions, the image of the GP under the linear operator is itself a Gaussian
process. Again, we introduce some notation to facilitate stating the result.

Notation 2. Let k : X × X → R be a positive-definite kernel and, for i = 1, 2, let
Li : Hk → Rni be a bounded linear operator mapping into a real Hilbert function space
Hi ⊂ RXi with continuous point evaluation functionals. In analogy to notation 1, we
define the bivariate functions

kL∗
2 : X ×X2 → R, (x, x2) 7→ L2 [k(x, ·)] (x2) , (4.25)

L1k : X1×X → R, (x1, x) 7→ L1 [k(·, x)] (x1) , and (4.26)
L1kL∗

2 : X1×X2 → R, (x1, x2) 7→ L2 [(L1k)(x1, ·)] (x2) = L1 [(kL∗
2)(·, x2)] (x1) . (4.27)

Corollary 2. Let assumption 1 hold, where HL ⊂ RX ′ is a space of real valued functions
defined on X ′ such that the point evaluation functionals δx′ : HL → R, h 7→ h(x) for all
x ∈ X ′ are continuous. Let

g ∼ GP (mg, kg) (4.28)

be a Gaussian process with index set X ′ on (Ω,B (Ω) ,P) with g ⊥⊥ f . Then

L [f ] + g ∼ GP (L [m] +mg,LkfL∗ + kg), (4.29)

and, for X ′ = {x′i}ni=1 ⊂ X ′ and h ∈ Rn,

f | L [f ]
(
X ′)+ g(X ′) = h ∼ GP

(
mf |X′,h, kf |X′,h

)
(4.30)
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with

mf |X′,h(x) := mf (x) + (kfL∗)(x,X ′)(LkfL∗ + kg)(X
′, X ′)†

(
h−

(
L [mf ]

(
X ′)+mg(X

′)
))

(4.31)

and

kf |X′,h(x1, x2) := kf (x1, x2)− (kfL∗)(x1, X
′)(LkfL∗ + kg)(X

′, X ′)†(Lkf )(X ′, x2).

(4.32)

where

(kfL∗)(x,X ′) =
(
(kfL∗)(x, x′i)

)n
i=1

∈ R1×n (4.33)

(Lkf )(X ′, x2) =
(
(Lkf )(x′i, x)

)n
i=1

∈ Rn (4.34)

(LkfL∗ + kg)(X
′, X ′) =

(
(LkfL∗)(x′i, x

′
j) + kg(x

′
i, x

′
j)
)n
i,j=1

∈ Rn×n (4.35)

L [mf ]
(
X ′) = (L [mf ] (xi))

n
i=1 ∈ Rn (4.36)

mg(X
′) = (mg(xi))

n
i=1 ∈ Rn. (4.37)

If additionally X = X ′, then(
f

L [f ] + g

)
∼ GP

((
mf

L [mf ] +mg

)
,

(
kf kfL∗

Lkf LkfL∗ + kg

))
. (4.38)

This corollary is is the theoretical basis for chapter 2 and most of chapter 3. Note
that, for L = id, we recover standard GP regression as a special case in corollary 2.

Remark 4.1. Theorem 1 and corollaries 1 and 2 also apply if the GPs involved are multi-
output GPs. In this case, the sample paths are functions I ×X → R with I = {1, . . . , d}
by definition A.4. In order to apply linear operators defined on functions X → Rd, we
interpret a sample path f(·, ω) : I ×X → R as a function

f̃(·, ω) : X → Rd, x 7→ (f((i, x), ω))di=1 ∈ Rd. (4.39)

4.1. On Prior Selection

A typical choice for the solution space U of a linear PDE, especially in the context of weak
solutions (see chapter 5), are Sobolev spaces [Adams and Fournier, 2003]. Unfortunately,
it is impossible to formulate a Gaussian process prior u, whose paths are elements of a
Sobolev space U . This is due to the fact that Sobolev spaces are, technically speaking,
not function spaces, but rather spaces of equivalence classes [f ]∼ of functions, which
are equal almost everywhere [Adams and Fournier, 2003]. By contrast, the path spaces
of Gaussian processes are proper function spaces, which means that, in this setting,
paths (u) ⊆ U is impossible.

Fortunately, if the path space can be continuously embedded in U , i.e. there is a
continuous and injective linear operator ι : paths (u) → U , commonly referred to as an
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4. Gaussian Process Inference with Affine Observations of the Sample Paths

embedding, then the inference procedure above can still be applied. If such an embedding
exists, we can interpret the paths of the GP as elements of U by applying ι implicitly.
For instance, D [u] is then a shorthand notation for D [ι [u]]. Fortunately, since the
embedding is assumed to be continuous, the conditions for GP inference with linear
operator observations are still met when applying ι implicitly. The canonical choice for
the embedding in the case of Sobolev spaces is ι [u] = [u]∼U .

Example 4.1 (Matérn covariances and Sobolev spaces). Kanagawa et al. [2018] show
that, under certain assumptions, the sample spaces of GP priors with Matérn covariance
functions [Rasmussen and Williams, 2006] are continuously embedded in Sobolev spaces
whose smoothness depends on the parameter ν of the Matérn covariance function. To
be precise, let D ⊂ Rd be open and bounded with Lipschitz boundary such that the cone
condition [Adams and Fournier, 2003, Definition 4.6] holds. Denote by kν,l the Matérn
kernel with smoothness parameter ν > 0 and lengthscale l > 0. Then, with probability 1,
the sample paths of a Gaussian process f with covariance function kν,l are contained in
any RKHS Hkν′,l′ with l′ > 0 and

0 < ν ′ +
d

2︸ ︷︷ ︸
=:m′

< ν (4.40)

[Kanagawa et al., 2018, Corollary 4.15 and Remark 4.15]. Moreover, if m′ ∈ N, then the
RKHS Hkν′,l′ is norm-equivalent to the Sobolev space Hm′

(D) [Kanagawa et al., 2018,
Example 2.6]. This implies that the canonical embedding

ι : paths (f) → Hm′
(D) , f(·, ω) 7→ [f(·, ω)]∼

Hs′ (D)
(4.41)

is continuous.

For U = Hm′
(D), the example above shows that the Matérn covariance function kν,l

with ν = m′ + ϵ for any ϵ > 0 leads to an admissible GP prior. The choice ϵ = 1
2 makes

evaluating the covariance function particularly efficient [Rasmussen and Williams, 2006].
However, note that the elements of the Sobolev space Hm (D) are only m-times weakly
differentiable, which means that H2 (D) is not an admissible choice in chapters 2 and 3.

Remark 4.2 (Sobolev Spaces and Strong Derivatives). The Sobolev embedding theorem
[Adams and Fournier, 2003, Theorem 4.12] gives conditions under which the elements of
a Sobolev space are embedded into Banach spaces of continuously differentiable functions.
Let D ⊂ Rd be open and bounded with Lipschitz boundary such that the cone condition
[Adams and Fournier, 2003, Definition 4.6] holds. Let j ≥ 0, m ≥ 1 be integers. If
m > d

2 , then there is a continuous embedding

ι : Hj+m (D) → Cj
B(D), (4.42)

where Cj
B(D) is the space of continuously differentiable functions with bounded deriva-

tives, which is a Banach space under the norm

∥f∥
Cj

B(D)
= max

0≤|α|≤j
sup
x∈D

|Dαf (x)|. (4.43)
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Moreover, point-evaluated partial derivatives on Cj
B(D) are continuous linear functionals,

since, for any multi-index |α′| ≤ j and any x′ ∈ D, we have∣∣∣Dα′
[f ]
(
x′
)∣∣∣ ≤ sup

x∈D

∣∣∣Dα′
f (x)

∣∣∣ ≤ max
0≤|α|≤j

sup
x∈D

|Dαf (x)| = ∥f∥
Cj

B(D)
. (4.44)

Example 4.2 (Strong Derivatives in Matérn Sample Spaces). Under the assumptions
of example 4.1, for a prior GP f with Matérn covariance function kν,l such that ν :=
m+ k + ϵ, where ϵ > 0 and

k :=

{
d
2 + 1

2 if d is odd,
d
2 + 1 if d is even,

(4.45)

we have the following chain of continuous embeddings

paths (f) ↪→ Hm+k (D) ↪→ Cm
B (D). (4.46)

As noted in remark 4.2, point-evaluated partial derivatives of order ≤ m are continu-
ous linear functionals on Cm

B (D). It follows that a point-evaluated differential operator
D [·] (x) of order ≤ m is a continuous linear functional on paths (f) if the two continuous
embeddings are prepended.

In chapters 2 and 3, we have d = 1 and a GP prior with Matérn covariance function
where ν = 7

2 = 2 + k + 1
2 . It follows that point-evaluated differential operators of order

≤ 2 are continuous linear functionals. Hence, the assumptions of corollary 2 are fulfilled,
which means that the inference procedure used in these chapters is supported by our
theoretical results above.
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Weak Solutions to Linear PDEs

Many models of physically plausible phenomena are expressed as functions u, which are
not (continuously) differentiable or not even continuous. See Evans [2010, Section 1.3.2],
Borthwick [2018, Section 1.2], or von Harrach [2021, Kapitel 1] for some examples. This
means that these phenomena can not be the classical solution to a PDE. Moreover, it
turns out that there are PDEs derived from established physical principles, which do not
admit a classical solution at all. To solve both of these problems, one can weaken the
notion of differentiability and the notion of a solution to a PDE. This leads to so-called
weak solutions. In fact, many of the aforementioned phenomena are weak solutions to
specific PDEs.

In the following, we will give an intuitive, yet superficial treatment of weak solution
theory for linear PDEs by considering the weak formulation of the stationary heat equa-
tion for non-homogeneous media

−div (κ∇u) = q̇V (5.1)

as an example. Note that, for a constant κ, this equation turns into the version of
the stationary heat equation used throughout chapters 2 and 3. Our exposition here is
largely based on Evans [2010, Section 6.1.2] and we refer the reader there for additional
information.

Let D ⊂ Rd be an open and bounded domain and assume that u ∈ C2(D), κ ∈ L∞ (D),
and q̇V ∈ L2 (D). If u is a solution to equation (5.1), then we can integrate both sides
of the equation against a so-called test function v ∈ C∞

c (D), i.e. an infinitely smooth
function with compact support (see definition B.5), which results in

−
∫
D
div (κ∇u) (x) v(x) dx =

∫
D
q̇V (x)v(x) dx. (5.2)

Since both u and v are sufficiently differentiable, we can apply integration by parts to
the first integral to obtain∫

D
⟨κ(x)∇u (x) ,∇v (x)⟩ dx =

∫
D
q̇V (x)v(x) dx, (5.3)

since v|∂D = 0. Note that this expression does not only make sense if u ∈ C2(D), but also
if u is once weakly differentiable (see [Evans, 2010, Section 5.2.1]) with ∇u ∈ L2 (D)d. In-
tuitively speaking, a weak derivative of a (classically non-differentiable) function "behaves
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like a derivative" when integrated against a smooth test function. These relaxed require-
ments on u are exactly the defining properties of the Sobolev space H1 (D) ⊃ C2(D), i.e.
it suffices that u ∈ H1 (D). Denote by H1

0 (D) the closure of C∞
c (D) in H1 (D). Then

there is a sequence (vm)∞m=1 ⊂ C∞
c (D) with vm → v (in H1 (D)) for every v ∈ H1

0 (D)
and equation (5.3) is continuous in v (in H1 (D)-norm). Hence, we can also relax the
requirements on v to v ∈ H1

0 (D) ⊃ C∞
c (D). Let

B [u, v] :=

∫
D
⟨κ(x)∇u (x) ,∇v (x)⟩ dx. (5.4)

Note that B is bilinear. Then, for u ∈ H1 (D) and v ∈ H1
0 (D), equation (5.3) is

equivalent to
B [u, v] = ⟨q̇V , v⟩L2

. (5.5)

We define a weak solution of equation (5.1) as u ∈ H1 (D) such that equation (5.5) for all
v ∈ W 1,u

0 . Moreover, equation (5.5) is commonly referred to as the weak or variational
formulation of equation (5.1).

Definition 5.1. A weak formulation of a PDE is an equation of the form

B [u, v] = l [v] , (5.6)

where B : U × V → R is a bilinear form and l : V → R is a continuous linear functional.
A vector u ∈ U is a weak solution of the PDE if it solves equation (5.6) for all test
functions v ∈ V .

Remark 5.1. We can recover the strong solution of the PDE from a weak formulation
by choosing

B [u, v] := ⟨v,D [u]⟩V and l [v] := ⟨v, f⟩V . (5.7)

This is due to the fact that, for any weak solution u⋆ ∈ U of the PDE, we have D [u⋆]−f ∈
V and hence

∥D [u⋆]− f∥2V = ⟨D [u⋆]− f,D [u⋆]− f⟩V (5.8)
= ⟨D [u⋆]− f,D [u⋆]⟩V − ⟨D [u⋆]− f, f⟩V (5.9)
= ⟨D [u⋆]− f, f⟩V − ⟨D [u⋆]− f, f⟩V (5.10)
= 0, (5.11)

i.e. D [u⋆]−f = 0. This implies that u⋆ is actually a strong solution of the PDE, because
D [u⋆] = f .

5.1. The Petrov-Galerkin Method1

Unfortunately, equation (5.6) is only rarely analytically solvable, so we need to find
an approximate solution. A very common strategy is to replace U and V by finite

1This section is loosely based on [Fletcher, 1984] and [von Harrach, 2021].
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dimensional subspaces

Û = span (u1, . . . , um) ⊂ U (5.12)

V̂ = span (v1, . . . , vn) ⊂ V (5.13)

and solve the weak formulation in those, i.e. we now want to find u ∈ Û such that
equation (5.6) holds for all v ∈ V̂ . The functions in Û are dubbed trial functions, while
the functions in V̂ are, perhaps confusingly, also referred to as test functions [Fletcher,
1984]. Note however that the functions in V̂ do not need to have the same smoothness
properties as the test functions from definition B.5. Due to the fact that Û and V̂ are
finite-dimensional, this is formulation is equivalent to solving the linear system

B̂ĉPG = l̂, (5.14)

where B̂ ∈ Rn×m and l̂ ∈ Rn are defined by

B̂ij := B [uj , vi] and (5.15)

l̂i := l [vi] . (5.16)

Any solution ĉPG to this linear system corresponds to a solution

ûPG :=

m∑
i=1

cPG
i ui ∈ Û (5.17)

of equation (5.6) in Û and V̂ . This approach to approximating the solution of a weak
formulation is known as the generalized Galerkin or Petrov-Galerkin method [Fletcher,
1984]. If n = m and ui = vi for all i = 1, . . . ,m, then the method is know as the Ritz or
(Ritz-)Galerkin method.

Among the most important properties of the Petrov-Galerkin method is the notion of
"orthogonality" of the residual r := u⋆ − ûPG, i.e. the error of the approximation, to the
subspace Û w.r.t. the bilinear form B. To be precise, we have

B [r, vi] = B [u⋆, vi]︸ ︷︷ ︸
=l[vi]

−B
[
ûPG, vi

]︸ ︷︷ ︸
=l[vi]

= 0, (5.18)

since u⋆ solves equation (5.6) for all v ∈ V ⊃ V̂ , ûPG solves the equation for all v ∈ V̂ ,
and vi ∈ V̂ .

The Petrov-Galerkin method gives rise to a whole family of accurate and versatile
numerical methods for approximating weak solutions of linear PDEs, the most important
subfamilies of which are spectral methods, finite volume methods and the ubiquitous finite
element method (FEM).

Example 5.1 (Spectral methods). We obtain a canonical example of a spectral method
if we choose truncated Fourier bases for Û and V̂ , e.g.

u2i = v2i = cos(iπx) (5.19)
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u2i+1 = v2i+1 = sin(iπx) (5.20)

for i = 0, . . . , n− 1.

Example 5.2 (Finite Element Methods). Generally speaking, finite element methods are
(Petrov-)Galerkin methods, where the functions in the test and trial bases have compact
support, i.e. they are nonzero only in a highly localized region of the domain. The
archetype of a finite element method chooses piecewise linear test and trial functions,
which are linear on each element of a triangulation of the domain. For instance, on a one-
dimensional domain D = [−1, 1], this amounts to fixing a grid −1 = x0 < · · · < xn+1 = 1
and then choosing the basis functions

ui(x) = vi(x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi,

xi+1−x
xi+1−xi

if xi ≤ x ≤ xi+1,

0 otherwise.

(5.21)

for i = 1, . . . , n. Note that multiplying a coordinate vector c ∈ Rn with these basis
functions indeed leads to a piecewise linear interpolation between the points

(x0, 0), (x1, c1), . . . , (xn, cn), (xn+1, 0),

since, for x ∈ [xi, xi+1],

n∑
i=1

ciui(x) = ci
xi+1 − x

xi+1 − xi
+ ci+1

x− xi
xi+1 − xi

=

(
1− x− xi

xi+1 − xi

)
ci +

(
x− xi

xi+1 − xi

)
ci+1.

The basis functions and an element in their span are visualized in figure 5.1. It is also
common to use piecewise polynomials of higher order as basis functions.

5.2. A Hierarchical Bayesian Framework for Approximating
(Weak) Solutions to Linear PDEs

In this section, we will develop a unifying framework for GP-based methods aimed at ap-
proximating both weak and strong solutions to linear PDEs. Our framework is essentially
a generalization of the Petrov-Galerkin approach applied to Gaussian process inference.
We will show that our framework reproduces a large family of non-probabilistic numeri-
cal methods for linear PDEs including symmetric collocation [Fasshauer, 1997, 1999], the
Petrov-Galerkin method, and hence finite-element methods, spectral methods, and finite
volume methods.

Consider a linear PDE in weak formulation, i.e. we want to solve

B [u, v] = l [v] ∀v ∈ V (5.22)
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(a) Basis functions ui = ui spanning the test
and trial function spaces Û = V̂ . The func-
tions are defined on the whole interval [-1,
1], but we only show the non-zero parts of
the functions to avoid clutter in the figure
above.
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(b) An element from Û = V̂ , i.e. a linear com-
bination of the basis functions on the left.
The linear combination results in a function
which takes the values of the coefficients at
the peak locations of the respective basis
functions and interpolates linearly between
the points.

Figure 5.1.: Typical test and trial function spaces Û = V̂ of piecewise linear functions
used in the finite element method in one dimension.

for u ∈ U , where l [v] = ⟨f, v⟩V for some f ∈ V . We additionally require that B is
continuous for fixed v ∈ V , i.e. for any v ∈ V there must be a constant C < ∞ such that

B [u, v] ≤ C ∥u∥U (5.23)

for all u ∈ U . As shown in remark 5.1, this does not limit our method to approximation
of weak solutions, since strong solutions can also be found using weak formulations. Let(

u
f

)
∼ GP

((
mu

mf

)
,

(
kuu kuf
kfu kff

))
(5.24)

be a multi-output Gaussian process prior over the weak solution u and the right-hand side
f of the PDE, whose path space can be continuously embedded into U×V (see section 4.1
for more details on the latter assumption). Taking inspiration from section 5.1, we choose
subspaces Û ⊂ U and V̂ = span (v1, . . . , vn) ⊂ V of trial and test functions. By applying
a bounded projection PÛ : U → Û onto Û , i.e. P2

Û
= PÛ ,

∥∥PÛ

∥∥ < ∞, and ran
(
PÛ

)
= Û ,

we obtain a canonical parametric approximation

uÛ := PÛ [u] ∈ Û (5.25)

of the GP in the subspace Û . Afterwards, in analogy to the Petrov-Galerkin method, we
can then solve the weak form in Û and V̂ by conditioning the prior u on the event

B
[
uÛ , vi

]
− ⟨f, vi⟩V = 0 ∀i ∈ {1, . . . , n}, (5.26)
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which we also denote by
B
[
uÛ , V̂

]
−
〈
f, V̂

〉
V
= 0, (5.27)

where

B
[
·, V̂
]
: U → Rn, u 7→

(
B
[
uÛ , vi

])n
i=1

, (5.28)〈
f, V̂

〉
V
: V → Rn, v 7→ (⟨f, vi⟩V )

n
i=1 . (5.29)

By corollary 1, the resulting conditional random process

u |B
[
uÛ , V̂

]
−
〈
f, V̂

〉
V
= 0 (5.30)

is again Gaussian. In the following, we will introduce the two main types of methods
that can be derived from this general framework. Additionally, we will show that they
recover certain classical methods in the conditional mean.

5.2.1. Gaussian Process Projection Methods

The simplest choice for the subspace Û ⊂ U is arguably to set Û = U , which means that
PÛ = idU . We refer to this class of methods as Gaussian process projection methods,
since evaluating B [u, vi] and ⟨f, vi⟩V shares certain similarities with projections on vi.
This type of method is computationally feasible, as long as we can efficiently evaluate
the expressions

L
[(

mu

mf

)]
, L

[(
kuu kuf
kfu kff

)
(x, ·)

]
, and L

(
kuu kuf
kfu kff

)
L∗,

which appear in the conditional moments in corollary 1, where

L : U → Rn, u 7→ (B [u, vi]− l [vi])
n
i=1. (5.31)

This might not always be possible in closed-form, since B often involves computing
integrals. In these cases one could fall back to a numeric quadrature method.

A prominent example of a method realized by choosing Û = U in our framework is
the probabilistic meshfree method used in chapters 2 and 3.

Example 5.3 (Symmetric Collocation). Point evaluation δx : V → Rk, v 7→ v(x) on
a function space V ⊂ (Rk)D is a linear functional. If it is additionally continuous on
the Hilbert space V , then, by Riesz’ representation theorem [Yosida, 1995, Section III.6],
there is a function2 δ∗x ∈ V such that v(x) = δx [v] = ⟨δ∗x, v⟩V for all v ∈ V .

Hence, if the given weak formulation corresponds to a PDE in strong formulation as
in equation (5.7), all point evaluation functionals on V are continuous, Û = U and
vi = δ∗xi

∈ V , then we have

B [u, vi]− l [vi] = D [u] (xi)− f(xi), (5.32)
2In a reproducing kernel Hilbert space Hk, this function is given by δ∗x = k(x, ·), since f(x) =
⟨k(x, ·), f⟩Hk

by the reproducing property.

42



5.2. A Hierarchical Bayesian Framework for Approximating (Weak) Solutions to Linear PDEs

and hence, we recover the probabilistic meshfree method from [Cockayne et al., 2017]
and chapters 2 and 3. Cockayne et al. [2017] show that the conditional mean of this
approach reproduces symmetric collocation [Fasshauer, 1997, 1999], a non-probabilistic
approximation method for strong solutions of PDEs, in the conditional mean.

Unfortunately, the probabilistic meshfree method can only be applied in approximating
strong solutions of linear PDEs, since the point evaluation functionals are usually not
continuous on the spaces V considered for finding a weak solution.

However, more general Gaussian process projection methods are suitable for approx-
imating weak solutions. For instance, a weak solution of the stationary heat equation
in nonhomogeneous media from above can be approximated by choosing the piecewise
linear functions from figure 5.1 as test basis functions.

5.2.2. Gaussian Process Galerkin Methods

Since our framework is heavily inspired by the Galerkin approach, a direct translation
of Galerkin-type methods to the language of GP inference is relatively straightforward.
Namely, if we choose Û to be finite-dimensional, e.g. Û = span (u1, . . . , um), then we
recover a probabilistic version of the Petrov-Galerkin method from section 5.1. We dub
the resulting class of methods Gaussian process Galerkin methods.

At first, Gaussian process Galerkin methods might seem inferior to Gaussian process
projection methods, since former has a finite-dimensional trial function space, while the
latter has an infinite-dimensional trial function space. However, note that the condi-
tional mean of Gaussian process projection methods is also only updated by a linear
combination of n functions, while the covariance function receives an at most rank n
downdate. This means that, effectively, Gaussian process projection methods also have
a finite-dimensional trial function space, which is implicitly constructed from the test
function basis, the bilinear form B and the prior covariance function kuu. In certain
scenarios it is actually very beneficial to choose the trial basis manually. For instance,
one might want the inference procedure to learn the low-frequency components first, so
as to iteratively refine a global solution approximation.

Since Û is finite-dimensional, there is a bounded linear operator PRm : U → Rm such
that

PÛ [ũ] =

m∑
i=1

ciui =: IÛ
Rm [c] (5.33)

where the coefficients c := PRm [ũ] are the coordinates of PÛ [u] in Û and IÛ
Rm : Rm → Û

is the canonical isomorphism between Rm and Û . Hence, we get the factorization

PÛ = IÛ
RmPRm . (5.34)

The canonical choice for the projection PÛ would arguably be orthogonal projection
w.r.t. the inner product ⟨·, ·⟩Hk′uu

of the sample space Hk′uu = paths (u) of u. However,
this inner product is generally difficult to compute. Fortunately, we can use the L2 inner
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products or Sobolev inner products on the samples to induce a (usually non-orthogonal)
projection PÛ .

Example 5.4. If the functions in U are square-integrable, the linear operator

PRm

[
u′
]
i
:= P−1

(∫
D
ui(x)u

′(x) dx

)m

i=1

, (5.35)

where
Pij :=

∫
D
ui(x)uj(x) dx, (5.36)

induces a projection PÛ = IÛ
RmPRm onto Û ⊂ U , even if ⟨·, ·⟩U ̸= ⟨·, ·⟩L2

.

Proof.

P2
Û

[
u′
]
= PÛ

[
m∑
i=1

PRm

[
u′
]
i
ui

]
(5.37)

=
m∑
i=1

PRm

[
u′
]
i
PÛ [ui] (5.38)

=
m∑
i=1

PRm

[
u′
]
i

m∑
j=1

PRm [ui]j uj (5.39)

=

m∑
j=1

uj

m∑
i=1

PRm [ui]j PRm

[
u′
]
i

(5.40)

=

m∑
j=1

uj

m∑
i=1

(
m∑
k=1

(P−1)jk ⟨uk, ui⟩L2

)
PRm

[
u′
]
i

(5.41)

=

m∑
j=1

uj

m∑
i=1

(
m∑
k=1

(P−1)jkPki

)
PRm

[
u′
]
i

(5.42)

=
m∑
j=1

uj

m∑
i=1

(
P−1P

)
ji
PRm

[
u′
]
i

(5.43)

=
m∑
j=1

ujPRm

[
u′
]
j

(5.44)

= PÛ

[
u′
]

(5.45)

The factorization of PÛ from equation (5.34) allows a useful modification of the infer-
ence procedure proposed above. Note that, for c ∈ Rm,

B
[
IÛ
Rm [c] , vi

]
= (B̂c)i, (5.46)
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where B̂ is defined as in section 5.1. Let LV̂ : V → Rn, v 7→ (⟨v, vi⟩V )ni=1. Hence, we can
equivalently apply our inference procedure to the model

(u, f) ∼ GP (m, k) (5.47)
ĉu := PRm [u] (5.48)

l̂f := LV̂ [f ] (5.49)

with observations

B̂ĉu − l̂f = 0, (5.50)

where (
ĉu
l̂f

)
∼ N

((
PRm [mu]
LV̂ [mf ]

)
,

(
PRmkuuP∗

Rm PRmkufL∗
V̂

LV̂ kfuP
∗
Rm LV̂ kffL

∗
V̂

))
(5.51)

is the joint prior belief about the solution’s coordinates in the subspace Û and the dis-
cretized right-hand side of the PDE. Inference in this model is best performed hierarchi-
cally. First, we update our belief about the solution’s coordinates in Û by compute the
conditional random variable

ĉ⋆u := ĉu

∣∣∣ B̂ĉu − l̂f = 0 , (5.52)

which is also Gaussian. Next, we can reuse the Gram matrix that is part of the conditional
moments of ĉ⋆u and the conditional mean itself to compute

û⋆ := u
∣∣∣ B̂ĉu − l̂f = 0 . (5.53)

This is useful, because it disentangles the errors due to discretization and those due to
uncertainty in the right-hand side, which can be seen as follows.

u⋆
Û
:= IÛ

Rm [ĉ⋆u] = PÛ [u]
∣∣∣ B̂ĉu − l̂f = 0 (5.54)

is a parametric Gaussian process modeling the projection of the solution estimate onto
Û . If m ≥ n, then the uncertainty in u⋆

Û
is solely due to the uncertainty in the right-hand

side. Moreover, the uncertainty due to discretization error is modeled by the Gaussian
process (

id−PÛ

)
[û⋆] . (5.55)

If the discretization error is small, then it might even be advisable to use u⋆
Û

as the solu-
tion estimate, since sampling from a parametric GP is, generally speaking, less expensive
than sampling from a nonparametric GP.

Under certain conditions, Gaussian process Galerkin methods reproduce the classical
Petrov-Galerkin method in the posterior mean. More precisely, for dim Û = dim V̂ , one
can choose the prior covariance function k such that the mean function of the conditional
GP û⋆ is equal to the Petrov-Galerkin approximation ûPG of the solution of the PDE.

45



5. Gaussian Process Approximation of Weak Solutions to Linear PDEs

Lemma 5.1. If B̂ ∈ Rn×m is invertible, kff = 0, kfu = 0, and Σĉu := PRmkuuP∗
Rm ∈

Rm×m is invertible, then mĉ⋆u = ĉPG, U = Û ⊕ kerPÛ and the conditional mean mû⋆ of

û⋆ = u
∣∣∣ B̂ĉu − l̂f = 0 (5.56)

admits a unique additive decomposition

mû⋆ = ûPG + ûkerPÛ
(5.57)

with ûPG ∈ Û and ûkerPÛ
∈ kerPÛ .

Proof. Note that B̂ĉu = B̂PRm [u] and l̂f = l̂ as defined in section 5.1. By corollary 1,
we have

mû⋆(x) = m(x) + (B̂PRm) [k(x, ·)]⊤
(
(B̂PRm)k(B̂PRm)∗

)−1 (
l̂ − B̂PRm [m]

)
(5.58)

= m(x) + PRm [k(x, ·)]⊤ B̂⊤
(
B̂ΣÛ B̂

⊤
)−1

B̂
(
B̂−1 l̂ − PRm [m]

)
(5.59)

= m(x) + PRm [k(x, ·)]⊤Σ−1

Û

(
B̂−1 l̂ − PRm [m]

)
. (5.60)

Since PÛ is a bounded projection, we have

U = ran
(
PÛ

)
⊕ ker

(
PÛ

)
(5.61)

(Rudin 1991, Section 5.16)
= Û ⊕ ker

(
PÛ

)
, (5.62)

where each u ∈ U decomposes uniquely into u′ = u′
Û
+ (u′

Û
)c with u′

Û
∈ Û and (u′

Û
)c ∈

ker
(
PÛ

)
. It is clear that

u′
Û
= PÛ

[
u′
]
,

and

(u′
Û
)c =

(
id−PÛ

) [
u′
]

= Pker(PÛ)
[
u′
]
.

This implies

mĉ⋆u = PRn [mû⋆ ] (5.63)

= PRm [m] + PRmkP∗
Rm︸ ︷︷ ︸

=ΣÛ

Σ−1

Û

(
B̂−1 l̂ − PRm [m]

)
(5.64)

= PRm [m] + B̂−1 l̂ − PRm [m] (5.65)

= B̂−1 l̂ (5.66)
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= ĉPG. (5.67)

Hence, we have

PÛ [mû⋆ ] =

m∑
i=1

(PRn [mû⋆ ])i ui =

m∑
i=1

ĉPG
i ui = ûPG (5.68)

and since U = Û ⊕ ker
(
PÛ

)
, the statement follows.

Corollary 5.1. If, additionally, mu ∈ Û and Pker(PÛ)
kuuP∗

Rn = 0, then the conditional
mean mû⋆ is equal to the Petrov-Galerkin solution approximation, i.e.

mû⋆ = ûPG. (5.69)
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6. Related Work

The idea of approaching problems from numerical mathematics by statistical inference
and Bayesian inference in particular is pursued in the field of probabilistic numerics
[Hennig et al., 2015, Cockayne et al., 2019, Oates and Sullivan, 2019, Owhadi et al.,
2019, Hennig et al., 2022].

Solving PDEs by means of GP inference was previously explored in several publica-
tions, many of which come from this field of research. Graepel [2003], Särkkä [2011]
propose GP-based collocation methods for solving general linear operator equations and
Cockayne et al. [2017], Raissi et al. [2017] develop such methods for the specific case of lin-
ear PDEs. Both Cockayne et al. [2017], Raissi et al. [2017] then use these Bayesian PDE
solvers to solve inverse problems, where the former perform full Bayesian inference over
the parameters, while the latter resort to maximum likelihood estimation. Leveraging a
finite-element discretization, Girolami et al. [2021] propose a Bayesian method for solving
forward and inverse problems, where parameters of the PDE are noisy. This method is
capable of solving PDEs in weak form, but it does not account for discretization error
in the uncertainty estimation for the forward problem. Wang et al. [2021], Krämer et al.
[2022] develop GP-based solvers for nonlinear PDEs by leveraging finite-difference ap-
proximations to the differential operator and linearization-based approximate inference.
In addition, Krämer et al. [2022] employ Gauss-Markov priors, which allows for efficient
inference by Bayesian filtering and smoothing. [Owhadi, 2015] proposes a mathemati-
cal framework, which frames numerical homogenization of weak form PDEs as Bayesian
inference.

Symmetric collocation [Fasshauer, 1997, 1999] and Galerkin methods [Fletcher, 1984]
are important classes of classical numerical methods for approximating the solutions to
PDEs, which inspire the probabilistic extensions developed in this work.

Särkkä et al. [2013] demonstrate that spatio-temporal Gaussian process inference with
affine observations of the spatial part of the sample paths amounts to infinite-dimensional
filtering and smoothing problems. Owhadi and Scovel [2018] show how to condition Gaus-
sian measures on an orthogonal direct sum of separable Hilbert spaces on observations
of one of the summands.
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7. Conclusion

This thesis explored how Gaussian processes can be used to fuse prior and mechanistic
knowledge with empirical measurements, while accounting for uncertainties in a princi-
pled way. Chapter 2 showed how Gaussian process inference can be used to approximate
the strong solution to linear PDEs by probabilistic collocation, while quantifying dis-
cretization error. A crucial insight for this is the interpretation of PDEs as an indirect
observation of their unknown solution. Based on the recurring practical example de-
veloped in section 2.4, chapter 3 demonstrates how uncertainties in the input data can
be propagated to the solution in a principled and natural way. We also saw how our
solvers can be used as a modular building block in computational pipelines, which are
very elegantly described as directed graphical models "with PDE nodes". The theoretical
background for chapters 2 and 3 was introduced in chapter 4. Theorem 1 and corollaries 1
and 2 show when and how Gaussian processes can be conditioned on affine observations
of their sample paths. Such affine observations include integral and (partial) derivative
observations. This does not only provide theoretical backing for this work, but also for
many previous publications, in which this result has been used without proof. Moreover,
we detailed how prior GPs should be chosen in the context of Bayesian PDE solvers.
Finally, chapter 5 detailed a general framework for PDE solvers based on Gaussian pro-
cesses capable of approximating both weak and strong solutions of linear PDEs. We
showed that our framework can be seen as a probabilistic generalization of the most
important established non-probabilistic methods for linear PDEs, including symmetric
collocation, and Galerkin-type methods such as spectral methods, finite element methods
and finite volume methods. Namely, our framework reproduces the approximations to
the solution computed by these methods in the posterior mean.

All in all, we conclude that probabilistic solvers for linear PDEs based on Gaussian
process inference are a viable alternative to non-probabilistic solvers. As opposed to non-
probabilistic solvers they address uncertainties in the input data and the solution prior
by integrating them into the structured output uncertainty, instead of ignoring them.
This is vital in practical applications in science and engineering, where uncertain input
data is ubiquitous. We have also seen that the structural output uncertainty plays nicely
with computational pipelines and enables highly modular implementations. Last but not
least, the fact that classical methods are recovered in the posterior mean with zero-mean
uncertainty due to discretization error might serve as a starting point for integrating
probabilistic solvers into existing non-probabilistic pipelines without compromising pre-
dictions.
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A. Proof of Theorem 1

Throughout this work we exploited that Gaussian processes can be conditioned on ob-
servations of their paths made through a linear operator or (multiple) linear functionals,
which results in another Gaussian process with closed-form expressions for its mean and
covariance function. For instance, we used this capability to inform a Gaussian process
prior via

1. PDE observations (observations through a differential operator),

2. integral observations, and

3. observations of projections.

For finite-dimensional Euclidean vector spaces, this capability can be expressed by the
following theorem, which has previously been proven in the literature.

Theorem A.1 (Linear-Gaussian Inference [Bishop, 2006]). Consider the linear-Gaussian
model

x ∼ N (µ,Σ), and (A.1)
y | x ∼ N (Ax+ b,Λ), (A.2)

with A ∈ Rn×d, and Σ ∈ Rd×d as well as Λ ∈ Rn×n symmetric positive semidefinite.
Then (

x
y

)
∼ N

((
µ

Aµ+ b

)
,

(
Σ ΣA⊤

AΣ AΣA⊤ + Λ

))
, (A.3)

and hence

y ∼ N
(
Aµ+ b, AΣA⊤ + Λ

)
(A.4)

x | y ∼ N (µpost,Σpost), (A.5)

where

µpost = µ− ΣA⊤
(
AΣA⊤ + Λ

)−1
(y − (Aµ+ b)) (A.6)

= (Σ−1 +A⊤Λ−1A)−1(A⊤Λ−1(y − b) + Σ−1µ), and (A.7)

Σpost = Σ− ΣA⊤
(
AΣA⊤ + Λ

)−1
AΣ (A.8)

= (Σ−1 +A⊤Λ−1A)−1. (A.9)
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Remark A.1. The likelihood of the linear-Gaussian model in equation (A.2) is best
understood as y = Ax+ ϵ, where ϵ ∼ N (b,Λ) and x ⊥⊥ ϵ.

While the GP analogue of this theorem, i.e.

f ∼ GP (mf , kf ) (A.10)
g ∼ GP (mg, kg) (A.11)

f | L [f ] + g = h ∼ GP
(
mf |h, kf |h

)
(A.12)

is well-known and widely used (see e.g. [Graepel, 2003, Rasmussen and Williams, 2006,
Särkkä, 2011, Särkkä et al., 2013, Cockayne et al., 2017, Raissi et al., 2017, Agrell, 2019,
Albert, 2019, Krämer et al., 2022]), to the best of our knowledge, no complete proof
of the result has been published. In particular, it is not clear which assumptions on
the Gaussian process and the linear operator need to be met in order for the result to
hold. In the following, we formalize and prove a generalization this result, theorem 1
and its corollaries 1 and 2, which grant a theoretical basis for all previously mentioned
methodology using it.

A.1. Gaussian Processes

We start by reviewing basic properties of Gaussian processes.

Definition A.1. A Gaussian process (GP) f with index set X is a family {fx}x∈X of
R-valued random variables on a common Borel probability space (Ω,B (Ω) ,P)1, such that,
for each finite set of indices x1, . . . , xn, the joint distribution of fx1 , . . . , fxn is Gaussian.
We also write f(x) := fx and f(x, ω) := fx(ω).

Definition A.2. Let f be a Gaussian process on (Ω,B (Ω) ,P) with index set X . The
function

m : X → R, x 7→ m(x) = EP [fx] (A.13)

is called the mean (function) of f and the function

k : X × X → R, (x1, x2) 7→ k(x1, x2) = CovP [fx1 , fx2 ] (A.14)

is called the covariance function or kernel of f . We also often write f ∼ GP (m, k) if f
is a Gaussian process with mean m and kernel k.

We commonly use Gaussian processes to model our belief about unknown functions,
which can be motivated by interpreting their sample paths as function-valued random
variables:

Definition A.3. Let f be a Gaussian process on (Ω,B (Ω) ,P) with index set X . For
each ω ∈ Ω, the function

f(·, ω) : X → Rd, x 7→ fx(ω) (A.15)
1B (Ω) denotes the Borel σ-algebra on Ω
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is called a (sample) path of the Gaussian process. We also write f·(ω) := f(·, ω). The
set paths (f) := {f(·, ω) : ω ∈ Ω} containing all sample paths of f is referred to as the
path space of f .

Lemma A.1. Let f be a Gaussian process on (Ω,B (Ω) ,P) with index set X . Consider
the function

f· : Ω → paths (f) ⊂ RX , ω 7→ f·(ω). (A.16)

If there is a σ-algebra on paths (f) such that f· is measurable, then f· is a function-valued
random variable with values in paths (f). In the following, we will refer to function-valued
random variables as random functions, in analogy to the concept of a random variable.

When working with (deterministic) functions, we are very used to being able to e.g.
add, scale, take limits, differentiate and integrate these functions. The same is possible
for GPs, although there are several caveats that need to be taken into account, specifically
for operations such as differentiation and integration.

Lemma A.2. Let f = {fx}x∈X and g = {gx}x∈X be independent Gaussian processes
on the same probability space (Ω,B (Ω) ,P) with mean functions mf ,mg, and covariance
functions kf , kg, respectively. Let h be the family of random variables on (Ω,B (Ω) ,P)
induced by evaluating a linear combination of the sample paths of f and g at all points
x ∈ X , i.e.

h = {ω 7→ (αf·(ω) + βg·(ω))(x)}x∈X = {αfx + βgx}x∈X . (A.17)

with coefficients α, β ∈ R. Then h is a Gaussian process with mean function mh :=
αmf + βmg and covariance function

kh(x1, x2) := α2kf (x1, x2) + β2kg(x1, x2).

Moreover, the sample paths of h are linear combinations of the sample paths of f and g,
i.e. h(·, ω) = αf(·, ω) + βg(·, ω).

Proof. The linear combination of two independent Gaussian random variables or vec-
tors is again a Gaussian random variable, which implies that h is a Gaussian process.
Moreover, mh = αmf + βmg follows by the linearity of expectation. Finally, using the
covariance’s bilinearity and symmetry properties, we have

kh(x1, x2) = Cov [h(x1), h(x2)] (A.18)
= Cov [αf(x1) + βg(x1), αf(x2) + βg(x2)] (A.19)
= αCov [f(x1), αf(x2) + βg(x2)] + β Cov [g(x1), αf(x2) + βg(x2)] (A.20)

= α2Cov [f(x1), f(x2)] + αβ Cov [f(x1), g(x2)]︸ ︷︷ ︸
=0

(A.21)

+ βαCov [g(x1), f(x2)]︸ ︷︷ ︸
=0

+β2Cov [g(x1), g(x2)] (A.22)

= α2kf (x1, x2) + β2kg(x1, x2). (A.23)
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Note that the proof of lemma A.2 heavily draws on the fact that addition and scalar
multiplication of functions are defined pointwise, since definition A.1 is tailored to such
operations. Unfortunately, this basic characterization of a GP makes it hard to reason
about applying operations such as limits, differentiation and integration, since they simul-
taneously operate on an (uncountably) infinite subset of the random variables. However,
definition A.1 only provides information about finite subsets of these random variables.
This problem extends to the more general classes of linear operators, i.e. linear maps
between vector spaces of functions, and linear functionals, i.e. linear maps from a vector
space of functions to its field of scalars (e.g. R). Differentiation is an example of a linear
operator, while limits and (definite) integrals are linear functionals. A solution to this
problem is to treat the random function f· (if it exists) as a first class object, rather than
accessing it via its evaluations as in definition A.1. This will grant access to all random
variables in f simultaneously. To do so, we need to

1. gain an understanding of the structure of the GP’s path space paths (f) in order to
be able to decide whether f· is a random function, i.e. measurable. This will also
come in handy, when applying linear operators to the GP, since its sample paths
might not lie in the domain of any given linear operator, e.g. due to insufficient dif-
ferentiability. In most practically relevant cases, paths (f) ⊂ RX is a real separable
Hilbert function space.

2. analyze the law or distribution of the random function f· in order to understand
the belief about the sample paths encoded in P and f·. In most practically relevant
cases, this will turn out to be a Gaussian measure on a separable Hilbert space,
which is essentially the infinite-dimensional analogue of a multivariate Gaussian
distribution on Rd.

Fortunately, the first point has already been extensively adressed in the literature. See
Kanagawa et al. [2018, Section 4] for an overview.

Remark A.2. Let f ∼ GP (m, k) be a Gaussian process with index set X and let Hk

be the reproducing kernel Hilbert space (RKHS) of the covariance function or kernel k.
In most practically relevant cases, the sample paths of f do almost surely not lie in Hk.
Rather, with probability 1, they are elements of a larger RKHS Hk′ ⊃ Hk. We refer to
[Kanagawa et al., 2018, Section 4] and Steinwart [2019] for more details on sample path
properties. Assumption A.1 is a common set of assumptions for this to hold. Note that,
in practice, X is often a compact (i.e. closed and bounded) subset of Rd, k is continuous
and ν is the Lebesgue measure, which already fulfills the first part of assumption A.1.

Assumption A.1. Let X be a compact metric space, k : X × X → R a continuous
positive-definite kernel, and ν a finite Borel measure whose support is X . Denote by
(λi, ϕi)i∈I the eigensystem obtained by applying Mercer’s theorem [Kanagawa et al., 2018,
Theorem 4.1] to k. Let Hkθ ⊃ Hk the θ-th power of Hk [Steinwart and Scovel, 2012,
Definition 4.1] with θ ∈ (0, 1) such that

∑
i∈I λ

1−θ
i < ∞.
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Remark A.3. The fact that this only holds only with probability 1 is not a problem
due to the fact that we virtually always describe GP priors via m and k rather than by
explicitly constructing the functions fx for x ∈ X . If there is f(·, ω) ∈ paths (f) for
which f(·, ω) /∈ Hk′ , we can simply define a new probability space (Ω′,B (Ω′) , P ) with
Ω′ := {ω ∈ Ω | f(·, ω) /∈ Hk′} = Ω ∩ f−1

· (Hk′) on which f will have the same mean and
covariance function.

In section 4.1, we have already seen that Sobolev spaces can be obtained as path spaces
of Gaussian processes with Matérn covariance functions.

A.2. Multi-output Gaussian Processes

The sample paths of Gaussian processes as defined in definition A.1 are always real-
valued. However, especially in the context of PDEs, vector-valued functions are ubiq-
uitous, e.g. when dealing with vector fields such as the electric field. Fortunately, the
index set of a Gaussian process can be chosen freely, which means that we can "emulate"
vector-valued GPs. More precisely, a function f : X → Rd′ is in some sense equivalent to
a function f ′ : {1, . . . , d′} × X → R, (i, x) 7→ f ′(i, x) = fi(x). Applying this construction
to a Gaussian process leads to the following definition of a multi-output Gaussian process:

Definition A.4 (Multi-output Gaussian Process). A d-output Gaussian process f with
index set X on (Ω,B (Ω) ,P) is a Gaussian process with index set X ′ := {1, . . . , d} ×
X on the same probability space. With a slight abuse of notation, we write fx(ω) :=
(f(i,x)(ω))

d
i=1 ∈ Rd, etc. We also write the mean and covariance functions m and k of f

as m : X → Rd and k : X × X → Rd×d, where

m(x) =

m(1, x)
...

m(d, x)

 and k(x1, x2) =

k((1, x1), (1, x2)) . . . k((1, x1), (d, x2))
...

. . .
...

k((d, x1), (1, x2)) . . . k((d, x1), (d, x2))

 .

Remark A.4. If assumption A.1 holds for some single-output GP, i.e. (X , dX ) is a
compact metric space and νX is a finite Borel measure on X , then it also holds in the
multi-output GP case. specifically, we can equip I = {1, . . . , d} with the discrete metric

dI(i1, i2) =

{
0 if i1 = i2

1 if i1 ̸= i2
(A.24)

and the Dirac measure ν = δ·(I). Then (I ×X , d) with

d((i1, x1), (i2, x2)) := dI(i1, i2) + dX (x1, x2)

is a compact metric space and νI ⊗ νX is a finite Borel measure on I ×X .

Multi-output Gaussian processes also give us the ability to reason about linear combi-
nations of non-independent Gaussian processes.
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Lemma A.3. Let (
f
g

)
∼ GP

((
mf

mg

)
,

(
kff kfg
kgf kgg

))
(A.25)

be a 2n-output Gaussian process on (Ω,B (Ω) ,P) with f, g : X ×Ω → Rn, mf ,mg : X →
Rn and kff , kfg, kgg : X × X → Rn×n, where kgf = k⊤fg. Let h be the family of random
variables on (Ω,B (Ω) ,P) induced by evaluating a linear combination of the sample paths
of f and g at all points x ∈ X , i.e.

h = {ω 7→ (αf·(ω) + βg·(ω))(i, x)}(i,x)∈I×X = {αfi,x + βgi,x}(i,x)∈I×X . (A.26)

with I = {1, · · · , n} and coefficients α, β ∈ R. Then h is an n-output Gaussian process
with mean function mh := αmf + βmg and covariance function

kh := α2kff + αβkfg + βαkgf + β2kgg.

Moreover, the sample paths of h are linear combinations of the sample paths of f and g,
i.e. h·(ω) = αf·(ω) + βg·(ω).

Proof. Analogous to the proof of lemma A.2.

A.3. Gaussian Measures on Separable Hilbert Spaces

As stated before, we need to understand the distribution of the random functions ω →
f(·, ω) and ω → L [f(·, ω)] in order to use observations of GP sample paths through
a linear operator L in inference. We will do so by analyzing the pushforward measure
µ := P ◦ f−1

· . In many cases, this measure will turn out to be Gaussian probability
measures on the (usually) infinite-dimensional Hilbert function space H := paths (f) of
sample paths (see proposition A.1 and lemma A.6).

Definition A.5 (Maniglia and Rhandi 2004, Definition 1.2.2). Let H be a real separable
Hilbert space. A probability measure µ on (H,B (H)) is called Gaussian if each h∗ ∈ H∗,
i.e. each ⟨h, ·⟩H with h ∈ H, is a univariate Gaussian random variable. An H-valued
random variable is called Gaussian if its law is Gaussian.

Just as for probability measures on Euclidean vector space Rn, we can define a mean
and covariance (operator) for this more general class of probability measures.

Definition A.6 (Maniglia and Rhandi 2004, Definition 1.2.1). Let µ be a Borel proba-
bility measure on a real separable Hilbert space H. If the function ⟨h, ·⟩H is µ-integrable
for all h ∈ H, and there is an m ∈ H such that

⟨h,m⟩H =

∫
H

〈
h, h′

〉
H dµ

(
h′
)
= Eh′∼µ

[〈
h, h′

〉
H
]

(A.27)

for all h ∈ H, then m is call the mean (vector) of µ. If furthermore there is a positive
symmetric linear operator C : H → H such that

⟨h1, C [h2]⟩H =

∫
H

〈
h1, h

′ −m
〉
H
〈
h2, h

′ −m
〉
H dµ

(
h′
)

(A.28)
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= Covh′∼µ

[〈
h1, h

′〉
H ,
〈
h2, h

′〉
H
]

(A.29)

for all h1, h2 ∈ H, then H is called the covariance operator of µ.

Remark A.5. The mean and the covariance operator of a Gaussian measure on a sep-
arable Hilbert space always exist and they identify the measure uniquely [Maniglia and
Rhandi, 2004, Theorem 1.2.5]. Hence, we also often write N (m, C) to denote Gaussian
measures on separable Hilbert spaces.

Using the notion of a Bochner integral [Yosida, 1995, section V.5], we can also give an
equivalent definition of the mean and covariance operator, which is more similar to the
finite-dimensional counterpart.

Lemma A.4. Let µ = N (m, C) be a Gaussian measure on a real separable Hilbert space
H. Then the identity idH is Bochner µ-integrable and the mean m of µ is given by the
following Bochner integral

m =

∫
H
hdµ (h) . (A.30)

Moreover, the function h′ 7→ ⟨h, h′ −m⟩H (h′−m) is Bochner µ-integrable for any h ∈ H
and the covariance operator C of µ is defined by

C [h] :=

∫
H

〈
h, h′ −m

〉
H (h′ −m) dµ

(
h′
)
. (A.31)

To prove lemma A.4, we will need the following theorem about the properties of
Bochner integrals.

Theorem A.2 (Yosida [1995], Section V.5, Theorem 1 and Corollary 2). Let (Ω,B (Ω) , µ)
be a measure space, (V, ∥·∥V ) a Banach space and f : Ω → V a strongly B (Ω)-measurable
function. Let L : V → U be a bounded linear operator with values in a Banach space
(U, ∥·∥U ).

1. f is Bochner µ-integrable if and only if ∥f(·)∥V is µ-integrable.

2. If f is Bochner µ-integrable, then L [u] is Bochner µ-integrable, and∫
B
L [u] (ω) dµ (ω) = L

[∫
B
u(ω) dµ (ω)

]
(A.32)

for B ∈ B (Ω).

Proof of Lemma A.4. By Maniglia and Rhandi [2004, Theorem 1.2.5], we have that∫
H
∥h∥2H dµ (h) < ∞. (A.33)

This implies that ∥·∥H ∈ L2(H,B (H) , µ). Hence,∫
H
∥h∥H dµ (h) =

∫
H
1 · ∥h∥H dµ (h) (A.34)
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≤

√∫
H
1 dµ (h) ·

√∫
H
∥h∥2H dµ (h) (A.35)

(Cauchy-Schwarz inequality in L2(H,B (H) , µ))

=

√∫
H
∥h∥2H dµ (h) (A.36)

(µ is a probability measure)

< ∞. (A.37)

By theorem A.2, it follows that id : H → H is Bochner µ-integrable and that

⟨m,h⟩H :=

∫
H

〈
h, h′

〉
H dµ

(
h′
)
=

〈
h,

∫
H
h′ dµ

(
h′
)〉

H
(A.38)

for h ∈ H, since ⟨h, ·⟩H is a continuous linear functional. Moreover, for h ∈ H we have∫
H

∥∥〈h, h′ −m
〉
H (h′ −m)

∥∥
H dµ

(
h′
)

(A.39)

=

∫
H

∣∣〈h, h′ −m
〉
H
∣∣ ∥∥h′ −m

∥∥
H dµ

(
h′
)

(A.40)

≤∥h∥H
∫
H

∥∥h′ −m
∥∥2
H dµ

(
h′
)

(A.41)

(Cauchy-Schwarz inequality in H)

≤∥h∥H
(∫

H

∥∥h′∥∥2H dµ
(
h′
)
+ 2 ∥m∥H

∫
H

∥∥h′∥∥H dµ
(
h′
)
+ ∥m∥2H

∫
H
1 dµ

(
h′
))

(A.42)

(Triangle inequality in H)

= ∥h∥H
∫
H

∥∥h′∥∥2H dµ
(
h′
)
+ 2 ∥h∥H ∥m∥H

∫
H

∥∥h′∥∥H dµ
(
h′
)
+ ∥h∥H ∥m∥2H (A.43)

(µ is a probability measure)

<∞, (A.44)

and hence, again by theorem A.2, the function h′ 7→ ⟨h, h′ −m⟩H (h′ − m) is Bochner
µ-integrable for any h ∈ H. This means that

⟨h1, C [h2]⟩H =

∫
H

〈
h1, h

′ −m
〉
H
〈
h2, h

′ −m
〉
H dµ

(
h′
)

(A.45)

=

〈
h1,

∫
H

〈
h2, h

′ −m
〉
H (h′ −m) dµ

(
h′
)〉

H
(A.46)

for any h1, h2 ∈ H, where we used the fact that ⟨h1, ·⟩H is a continuous linear functional
for any h1 ∈ H to invoke theorem A.2.
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A.4. Gaussian Measures on the Path Spaces of Gaussian
Processes

We now have the tools to analyze the probability measure induced by the GP over its
sample paths via the function-valued random variable f·.

Assumption A.2. Let f ∼ GP (m, k) be a Gaussian process with index set X on a
Borel probability space (Ω,B (Ω) ,P), whose mean and sample paths lie in a real separable
Hilbert function space H ⊂ RX with Hk ⊂ H, on which all point evaluation functionals
are continuous, i.e. m ∈ H and paths (f) ⊂ H.

Proposition A.1. Let assumption A.2 hold. Then ω → f(·, ω) is an H-valued Gaussian
random variable with mean m and covariance operator

Ck : H → H, h 7→ Ck [h] (x) = ⟨k(x, ·), h⟩H . (A.47)

Proof. By definition, f(x, ·) is a Gaussian random variable for every x ∈ X . Hence,
corollary 12 in [Berlinet and Thomas-Agnan, 2004, Chapter 4, Section 2, p.195] ensures
that f· : Ω → H, ω 7→ f(·, ω) is Borel measurable, i.e. a random variable, and by theorem
91 in [Berlinet and Thomas-Agnan, 2004, Chapter 4, Section 3.1, p.196], its law µ is a
Gaussian measure on H.

Since µ is Gaussian and H is separable, by lemma A.4, it remains to show that m and
Ck fulfill

m =

∫
H
hdµ (h) , and (A.48)

Ck [h] =
∫
H

〈
h, h′ −m

〉
H (h′ −m) dµ

(
h′
)

(A.49)

for all h ∈ H, which are both well-defined Bochner integrals. Consequently, for x ∈ X ,
we find that

m(x) = EP [fx] (A.50)

=

∫
Ω
f(x, ω) dP (ω) (A.51)

=

∫
Ω
δx [f(·, ω)] dP (ω) (A.52)

=

∫
H
δx [h] dµ (h) (A.53)

= δx

[∫
H
hdµ (h)

]
, (A.54)

where the last equation holds by theorem A.2, since δx is continuous. Hence, by lemma A.4,
m ∈ H is the mean of µ. Since δx is continuous for all x ∈ X , by Riesz’ representation
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theorem [Yosida, 1995, Section III.6], there is δ∗x ∈ H such that h(x) = δx [h] = ⟨δ∗x, h⟩H
for all h ∈ H. It follows that, for x1, x2 ∈ X , we have

k(x1, x2) := Cov [fx1 , fx2 ] (A.55)

=

∫
Ω
(f(x1, ω)−m(x1))(f(x2, ω)−m(x2)) dP (ω) (A.56)

=

∫
Ω

〈
δ∗x1

, f(·, ω)−m
〉
H δx2 [f(·, ω)−m] dP (ω) (A.57)

=

∫
H

〈
δ∗x1

, h′ −m
〉
H δx2

[
h′ −m

]
dµ
(
h′
)

(A.58)

= δx2

[∫
H

〈
δ∗x1

, h′ −m
〉
H (h′ −m) dµ

(
h′
)]

(A.59)

where, again, the last equality holds due to theorem A.2, and hence

k(x1, ·) =
∫
H

〈
δ∗x1

, h′ −m
〉
H (h′ −m) dµ

(
h′
)
. (A.60)

For h ∈ H it follows that

Ck [h] (x) := ⟨k(x, ·), h⟩H (A.61)

=

〈
h,

∫
H

〈
δ∗x, h

′ −m
〉
H (h′ −m) dµ

(
h′
)〉

H
(A.62)

=

∫
H

〈
δ∗x, h

′ −m
〉
H
〈
h, h′ −m

〉
H dµ

(
h′
)

(A.63)

(by theorem A.2, since ⟨h, ·⟩H is bounded)

=

∫
H

〈
h, h′ −m

〉
H δx

[
h′ −m

]
dµ
(
h′
)

(A.64)

(reproducing property)

= δx

[∫
H

〈
h, h′ −m

〉
H (h′ −m) dµ

(
h′
)]

, (A.65)

where the last equation holds by theorem A.2. This shows that Ck is indeed the covariance
operator of µ.

The correspondence from proposition A.1 also holds in reverse in the sense that, a Gaus-
sian random variable h with values in a separable Hilbert space H, and a set X ∗ ⊂ H∗

of continuous linear functionals on H induce a Gaussian process on the same probability
space as f , whose paths are given by (x∗, ω) → x∗ [h(ω)]. Recall that, by the Riesz
representation theorem [Yosida, 1995, Section III.6], every continuous linear functional
on a Hilbert space H, i.e. every element of the dual H∗ of H, can be represented as an
inner product, i.e. for all h∗ ∈ H∗, there is h ∈ H such that h∗ = ⟨h, ·⟩H.
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Lemma A.5. Let h ∼ N (m, C) be a Gaussian random variable on (Ω,B (Ω) ,P) with
values in a real separable Hilbert space H. For every set X ⊂ H, the family

f := {ω 7→ ⟨x, h(ω)⟩H}x∈X (A.66)

is a Gaussian process on (Ω,B (Ω) ,P) with mean function mf : X → R, x 7→ ⟨x,m⟩H
and covariance function

kf (x1, x2) = ⟨x1, C [x2]⟩H . (A.67)

Proof. Since every ⟨x, ·⟩H ∈ h is continuous, ⟨x, h(ω)⟩H is by definition a Gaussian ran-
dom variable. Let X = {xi}ni=1 ⊂ X and fX : Ω → Rn, ω 7→ (fX(ω))i := ⟨xi, h(ω)⟩H .
Then fX is continuous and hence Borel measurable, since all norms on Rn are equivalent,

∥fX(ω)∥22 =
n∑

i=1

⟨xi, h(ω)⟩2H ≤ ∥h(ω)∥2H
n∑

i=1

∥xi∥2H < ∞. (A.68)

for all ω ∈ Ω, and h is continuous. Moreover, ⟨v, fX⟩ for v ∈ Rn is bounded and hence fX
is a Gaussian random variable on Rn. All in all, it follows that f is a Gaussian process
on (Ω,B (Ω) ,P). Finally, we have

mf (x) = EP [fx] (A.69)

=

∫
Ω
fx(ω) dP (ω) (A.70)

=

∫
Ω
⟨x, h(ω)⟩H dP (ω) (A.71)

= ⟨x,m⟩H . (A.72)

by equation (A.27) and

kf (x1, x2) = CovP [fx1 , fx2 ] (A.73)

=

∫
Ω
⟨x1, h(ω)−m⟩H ⟨x2, h(ω)−m⟩H dP (ω) (A.74)

= ⟨x1, C [x2]⟩H . (A.75)

by equation (A.28). All in all, we showed that f ∼ GP (mf , kf ).

Note that, in general, the Gaussian processes resulting from lemma A.5 are different
from the ones "entering" proposition A.1. The Hilbert space H does not have to be a
function space, which means that the GP’s sample paths can not lie in H. Even if H is a
function space, point evaluation might not be continuous or even defined on it, in which
case it is also not possible to construct a GP whose sample paths lie in H. Fortunately,
if H is a function space on which all point evaluation functionals are defined, then this
is possible:

63



A. Proof of Theorem 1

Corollary A.1. Let h ∼ N (m, C) be a Gaussian measure on (Ω,B (Ω) ,P) with values in
a real separable Hilbert function space H ⊂ RX , on which all point evaluation functionals
δx for x ∈ X are continuous. Then the family f := {ω 7→ h(ω)(x)}x∈X is a Gaussian
process on (Ω,B (Ω) ,P) with mean function m and covariance function

kf (x1, x2) = C
[
δ∗x2

]
(x1) . (A.76)

Moreover, the paths of f lie in H such that f(·, ω) = h(ω) for ω ∈ Ω.

A.5. Gaussian Processes are Closed Under Continuous
Linear Transformations

We now have all the ingredients to analyze what happens if we apply linear operators
such as differentiation or integration to the paths of a (multi-output) GP. It turns out
that, for bounded linear operators, the resulting object is again a Gaussian process. To
prove this result, we take advantage of the "equivalence" between Gaussian processes
and Gaussian measures on the Hilbert space of sample paths. More precisely, we will
first use proposition A.1 to convert a given GP into a function-valued Gaussian random
variable whose values are the paths of the GP. This object is very amenable to applying
the linear operator path-wise. The resulting random variable will also turn out to be a
Gaussian random variable. If the linear operator maps into a Hilbert space of functions
on which point evaluation is continuous, then we can convert the result of the previous
operation back into a GP via corollary A.1.

We start by showing that applying a bounded linear operator to a Gaussian random
variable yields another Gaussian random variable and compute its moments.

Lemma A.6. Let L : H1 → H2 be a bounded linear operator between real separable
Hilbert spaces H1 and H2. Let f ∼ N (m, C) be an H1-valued Gaussian random variable.
Then L [f ] ∼ N (L [m] ,LCL∗).

Proof. First of all, L is bounded and hence continuous, which means that ω 7→ L [f(ω)]
is Borel measurable, i.e. a random variable. Let g := L [f ]. Let µf be the law of f . Then
the law µg of g is given by the push-forward of µf through L, i.e. µg = µf ◦L−1. We need
to show that µg is Gaussian, i.e. that µg ◦ (h∗2)

−1 for any continuous linear functional
h∗2 ∈ H∗

2 is a Gaussian measure on R (by definition A.5). We have µg ◦ (h∗2)
−1 =

µf ◦ L−1 ◦ (h∗2)
−1 = µf ◦ (h∗2 ◦ L)

−1 = µf ◦ (h∗1)
−1, where h∗1 := h∗2 ◦ L ∈ H∗

1 (i.e. h∗1
is continuous), because L is bounded and hence continuous. Since µf is Gaussian, it
follows by definition A.5 that µg ◦ (h∗2)

−1 = µf ◦ (h∗1)
−1 is a Gaussian measure on R.

Consequently, µg is Gaussian.
Let µg and Cg be the mean and covariance operator of µg, respectively. We have

mg =

∫
H2

h2 dµg (h2) (A.77)
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(by lemma A.4)

=

∫
H1

L [h1] dµf (h1) (A.78)

= L
[∫

H1

h1 dµf (h1)

]
(A.79)

(by theorem A.2, since L is bounded)
= L [m] , (A.80)

where the last step also follows from lemma A.4. Moreover, for h2 ∈ H2 it holds that

Cg [h2] =
∫
H2

〈
h2, h

′
2 −mg

〉
H2

(h′2 −mg) dµg

(
h′2
)

(A.81)

(by lemma A.4)

=

∫
H1

⟨h2,L [h1]−mg⟩H2
(L [h1]−mg) dµf (h1) (A.82)

=

∫
H1

⟨h2,L [h1 −m]⟩H2
L [h1 −m] dµf (h1) (A.83)

=

∫
H1

⟨L∗ [h2] , h1 −m⟩H1
L [h1 −m] dµf (h1) (A.84)

= L
[∫

H1

⟨L∗ [h2] , h1 −m⟩H1
(h1 −m) dµf (h1)

]
(A.85)

(by theorem A.2, since L is bounded)
= L [C [L∗ [h2]]] (A.86)

(by lemma A.4)
= LCL∗ [h2] . (A.87)

This implies Cg = LCL∗.

Next, we use proposition A.1 and lemmas A.5 and A.6 to show that, under certain
conditions, applying a bounded linear operator to the paths of a Gaussian process induces
another Gaussian process. To do so, we need to compute

(LCL∗)
[
δ∗x2

]
(x1) = (δx1 ◦ L)C(δx2 ◦ L)∗, (A.88)

where C is the covariance operator associated with a Gaussian process (see proposi-
tion A.1). Recall notation 1 used to formulate corollary 1:

Notation 1. Let k : X × X → R be a positive-definite kernel and let Li : Hk → Rni for
i = 1, 2 be bounded linear operators. We define the functions

L1k : X → Rn1 , x 7→ L1 [k(·, x)] , (4.16)
kL∗

2 : X → Rn2 , x 7→ L2 [k(x, ·)] , (4.17)
(4.18)
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and the matrix2L1kL∗
2 ∈ Rn1×n2 with entries

(L1kL∗
2)ij := L2 [(L1k)i]j (4.19)

= L1 [(kL∗
2)j ]i . (4.20)

Lemma A.7. Let L1 : H → Rn1 and L2 : H → Rn2 be bounded linear operators on a real
separable Hilbert space H ⊂ RX of real-valued functions defined on an arbitrary set X
with continuous point evaluation functionals. Let

K : H → H, h 7→ K [h] (x) = ⟨k(x, ·), h⟩H , (A.89)

be a self-adjoint operator on H with symmetric kernel k : X×X → R such that k(x, ·) ∈ H
for all x ∈ X . Then

(i) we have
(L1K) [h]i = ⟨(L1k)i, h⟩H (A.90)

for all h ∈ H, and

(ii) L1KL∗
2 ∈ Rn1×n2 with

(L1KL∗
2)ij = L2 [(L1k)i]j (A.91)

= L1 [(kL∗
2)j ]i (A.92)

= (L1kL∗
2)ij . (A.93)

If L := L1 = L2, then LKL∗ is symmetric, and, if K is additionally positive-(semi)definite,
then LKL∗ is positive-(semi)definite.

Proof.

• (A.90): L1 [·]i is a bounded linear functional and hence, by the Riesz representa-
tion theorem [Yosida, 1995, Section III.6], there is hL1,i ∈ H such that L1 [h1]i =
⟨hL1,i, h⟩H for all h ∈ H. It follows that

L1K [h] (x1) = L1 [K [h]] (x1) (A.94)
= ⟨hL1,i,K [h]⟩H (A.95)
= ⟨K [hL1,i] , h⟩H , (A.96)

for all h ∈ H, since K is self-adjoint, and

K [hL1,i] (x) = ⟨k(x, ·), hL1,i⟩H (A.97)
= L1 [k(x, ·)]i (A.98)

2This notation is motivated by lemma A.7, which also shows that the two different ways to compute
the entries of L1kL∗

2 are consistent.
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= (L1k)i(x) (A.99)

for all x ∈ X and hence
L1K [h]i = ⟨(L1k)i, h⟩H (A.100)

for all h ∈ H.

• (A.91): For ej ∈ Rn2 with ej,i = δji, we have

(L1KL∗
2)ij = L1KL∗

2 [ej ]i (A.101)
= L1K [L∗

2 [ej ]]i (A.102)
= ⟨(L1k)i,L∗

2 [ej ]⟩H (A.103)
= ⟨L2 [(L1k)i] , ej⟩ (A.104)
= L2 [(L1k)i]j . (A.105)

• (A.92):

(L1KL∗
2)ij = ((L1KL∗

2)
⊤)ji (A.106)

= (L2KL∗
1)ji (A.107)

(K is self-adjoint)

= L1 [(L2k)j ]i , (A.108)

where the last equation follows from equation (A.91) with the roles of L1 and L2

reversed.

• (LKL∗)⊤ = (L∗)∗K∗L∗ = LKL∗, since K is self-adjoint.

• ⟨x,LKL∗x⟩ = ⟨L∗ [x] ,K [L∗ [x]]⟩H ≥ 0, since K is positive-semidefinite, where the
inequality is strict if K is (strictly) positive-definite.

Proposition A.2. Let assumption A.2 hold and let L : H → Rn be a bounded linear
operator. Then

L [f ] : Ω → Rn, ω 7→ L [f(·, ω)] (A.109)

is a Gaussian random variable on (Ω,B (Ω) ,P) with values in Rn and

L [f ] ∼ N (L [m] ,LkL∗). (A.110)

Proof. By proposition A.1 we know that ω 7→ f(·, ω) is an H-valued Gaussian random
variable with mean m and covariance operator C [h] = ⟨k(x, ·), h⟩H. By lemma A.6,
ω 7→ L [f(·, ω)] is an Rn-valued Gaussian random variable with mean L [m] and covariance
matrix LCL∗. Finally, LCL∗ = LkL∗ by lemma A.7.
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Corollary A.2. Let assumption A.2 hold and let L : H → HL be a bounded linear
operator mapping into another real separable Hilbert function space HL ⊂ RXL with
continuous point evaluation functionals. Then the family

L [f ] := {ω → L [f(·, ω)] (x)}x∈XL (A.111)

of random variables is a Gaussian process on (Ω,B (Ω) ,P) with L [f ] ∼ GP (L [m] ,LkL∗),
whose paths lie in HL such that L [f ] (·, ω) = L [f(·, ω)].

A.6. Joint Gaussian Measures on Separable Hilbert Spaces

In order to compute f | L [f ] = h as in theorem 1, it is important to know the joint
distribution of f and L [f ]. If f is a Gaussian random variable on a separable Hilbert
space H1 and L maps into another separable Hilbert space H2, then this joint distribution
lives in the Cartesian product of H1 and H2. We will refer to a Gaussian measure on a
Cartesian product of separable Hilbert spaces as a joint Gaussian measure on separable
Hilbert spaces. In the following, we will familiarize ourselves with the properties of joint
Gaussian measures on separable Hilbert spaces.

Lemma A.8. Let {Hi}ni=1 be a finite family of real Hilbert spaces. Then the Cartesian
product

H× := H1 × · · · × Hn (A.112)

with canonical addition and scalar multiplication

h+ h′ := (h1 + h′1, . . . , hn + h′n) (A.113)
αh := (αh1, . . . , αhn) (A.114)

for h, h′ ∈ H× and α ∈ R is a vector space. Moreover, H× is a Hilbert space with respect
to the inner product 〈

h, h′
〉
H×

:=

n∑
i=1

〈
hi, h

′
i

〉
Hi

. (A.115)

If all every Hi for i = 1, . . . , n is separable, then H× is separable. Let Πi : H× → Hi, h 7→
hi for i ∈ {1, . . . , n}. Then Πi is bounded and

Π∗
i [hi] = (0, . . . , 0︸ ︷︷ ︸

i−1 times

, hi, 0, . . . , 0). (A.116)

Proof. Each Hi is a Banach space w.r.t. the norm ∥·∥Hi
:=
√

⟨·, ·⟩Hi
induced by the

inner product. Then, by Adams and Fournier [2003, Theorem 1.23], H× with addition
and scalar multiplication as defined above is a vector space. Obviously, ⟨·, ·⟩H×

is an
inner product, which induces the norm ∥·∥H×

with

∥h∥2H×
:= ⟨h, h⟩H×

=

n∑
i=1

⟨hi, hi⟩Hi
=

n∑
i=1

∥hi∥2Hi
. (A.117)
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By Adams and Fournier [2003, Theorem 1.23], H× is a Banach space w.r.t. ∥·∥H×
,

implying that it is a Hilbert space w.r.t. ⟨·, ·⟩H×
. Moreover, again by Adams and Fournier

[2003, Theorem 1.23] H× is separable if all Hi for i = 1, . . . , n are separable. Let
h = (h1, . . . , hn) ∈ H×. Then

∥Πi [h]∥2Hi
= ∥hi∥2Hi

≤
n∑

j=1

∥hj∥2Hj
= ∥h∥H×

(A.118)

and, for h′ ∈ H× and hi ∈ Hi,

〈
hi,Πi

[
h′
]〉

Hi
=
〈
hi, h

′
i

〉
Hi

=
n∑

j=1

〈
δjihi, h

′
i

〉
Hi

=

〈
(0, . . . , 0︸ ︷︷ ︸
i−1 times

, hi, 0, . . . , 0), h
′

〉
H×

.

(A.119)

Remark A.6. For linear operators L : H → H′ between Cartesian products H = H1 ×
· · · × Hn and H′ = H′

1 × · · · × H′
m, we introduce the notation

L [(h1, . . . , hn)] = (L11 [h1] + · · ·+ L1n [hn] , . . . ,Lm1 [h1] + · · ·+ Lmn [hn]) (A.120)

=:

L11 . . . L1n
...

. . .
...

Lm1 . . . Lmn

 [(h1, . . . , hn)] , (A.121)

with Lij := Π′
iLΠ∗

j : Hj → H′
i, where Π′

i is the projection Πi in lemma A.8 corresponding
to H′.

Just as in the finite-dimensional case, we can use orthogonal projections to margialize
out variables in a random vector whose law is a joint Gaussian measure on separable
Hilbert spaces. .

Proposition A.3 (Marginalization in Joint Gaussian Measures). Let {Hi}ni=1 be a family
of real separable Hilbert spaces and H := H1 × · · · × Hn. Let f = (f1, . . . , fn) be an H-
valued Gaussian random variable with mean m = (m1, . . . ,mn) and covariance operator

C :=

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

 . (A.122)

For i1, . . . , ik ∈ {1, . . . , n} we have

(fi1 , . . . , fik) ∼ N

(mi1 , . . . ,mik),

Ci1,i1 . . . Ci1,ik
...

. . .
...

Cik,i1 . . . Cik,ik


. (A.123)
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Proof. The linear operator Πi1,...,ik : H → Hi1 × · · · × Hik , h 7→ (hi1 , . . . , hik) is bounded
and

Π∗
i1,...,ik

[(hi1 , . . . , hik)]i =

{
hil if ∃l ∈ {1, . . . , k} : i = il,

0 otherwise.
(A.124)

Hence, the result follows from lemma A.6.

The statistical independence properties of joint Gaussian measures on Hilbert spaces
are also essentially analogous to the finite-dimensional case.

Proposition A.4 (Independence in Joint Gaussian Measures). Let {Hi}ni=1 be a family
of real separable Hilbert spaces and H := H1×· · ·×Hn. Let {fi}ni=1 be a family of random
variables on a common Borel probability space (Ω,B (Ω) ,P), where fi ∼ N (mi, Ci) with
values in Hi. If the random variables {fi}ni=1 are independent, then the random variable

f : Ω → H, ω 7→ (f1(ω), . . . , fn(ω)) (A.125)

on (Ω,B (Ω) ,P) is Gaussian with mean (m1, . . . ,mn) and covariance operator

C :=

C1 . . . 0
...

. . .
...

0 . . . Cn

 , (A.126)

i.e. Cij = δijCj.

Proof. Consider the case, where n = 2. Let f1 ⊥⊥ f2. Then there is h∗ ∈ H∗ such
that ω 7→ h∗ [f(ω)] is not Gaussian. By the Riesz representation theorem [Yosida, 1995,
Section III.6], there is an h ∈ H such that h∗ = ⟨h, ·⟩H = ⟨h1, ·⟩H1

+ ⟨h2, ·⟩H2
. The

random variables ⟨h1, f1⟩H1
and ⟨h1, f2⟩H1

are by definition Gaussian. Moreover, they
are independent, since f1 ⊥⊥ f2. Since the sum of independent Gaussian random variables
is Gaussian, h∗ [f ] is Gaussian. It follows that f is Gaussian. Since Πi is bounded, by
lemma A.6, we have that m = (m1, . . . ,mn) and Cii = Ci. Let µ the law of f . Then, for
hj ∈ Hj ,

Cij [hj ] = ΠiCijΠ∗
j [hj ] (A.127)

= Πi

[∫
H

〈
Π∗

j [hj ] , h
′ −m

〉
H (h′ −m) dµ

(
h′
)]

(A.128)

=

∫
H

〈
hj ,Πj

[
h′ −m

]〉
HΠi

[
h′ −m

]
dµ
(
h′
)

(A.129)

(theorem A.2, since Πi bounded)

=

∫
H

〈
hj ,Πj

[
h′
]
−Πj [m]

〉
H
(
Πi

[
h′
]
−Πi [m]

)
dµ
(
h′
)

(A.130)

=

∫
Hj

∫
Hi

〈
hj , h

′
j −mj

〉
H
(
h′i −mi

)
dµ ◦Π−1

i

(
h′i
)
dµ ◦Π−1

j

(
h′j
)

(A.131)
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(fi ⊥⊥ fj)

=

∫
Hj

〈
hj , h

′
j −mj

〉
H

∫
Hi

(h′i −mi) dµ ◦Π−1
i

(
h′i
)

︸ ︷︷ ︸
=0

dµ ◦Π−1
j

(
h′j
)

(A.132)

= 0. (A.133)

The statement for general n follows by induction and the observation that the Hilbert
spaces (H1×· · ·×Hn)×Hn+1 and H1×· · ·×Hn×Hn+1 are isometrically isomorphic.

Joint Gaussian measures on separable Hilbert spaces also enable us to reason about
sums or linear combinations of two Gaussian random variables on separable Hilbert
spaces.

Corollary A.3. Let H1,H2 be real separable Hilbert spaces and

(f, g) ∼ N
(
(mf ,mg),

(
Cff Cfg
C∗
fg Cgg

))
(A.134)

an H1 × H2-valued Gaussian random variable. Let L1 : H1 → H′ and L2 : H2 → H′ be
bounded linear operators mapping into another real separable Hilbert space H′. Then

L1 [f ] + L2 [g] (A.135)

is an H′-valued Gaussian random variable with mean αmf+βmg and covariance operator

L1CffL∗
1 + L1CfgL∗

2 + L2CgfL∗
1 + L2CggL∗

2. (A.136)

Proof. The linear operator L′ : H1×H2 → H′, (h1, h2) 7→ L′ [(h1, h2)] := L1 [h1]+L2 [h2]
is bounded, since∥∥L′ [(h1, h2)]

∥∥
H′ = ∥L1 [h1] + L2 [h2]∥H′ (A.137)

≤ ∥L1 [h1]∥H′ + ∥L2 [h2]∥H′ (A.138)
≤ ∥L1∥ ∥h1∥H′ + ∥L2∥ ∥h2∥H′ (A.139)
≤ max{∥L1∥ , ∥L2∥}

(
∥h1∥H1

+ ∥h2∥H2

)
(A.140)

= max{∥L1∥ , ∥L2∥} ∥(h1, h2)∥H1×H2
, (A.141)

and max{∥L1∥ , ∥L2∥} < ∞, because L1 and L2 bounded. Moreover,

(L′)∗
[
h′
]
= (L∗

1

[
h′
]
,L∗

2

[
h′
]
). (A.142)

Hence, the result follows from lemma A.6.

We can now investigate the joint distribution of f and L [f ], or, more generally, L [f ]+g,
where f and g are Gaussian random variables and L is a bounded linear operator.
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Proposition A.5. Let f ∼ N (mf , Cf ) be a Gaussian random variable on a Borel
probability space (Ω,B (Ω) ,P) with values in a real separable Hilbert space H1. Let
L : H1 → H2 be a bounded linear operator mapping into another real separable Hilbert
space H2. Let g ∼ N (mg, Cg) be an H2-valued Gaussian random variable on (Ω,B (Ω) ,P)
with g ⊥⊥ f . Then

L [f ] + g ∼ N (L [mf ] +mg,LCfL∗ + Cg) (A.143)

with values in H2 and

(f,L [f ] + g) ∼ N
(
(mf ,L [mf ] +mg) ,

(
Cf CfL∗

LCf LCfL∗ + Cg

))
(A.144)

with values in H1 ×H2.

Proof. Let H = H1 ×H2. Since, L is bounded, the linear operator

L̃ :=

(
idH1

L

)
: H1 → H with L̃∗ =

(
idH1 L∗) (A.145)

is bounded. Moreover, we know from lemma A.8 that Π∗
2 : H2 → H is bounded. Since

g ⊥⊥ f , proposition A.4 implies that

ω 7→ (f(ω), g(ω)) ∼ N
(
(mf ,mg),

(
Cf 0
0 Cg

))
(A.146)

on (Ω,B (Ω) ,P) with values in H. Note that

ω 7→ (f(ω),L [f(ω)] + g(ω)) = L̂ [f(ω)] + Π∗
2 [g(ω)] . (A.147)

Hence, result about (f,L [f ]+g) follows from corollary A.3 and the result about L [f ]+g
follows by applying proposition A.3 to (f,L [f ] + g).

As for regular Gaussian measures on separable Hilbert spaces, we can establish a
correspondence between joint Gaussian measures on separable Hilbert spaces and multi-
output Gaussian processes. We will first give the general construction and then apply it
to the joint Gaussian measure in proposition A.5.

Proposition A.6. Let {Hi ⊂ RX }ni=1 be a family of real separable Hilbert spaces of
real-valued functions on a common domain X and let H := H1 × · · · × Hn. Let

f = (f1, . . . , fn) ∼ N

(m1, . . . ,mn),

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn


 (A.148)

on (Ω,B (Ω) ,P) with values in H. If the point evaluation functionals on Hi for all
i ∈ {1, . . . , n} are continuous, then the family f̃ := {ω 7→ fi(ω)(x)}(i,x)∈I×X with I =

72



A.6. Joint Gaussian Measures on Separable Hilbert Spaces

{1, . . . , n} is an n-output Gaussian process with index set X on (Ω,B (Ω) ,P). Its with
mean and covariance functions are given by m̃(i, x) = mi(x) and

k̃((i1, x1), (i2, x2)) = Ci1,i2
[
δ∗x2

]
(x1) , (A.149)

respectively. Moreover, there is an isometry I between the path space of f̃ and H such
that, for all ω ∈ Ω, we have I

[
f̃·(ω)

]
= f(ω).

Proof. Let
ι : H → H̃ ⊂ RX ′

, h 7→ ι [h] (i, x) = hi(x) (A.150)

with H̃ := ι [H], which is linear and bijective. Then H̃ with pointwise addition and scalar
multiplication and inner product〈

h̃, h̃′
〉
H̃
=
〈
h̃(1, ·), h̃′(1, ·)

〉
H1

+
〈
h̃(2, ·), h̃′(2, ·)

〉
H2

(A.151)

is a Hilbert space. Moreover,

∥ι [h]∥2H̃ = ⟨ι [h] , ι [h]⟩H̃ (A.152)

= ⟨ι [h] (1, ·), ι [h] (1, ·)⟩H1
+ ⟨ι [h] (2, ·), ι [h] (2, ·)⟩H2

(A.153)

= ⟨h1, h1⟩H1
+ ⟨h2, h2⟩H2

(A.154)

= ⟨h, h⟩H (A.155)

= ∥h∥2H , (A.156)

i.e. ι is bounded (it is even an isometry). By lemma A.6, it follows that ι [f ] is a Gaussian
random variable with mean (i, x) 7→ ι [m] (i, x) = mi(x) and covariance operator ιCι∗.
Since the point evaluation functionals on all Hi are continuous, it follows that the point
evaluation functionals on H′ are continuous. Hence, by corollary A.1, f̃ is indeed a
Gaussian process on I ×X with mean function m̃ and covariance function

((i1, x1), (i2, x2)) 7→ ιCι∗
[
δ∗(i2,x2)

]
(i1, x1) (A.157)

= ι
[
CΠi2

[
δ∗x2

]]
(i1, x1) (A.158)

= ι
[
(C1,i2

[
δ∗x2

]
, . . . , Cn,i2

[
δ∗x2

]
)
]
(i1, x1) (A.159)

= Ci1,i2
[
δ∗x2

]
(x1) . (A.160)

Corollary A.4. Let the assumptions of corollary A.2 hold with mf := m and kf := k,
and let g ∼ GP (mg, kg) with g ⊥⊥ f and paths in HL. Then the family

h := {ω 7→ L [f(·, ω)] (x) + g(x, ω)}x∈XL (A.161)

is a Gaussian process on (Ω,B (Ω) ,P) with

L [f ] + g ∼ GP (L [mf ] +mg,LkfL∗ + kg), (A.162)
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whose paths lie in HL such that h(·, ω) = L [f(·, ω)] + g(·, ω). If additionally XL = X ,
then the family(

f L [f ] + g
)⊤

:= {ω 7→ (f(·, ω),L [f(·, ω)] + g(·, ω))i(x)}(i,x)∈{1,2}×X (A.163)

is a 2-output Gaussian process with index set X on (Ω,B (Ω) ,P) with(
f

L [f ] + g

)
∼ GP

((
mf

L [mf ] +mg

)
,

(
kf kfL∗

Lkf LkfL∗ + kg

))
(A.164)

and paths in H×HL such that(
f

L [f ] + g

)
(·, ω) =

(
f(·, ω)

L [f(·, ω)] + g(·, ω)

)
. (A.165)

A.7. Gaussian Processes are Closed Under Conditioning on
Affine Observations

The final ingredient needed to prove theorem 1 is a way to condition joint Gaussian mea-
sures on one of their "components". Owhadi and Scovel [2018] show how to condition
Gaussian measures on an orthogonal direct sum of separable Hilbert spaces on obser-
vations in one of the two subspaces, i.e. they show how to compute x | x2 = t, where
x = x1 + x2 is a Gaussian random variable with values in H1 ⊕H2. We will extend this
result, since Owhadi and Scovel [2018] don’t give explicit expressions for the conditional
mean and covariance operator.

But first of all, we need to investigate how our joint Gaussian measure from propo-
sition A.5 fits into the formalism of orthogonal direct sums of separable Hilbert spaces.

Remark A.7. The Cartesian product H× of Hilbert spaces from lemma A.8

H× = Ĥ1 ⊕ · · · ⊕ Ĥn, (A.166)

is an orthogonal direct sum of Hilbert spaces

Ĥi := {(0, . . . , 0︸ ︷︷ ︸
i−1 times

, h, 0, . . . , 0) | hi ∈ Hi} (A.167)

for i = 1, . . . , n. Moreover, the mapping

Î−1
Hi

: Ĥi → Hi, ĥi → hi := (ĥi)i (A.168)

is an isometry and hence bounded.

We will now introduce some notation, which makes working with orthogonal direct
sums of Hilbert spaces easier.
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Remark A.8. Let H = H1⊕· · ·⊕Hn be an orthogonal direct sum of Hilbert spaces. For
every h ∈ H, we introduce the notation

h = h1 + · · ·+ hn =:

h1
...
hn

 (A.169)

with hi := Πi [h], where Πi denotes orthogonal projection onto Hi. For a linear operator
L : H → H′ mapping into another orthogonal direct sum H′ = H′

1 ⊕ · · · ⊕ H′
m of Hilbert

spaces, we commonly use block matrix notation, i.e.

L [h1 + · · ·+ hn] =
m∑
i=1

Li1 [h1] + · · ·+ Lin [hn] (A.170)

=:

L11 . . . L1n
...

. . .
...

Lm1 . . . Lmn

 [h1 + · · ·+ hn] (A.171)

with Lij : Hj → Hi, hj 7→ ΠiL [hj ] .

We now prove a special case of theorem 3.3 in Owhadi and Scovel [2018], which gives
explicit expressions for the mean and covariance operator of the conditional measure.
These expressions are well-known for conditional Gaussian measures on finite-dimensional
Euclidean vector spaces.

Theorem A.3. Let H = H1 ⊕H2 be an orthogonal direct sum of real separable Hilbert
spaces. Let x = x1 + x2 be an H-valued Gaussian random variable with mean m =
m1 +m2, and covariance operator

C :=

(
C11 C12
C∗
12 C22

)
: H → H (A.172)

such that ran (C22) is closed. Then x | x2 = t for any t ∈ H2 is an H-valued Gaussian
random variable with mean

mx|x2=t :=

(
m1 + C12C†

22 [t−m2]
t

)
, (A.173)

and covariance operator

Cx|x2=t :=

(
C11 − C12C†

22C∗
12 0

0 0

)
. (A.174)

Proof. By theorem 3.3 in Owhadi and Scovel [2018], x | x2 = t is Gaussian (since its
law is Gaussian), its covariance operator is the short of C to H2 [Owhadi and Scovel,
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2018, Anderson and Trapp, 1975] and its mean is given by
(
m1 + Q̂∗(t−m2) t

)⊤ for
any C-symmetric oblique projection

Q :=

(
0 0

Q̂ idH2

)
∈ P(C,H2), (A.175)

onto H2 if C is compatible with H2, i.e. if P(C,H2) ̸= ∅. In the following, we will show
that mx|x2=t and Cx|x2=t are indeed the mean and covariance operator described by the
theorem.

The covariance operator C of x is in the trace class [Maniglia and Rhandi, 2004, Lemma
1.1.4] and hence bounded [Yosida, 1995, Section X.2]. This implies that the operators C12
and C22 are bounded, since orthogonal projection onto H1 and H2 is bounded. Moreover,
C22 is self-adjoint and positive, which means that its square root

√
C22 exists and is also

bounded, self-adjoint and positive [Bernau, 1968, Theorem 4]. By theorem 3 and the
corollary of lemma 1 in Anderson and Trapp [1975], we have

ran (C∗
12) ⊂ ran

(√
C22
)
= ran (C22) (A.176)

and hence ran
(√

C22
)

is closed, because ran (C22) is closed by assumption. Consequently,
by theorem 3 in Ben-Israel and Greville [2003, Section 8.3], the Moore-Penrose pseu-
doinverses C†

22, C22 : H2 → H2 exist and are bounded. Additionally, by the closed graph
theorem [Yosida, 1995, Section II.6], C†

22 and C22 are closed linear operators, which to-
gether with theorem 2 (g) and (i) in Ben-Israel and Greville [2003, Section 8.3] implies
(C†

22)
∗ = (C∗

22)
† = C†

22, (
√
C22

†
)∗ = (

√
C22

∗
)† =

√
C22

†, and

(
√

C22
†
)∗
√

C22
†
=
√
C22

†√
C22

†
=
(√

C22
√

C22
)†

= C†
22. (A.177)

Let Q̂ := C†
22C∗

12, i.e. Q̂∗ = C12(C†
22)

∗ = C12C†
22. We will now show that Q as defined

above with this choice of Q̂ is a C-symmetric oblique projection onto H2. From the
boundedness of C†

22 and C12, it follows that Q̂ and Q are bounded. Evidently, Q is
idempotent, i.e. Q2 = Q, and ran (Q) = H2, since ran

(
Q̂
)

⊂ ran
(
C†
22

)
⊂ H2 and

ran (idH2) = H2. The adjoint Q∗ of Q is defined by〈(
h1
h2

)
,Q
[(

h′1
h′2

)]〉
H
=

〈(
h1
h2

)
,

(
0

Q̂ [h′1] + h′2

)〉
H

(A.178)

=

〈(
h1
0

)
,

(
0

Q̂ [h′1] + h′2

)〉
H
+

〈(
0
h2

)
,

(
0

Q̂ [h′1] + h′2

)〉
H

(A.179)

=
〈
h2, Q̂

[
h′1
]
+ h′2

〉
H2

(A.180)

(h1 ∈ H1 and Q̂ [h′1] + h′2 ∈ H2 are orthogonal in H)

=
〈
h2, Q̂

[
h′1
]〉

H2

+
〈
h2, h

′
2

〉
H2

(A.181)

76



A.7. Gaussian Processes are Closed Under Conditioning on Affine Observations

=
〈
Q̂∗ [h2] , h

′
1

〉
H1

+
〈
h2, h

′
2

〉
H2

(A.182)

=

〈(
Q̂∗ [h2]

0

)
,

(
h′1
0

)〉
H
+

〈(
0
h2

)
,

(
h′1
0

)〉
H

(A.183)

+

〈(
Q̂∗ [h2]

0

)
,

(
0
h′2

)〉
H
+

〈(
0
h2

)
,

(
0
h′2

)〉
H

(A.184)

(H1 and H2 are orthogonal subspaces)

=

〈(
Q̂∗ [h2]
h2

)
,

(
h′1
h′2

)〉
H

(A.185)

for all h1 + h2, h
′
1 + h′2 ∈ H, i.e.

Q∗
[(

h1
h2

)]
=

(
C12(C†

22)
∗ [h2]

h2

)
=

(
C12C†

22 [h2]
h2

)
. (A.186)

It follows that, for all h1 + h2 ∈ H with h2 ∈ ran (C22),

Q∗C
[(

h1
h2

)]
= Q∗

[(
C11 [h1] + C12 [h2]
C∗
12 [h1] + C22 [h2]

)]
(A.187)

=

(
C12C†

22 [C∗
12 [h1] + C22 [h2]]

C∗
12 [h1] + C22 [h2]

)
(A.188)

=

(
C12
[
C†
22C∗

12 [h1] + C†
22C22 [h2]

]
C∗
12 [h1] + C22 [h2]

)
(A.189)

=

C12
[
C†
22C∗

12 [h1] + h2

]
C22
[
C†
22C∗

12 [h1] + h2

] (A.190)

(C22C†
22|ran(C22) = idran(C22) and ran (C∗

21) ⊂ ran (C22) by equation (A.176))

= C
[(

0

C†
22C∗

12 [h1] + h2

)]
(A.191)

= CQ
[(

h1
h2

)]
. (A.192)

Additionally, for h1 + h2 ∈ H with h2 /∈ ran (C22), there are h
∥
2 ∈ ran (C22) and h⊥2 ∈

ker (C22) such that h2 = h
∥
2 + h⊥2 and hence h⊥2 ∈ ran (C22)⊥ ⊂ ran (C∗

12)
⊥ = ker (C12) ,

i.e. h⊥2 ∈ ker (C). Consequently,

Q∗C

[(
h1

h
∥
2 + h⊥2

)]
= Q∗C

[(
h1

h
∥
2

)]
+Q∗C

[(
0
h⊥2

)]
(A.193)

= Q∗C

[(
h1

h
∥
2

)]
+Q∗ [0] (A.194)
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(h⊥2 ∈ ker (C))

= CQ∗

[(
h1

h
∥
2

)]
(A.195)

(h∥2 ∈ ran (C22))

= CQ∗

[(
h1

h
∥
2

)]
+ C

[(
0
h⊥2

)]
(A.196)

(h2 ∈ ker (C))

= CQ∗

[(
h1

h
∥
2

)]
+ CQ

[(
0
h⊥2

)]
(A.197)

(Q
[
h⊥2
]
= h⊥2 ∈ H2)

= CQ

[(
h1

h
∥
2 + h⊥2

)]
. (A.198)

Hence Q∗C = CQ. All in all, we showed that Q ∈ P(C,H2) ̸= ∅, which, by theorem 3.3
in Owhadi and Scovel [2018], implies that mx|x2=t is indeed the mean of x | x2 = t.

Now let A :=
√
C22

†C∗
12. Then√

C22A =
√
C22
√
C22

†
C∗
12 = C∗

12, (A.199)

since
√
C22

√
C22

†|ran(√C22) = idran(
√
C22) [Ben-Israel and Greville, 2003, Section 8.3, Def-

inition 1] and ran (C∗
12) ⊂ ran

(√
C22
)

by equation (A.176). Thus, by theorem 3 in
Anderson and Trapp [1975], it follows that the short of C to H2 is given by(

C11 −A∗A 0
0 0

)
=

(
C11 − C12(

√
C22

†
)∗
√
C22

†C∗
12 0

0 0

)
(A.200)

=

(
C11 − C12C†

22C∗
12 0

0 0

)
(A.201)

(by equation (A.177))
= Cx|x2=t. (A.202)

Remark A.9. The requirement that ran (C22) needs to be closed might seem a bit opaque
at first. However, a simple sufficient criterion to check whether it holds is to check,
whether ran (C22) is finite-dimensional, e.g. a subspace of Rn or some function space
spanned by a finite number of functions.

This criterion is actually sufficient, which can be seen as follows. It is well-known
that the pseudoinverse of a bounded operator is bounded if and only the range of the
operator is closed [Clason, 2021, Theorem 3.7]. The marginal covariance operator C22 is
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in the trace class and hence compact [Maniglia and Rhandi, 2004, Yosida, 1995]. For
compact operators, an even stronger result holds. Namely, the pseudoinverse of a compact
operator is bounded if and only if its range is finite-dimensional [Clason, 2021, Corollary
3.8]. Since the pseudoinverse and the inverse of an invertible operator coincide, this also
means that, by the bounded inverse theorem, compact operators can only be invertible if
they map between finite-dimensional spaces.

Corollary A.5. Under the assumptions of theorem A.3, x1 |x2 = t for any t ∈ H2 is an
H1-valued Gaussian random variable with mean

mx1|x2=t := m1 + C12C†
22 [t−m2] (A.203)

and covariance operator
Cx1|x2=t := C11 − C12C†

22C
∗
12. (A.204)

Proof. The operator Π1 : H → H1, h = h1 + h2 7→ h1 is bounded, since∥∥∥∥Π1

[(
h1
h2

)]∥∥∥∥
H
=

∥∥∥∥(h10
)∥∥∥∥

H
= ∥h1∥H1

. (A.205)

Moreover, Π∗
1 [h1] =

(
h1 0

)⊤. Hence, the result follows from lemma A.6.

We can now apply corollary A.5 to the joint Gaussian measure from proposition A.5
to condition on linear operator observations.

Corollary A.6. Let L : H1 → H2 be a bounded linear operator between real separable
Hilbert spaces H1 and H2. Let f ∼ N (mf , Cf ) be an H1-valued Gaussian random variable
and let g ∼ N (mg, Cg) be an H2-valued Gaussian random variable with g ⊥⊥ f . If
ran (LCfL∗ + Cg) is closed, then f | L [f ] + g = t for all t ∈ H2 is an H1-valued Gaussian
random variable with mean

mf |L[f ]+g=t := mf + CL∗ (LCL∗ + Cg)† [t− (L [mf ] +mg)] (A.206)

and covariance operator

Cf |L[f ]+g=t = Cf − CfL∗ (LCfL∗ + Cg)† LCf . (A.207)

Proof. By proposition A.5, ω 7→ (f(ω),L [f(ω)] + g(ω)) is a Gaussian random variable
on H1 ×H2 with mean (mf ,L [mf ] +mg) and covariance operator(

Cf CfL∗

LCf LCfL∗ + Cg

)
. (A.208)

By remark A.7, H1×H2 is a direct sum of Hilbert spaces Ĥ1×Ĥ2. Hence, by corollary A.5,
ÎH1 [f ] | ÎH2 [L [f ] + g] = ÎH2 [t] is a Ĥ1-valued Gaussian random variable with mean

ÎH1 [mf ] +
(
ÎH1CfL∗Î−1

H2

)(
ÎH2 (LCfL∗ + Cg) Î−1

H2

)† [
ÎH2 [t]− ÎH2 [L [mf ] +mg]

]
(A.209)
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= ÎH1

[
mf + CfL∗ (LCfL∗ + Cg)† [t− (L [mf ] +mg)]

]
(A.210)

and covariance operator(
ÎH1Cf Î−1

H1

)
−
(
ÎH1CfL∗Î−1

H2

)(
ÎH2 (LCfL∗ + Cg) Î−1

H2

)† (
ÎH2LCf Î−1

H1

)
(A.211)

= ÎH1

(
Cf − CfL∗ (LCfL∗ + Cg)† LCf

)
Î−1
H1

. (A.212)

Note that ÎH2 [L [f ] + g] = ÎH2 [t] if and only if L [f ] + g = t and hence(
ÎH1 [f ] | ÎH2 [L [f ] + g] = ÎH2 [t]

)
=
(
ÎH1 [f ] | L [f ] + g = t

)
. (A.213)

By applying the bounded operator Î−1
H1

to the latter (via lemma A.6), the result follows.

If the random variable f in corollary A.6 is induced by a Gaussian process, then the
law of f |L [f ]+ g = t is a Gaussian measure over the paths of another Gaussian process.

Corollary A.7 (Conditioning a GP on Affine Observations). Let assumption A.2 hold
with mf := m and kf := k, and let Cf := Ck be defined as in proposition A.1. Let
L : H → HL be a bounded linear operator mapping into a separable Hilbert space HL
and let g ∼ N (mg, Cg) be an HL-valued Gaussian random variable on (Ω,B (Ω) ,P) with
g ⊥⊥ f . If ran (LCfL∗ + Cg) is closed, then the family {fx}x∈X is a Gaussian process on
the Borel probability space (Ω,B (Ω) ,P(· | L [f·] + g = t)) with mean function

mf |L[f ]+g=t := mf (x)−
〈
L [kf (x, ·)] , (LCfL∗ + Cg)† [t− (L [mf ] +mg)]

〉
HL

(A.214)

and covariance function

kf |L[f ]+g=t(x1, x2) := kf (x1, x2)−
〈
L [kf (x1, ·)] , (LCfL∗ + Cg)† L [kf (·, x2)]

〉
HL

.

(A.215)
With a slight abuse of notation, we write

f | L [f ] + g = t ∼ GP
(
mf |L[f ]+g=t, kf |L[f ]+g=t

)
. (A.216)

Proof. This follows by corollaries A.1 and A.6 and lemma A.9.

Lemma A.9. Let k : X × X → R be a positive definite kernel, H ⊂ RX a real Hilbert
function space with Hk ⊂ H and continuous point evaluation functionals, L : H → HL a
linear operator mapping into a real Hilbert space HL, and

K : H → H, h 7→ K [h] (x) := ⟨k(x, ·), h⟩H . (A.217)

Then

LK [δ∗x] = L [k(·, x)] , and (A.218)
KL∗ [·] (x) = ⟨L [k(x, ·)] , ·⟩HL

, (A.219)

where δ∗x ∈ H such that h(x) = δx(h) = ⟨δ∗x, h⟩H for h ∈ H.
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Proof. We have
K
[
δ∗x1

]
(x2) =

〈
k(x2, ·), δ∗x1

〉
H = k(x2, x1) (A.220)

for x1, x2 ∈ X . Hence, LK [δ∗x] = L [K [δ∗x]] = L [k(·, x)] . Moreover, for h ∈ HL, it holds
that

KL∗ [h] (x) = K [L∗ [h]] (x) (A.221)
= ⟨k(x, ·),L∗ [h]⟩HL

(A.222)

= ⟨L [k(x, ·)] , h⟩HL
. (A.223)

A.8. Theorem 1 and its Corollaries

With all the above, theorem 1 is now merely a corollary of previous results, particularly
propositions A.1 and A.5 and corollary A.7. Nevertheless, to summarize the results of
this appendix, we formulate it here as a separate theorem and consider the entirety of
appendix A as its proof. This also offers a unique interface for practitioners wishing
to ground their GP inference algorithms in our theoretical evidence. To this end, we
formulate two corollaries, which, together with theorem 1, provide the theoretical basis
for most GP inference performed in practice. All three results share a common set of
assumptions.

Assumption 1. Let
f ∼ GP (mf , kf ) (4.10)

be a Gaussian process prior with index set X on the Borel probability space (Ω,B (Ω) ,P),
whose mean function and sample paths lie in a real separable Hilbert function space H ⊂
RX with Hk ⊂ H and with continuous point evaluation functionals. Let L : H → HL be
a bounded linear operator mapping the paths of f into a separable Hilbert space HL.

In the most general case, the linear operator L maps into a space, which is either
not a function space or a function space on which point evaluation is not a continuous
functional. This happens for instance when applying the differential operator of highest
possible order on a Sobolev path space, since then the resulting object will be an L2

function, which is not pointwise defined.

Theorem 1 (Affine Gaussian Process Inference). Let assumption 1 hold. Then ω 7→
f(·, ω) is an H-valued Gaussian random variable on (Ω,B (Ω) ,P) with mean m and
covariance operator h 7→ Cf [h] (x) = ⟨k(x, ·), h⟩H. We also write f ∼ N (m, Cf ). Let
g ∼ N (mg, Cg) be an HL-valued Gaussian random variable on (Ω,B (Ω) ,P) with g ⊥⊥ f .
Then (

f
L [f ] + g

)
∼ N

((
mf

L [mf ] +mg

)
,

(
Cf CfL∗

LCf LCfL∗ + Cg

))
, (4.11)
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with values in H×HL and hence

L [f ] + g ∼ N (L [mf ] +mg,LCfL∗ + Cg). (4.12)

If ran (LCfL∗ + Cg) is closed, then for all h ∈ HL

f | L [f ] + g = h ∼ GP
(
mf |L[f ]+g=h, kf |L[f ]+g=h

)
, (4.13)

where the conditional mean and covariance function are given by

mf |L[f ]+g=h(x) = mf (x) +
〈
L [kf (·, x)] , (LCfL∗ + Cg)† [h− (L [mf ] +mg)]

〉
HL

,

(4.14)

and

kf |L[f ]+g=h(x1,x2) = kf (x1, x2)−
〈
L [kf (·, x1)] , (LCfL∗ + Cg)† L [kf (·, x2)]

〉
HL

, (4.15)

respectively.

The first corollary deals with the case, where we observe the GP through a finite
number of linear functionals. This happens when conditioning on integral observations
or on (Galerkin) projections as in chapter 5.

Corollary 1. Let assumption 1 hold for HL = Rn and let g ∼ N (µg,Σg) be an Rn-valued
Gaussian random variable on (Ω,B (Ω) ,P) with g ⊥⊥ f . Then

L [f ] + g ∼ N (L [mf ] + µg,LkfL∗ +Σg) (4.21)

and
f | L [f ] + g = h ∼ GP

(
mf |L[f ]+g=h, kf |L[f ]+g=h

)
, (4.22)

with conditional mean and covariance function given by

mf |L[f ]+g=h(x) = mf (x) + L [kf (x, ·)]⊤ (LkfL∗ +Σg)
† (h− (L [mf ] +mg)) , (4.23)

and

kf |L[f ]+g=h(x1, x2) = kf (x1, x2)− L [kf (x1, ·)]⊤ (LkfL∗ +Σg)
† L [kf (·, x2)] . (4.24)

Finally, we address the archetypical case, in which both the prior f and the prior
predictive L [f ] + g are Gaussian processes. This happens if the linear operator maps
into a function space, in which point evaluation is continuous. In this article, this case
occurred in chapters 2 and 3, where we inferred the strong solution of a PDE from
observations of the PDE residual at a finite number of domain points.
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Corollary 2. Let assumption 1 hold, where HL ⊂ RX ′ is a space of real valued functions
defined on X ′ such that the point evaluation functionals δx′ : HL → R, h 7→ h(x) for all
x ∈ X ′ are continuous. Let

g ∼ GP (mg, kg) (4.28)

be a Gaussian process with index set X ′ on (Ω,B (Ω) ,P) with g ⊥⊥ f . Then

L [f ] + g ∼ GP (L [m] +mg,LkfL∗ + kg), (4.29)

and, for X ′ = {x′i}ni=1 ⊂ X ′ and h ∈ Rn,

f | L [f ]
(
X ′)+ g(X ′) = h ∼ GP

(
mf |X′,h, kf |X′,h

)
(4.30)

with

mf |X′,h(x) := mf (x) + (kfL∗)(x,X ′)(LkfL∗ + kg)(X
′, X ′)†

(
h−

(
L [mf ]

(
X ′)+mg(X

′)
))

(4.31)

and

kf |X′,h(x1, x2) := kf (x1, x2)− (kfL∗)(x1, X
′)(LkfL∗ + kg)(X

′, X ′)†(Lkf )(X ′, x2).

(4.32)

where

(kfL∗)(x,X ′) =
(
(kfL∗)(x, x′i)

)n
i=1

∈ R1×n (4.33)

(Lkf )(X ′, x2) =
(
(Lkf )(x′i, x)

)n
i=1

∈ Rn (4.34)

(LkfL∗ + kg)(X
′, X ′) =

(
(LkfL∗)(x′i, x

′
j) + kg(x

′
i, x

′
j)
)n
i,j=1

∈ Rn×n (4.35)

L [mf ]
(
X ′) = (L [mf ] (xi))

n
i=1 ∈ Rn (4.36)

mg(X
′) = (mg(xi))

n
i=1 ∈ Rn. (4.37)

If additionally X = X ′, then(
f

L [f ] + g

)
∼ GP

((
mf

L [mf ] +mg

)
,

(
kf kfL∗

Lkf LkfL∗ + kg

))
. (4.38)
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Definition B.1 (Multi-index). Using a d-dimensional multi-index α ∈ Nd
0, we can rep-

resent (mixed) partial derivatives of arbitrary order as

∂|α|

∂xα
:=

∂|α|

∂x
(α1)
1 · · · ∂x(αd)

d

, (B.1)

where |α| :=
∑d

i=1 αi. If the variables w.r.t. which we differentiate are clear from the
context, we also denote this (mixed) partial derivative by Dα.

Definition B.2 (Linear differential operator). A linear differential operator D : U → V
of order k between spaces U, V of real-valued functions defined on some domain Ω ⊂ Rd

is a linear operator that linearly combines partial derivatives up to k-th order of its input
function, i.e.

D [u] :=
∑

α∈Nd
0,|α|≤k

AαD
αu, (B.2)

where Aα ∈ R for every multi-index α.

Definition B.3 (Heat equation [Lienhard and Lienhard, 2020, Evans, 2010]). Let Ω ⊂ Rd

be an open and bounded region and T > 0. The heat equation is given by

ρcp
∂u

∂t
− div (k∇u) = q̇V , (B.3)

where k ∈ Rd×d, ρ, cp, kij ∈ L∞(Ω× (0, T ]), and q̇V ∈ L2(Ω× (0, T ]).

Definition B.4 (Elliptic PDE in nondivergence form). Let Ω ⊂ Rd be an open and
bounded region. The equation

−div (A∇u) + bT∇u+ cu = f, (B.4)

where Aij , bi, c ∈ L∞(Ω) and f ∈ L2(Ω).

B.1. Weak Derivatives and Sobolev Spaces

Definition B.5 (Test Function). Let D ⊂ Rd be open and let

C∞
c (D) := {ϕ ∈ C∞(D,R) | supp (ϕ) ⊂ U is compact} (B.5)

be the space of smooth functions with compact support in D. A function ϕ ∈ C∞
c (D) is

dubbed test function and we refer to C∞
c (D) as the space of test functions.
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Theorem B.1 (Sobolev Spaces1). Let D ⊂ Rd be open, m ∈ N>0, and p ∈ [1,∞)∪{∞}.
The functional

∥u∥m,p,D :=


(∑

|α|≤m ∥Dαu∥pLp(D)

)1/p
if p < ∞,

max|α|≤m ∥Dαu∥L∞(D) if p = ∞.
(B.6)

is called a Sobolev norm. A Sobolev norm ∥u∥m,p,D is a norm on subspaces of Lp (D),
on which the right-hand side is well-defined and finite. A Sobolev space of order m is
defined as the subspace

Wm,p (D) := {u ∈ Lp (D) |Dαu ∈ Lp (D) for |α| ≤ m}. (B.7)

of Lp, where the Dα are weak partial derivatives. Sobolev spaces Wm,p (D) are Banach
spaces under the Sobolev norm ∥·∥m,p. The Sobolev space Hm (D) := W 2,m (D) is a
separable Hilbert space with inner product

⟨u1, u2⟩m,D :=
∑

|α|≤m

⟨Dαu1, D
αu2⟩L2(D) (B.8)

and norm
∥·∥m,D :=

√
⟨·, ·⟩m,D = ∥·∥m,2,D . (B.9)

1This theorem is a summary of [Adams and Fournier, 2003, Definitions 3.1 and 3.2 and Theorems 3.3
and 3.6]
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