
Probabilistic Approaches to
Stochastic Optimization

Dissertation
derMathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Phys. MarenMahsereci

aus Stuttgart

Tübingen
2018

Gedruckt mit Genehmigung derMathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.
Tag der mündlichenQualifikation: 23.07.2018
Dekan Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Philipp Hennig
2. Berichterstatter: Prof. Dr. Ulrike von Luxburg

Probabilistic Approaches to
Stochastic Optimization

MarenMahsereci
2018

Probabilistic Approaches to Stochastic Optimization

© 2018 Maren Mahsereci

In memory of Ruth Marie Jenner née Kleinheinz

Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less. — Marie Curie

Abstract

Optimization is a cardinal concept in the sciences, and viable algorithms of utmost importance as tools
for finding the solution to an optimization problem. Empirical risk minimization is a major workhorse,
in particular in machine learning applications, where an input-target relation is learned in a supervised
manner. Empirical risks with high-dimensional inputs are mostly optimized by greedy, gradient-based,
and possibly stochastic optimization routines, such as stochastic gradient descent.

Though popular, and practically successful, this setup has major downsides which often makes it
finicky to work with, or at least the bottleneck in a larger chain of learning procedures. For instance,
typical issues are:

• Overfitting of a parametrized model to the data. This generally leads to poor generalization performance

on unseen data.

• Tuning of algorithmic parameters, such as learning rates, is tedious, inefficient, and costly.

• Stochastic losses and gradients occur due to sub-sampling of a large dataset. They only yield
incomplete, or corrupted information about the empirical risk, and are thus difficult to handle from a
decision making point of view.

This thesis consist of four conceptual parts.
In the first one, we argue that conditional distributions of local full and mini-batch evaluations of

losses and gradients can be well approximated by Gaussian distributions, since the losses themselves
are sums of independently and identically distributed random variables. We then provide a way of
estimating the corresponding sufficient statistics, i. e., variances and means, with low computational
overhead. This yields an analytic likelihood for the loss and gradient at every point of the inputs space,
which subsequently can be incorporated into active decision making at run-time of the optimizer.

The second part focuses on estimating generalization performance, not by monitoring a validation
loss, but by assessing if stochastic gradients can be fully explained by noise that occurs due to the
finiteness of the training dataset, and not due to an informative gradient direction of the expected loss
(risk). This yields a criterion for early-stopping where no validation set is needed, and the full dataset
can be used for training.

The third part is concerned with fully automated learning rate adaption for stochastic gradient descent
(sgd). Global learning rates are arguably the most exposed manual tuning parameters of stochastic
optimization routines. We propose a cheap and self-contained sub-routine, called a ‘probabilistic
line search’ that automatically adapts the learning rate in every step, based on a local probability of
descent. The result is an entirely parameter-free, stochastic optimizer that reaches comparable or better
generalization performances than sgd with a carefully hand-tuned learning rate on the tested problems.

The last part deals with noise-robust search directions. Inspired by classic first- and second-order
methods, we model the unknown dynamics of the gradient or Hessian-function on the optimization
path. The approach has strong connections to classic filtering frameworks and can incorporate noise-
corrupted evaluations of the gradient at successive locations. The benefits are twofold. Firstly, we gain
valuable insight on less accessible or ad-hoc design choices of classic optimizer as special cases. Secondly,
we provide the basis for a flexible, self-contained, and easy-to-use class of stochastic optimizers that
exhibit a higher degree of robustness and automation.

Zusammenfassung

Optimierung ist ein grundlegendes Prinzip in den Wissenschaften, und Algorithmen zu deren Lösung
von großer praktischer Bedeutung. Empirische Risikominimierung ist ein gängiges Modell, vor allem in
Anwendungen des Maschinellen Lernens, in denen eine Eingabe-Ausgabe Relation überwacht gelernt
wird. Empirische Risiken mit hoch-dimensionalen Eingaben werden meist durch gierige, gradienten-
basierte, und möglicherweise stochastische Routinen optimiert, so wie beispielsweise der stochastische
Gradientenabstieg.

Obwohl dieses Konzept populär als auch erfolgreich in der Praxis ist, hat es doch beträchtliche
Nachteile, die es entweder aufwendig machen damit zu arbeiten, oder verlangsamen, sodass es den
Engpass in einer größeren Kette von Lernprozessen darstellen kann. Typische Verhalten sind zum
Beispiel:

• Überanpassung eines parametrischen Modells an die Daten. Dies führt oft zu schlechterer Generali-

sierungsleistung auf ungesehenen Daten.

• Die manuelle Anpassung von algorithmischen Parametern, wie zum Beispiel Lernraten ist oft müh-
sam, ineffizient und kostspielig.

• Stochastische Verluste und Gradienten treten auf, wenn Zufallsstichproben anstelle eines ganzen
großen Datensatzes für deren Berechnung benutzt wird. Erstere stellen nur inkomplette, oder korrupte

Information über das empirische Risiko dar und sind deshalb schwieriger zu handhaben, wenn ein
Algorithmus Entscheidungen treffen soll.

Diese Arbeit enthält vier konzeptionelle Teile.
Im ersten Teil argumentieren wir, dass bedingte Verteilungen von lokalen Voll- und Mini-Batch Ver-

lusten und deren Gradienten gut mit Gaußverteilungen approximiert werden können, da die Verluste
selbst Summen aus unabhängig und identisch verteilten Zufallsvariablen sind. Wir stellen daraufhin
dar, wie man die suffizienten Statistiken, also Varianzen und Mittelwerte, mit geringem zusätzlichen
Rechenaufwand schätzen kann. Dies führt zu analytischen Likelihood-Funktionen für Verlust und Gra-
dient an jedem Eingabepunkt, die daraufhin in aktive Entscheidungen des Optimierer zur Laufzeit
einbezogen werden können.

Der zweite Teil konzentriert sich auf die Schätzung der Generalisierungsleistung nicht indem der
Verlust eines Validierungsdatensatzes überwacht wird, sondern indem beurteilt wird, ob stochastische
Gradienten vollständig durch Rauschen aufgrund der Endlichkeit des Trainingsdatensatzes und nicht
durch eine informative Gradientenrichtung des erwarteten Verlusts (des Risikos), erklärt werden kön-
nen. Daraus wird ein Early-Stopping Kriterium abgeleitet, das keinen Validierungsdatensatz benötigt,
sodass der komplette Datensatz für das Training verwendet werden kann.

Der dritte Teil betrifft die vollständige Automatisierung der Adaptierung von Lernraten für den sto-
chastischen Gradientenabstieg (sgd). Globale Lernraten sind wohl die prominentesten Parameter von
stochastischen Optimierungsroutinen, die manuell angepasst werden müssen Wir stellen eine günstige
und eigenständige Subroutine vor, genannt ’Probabilistic Line Search’, die automatisch die Lernrate
in jedem Schritt, basierend auf einer lokalen Abstiegswahrscheinlichkeit, anpasst. Das Ergebnis ist ein

vollständig parameterfreier stochastischer Optimierer, der vergleichbare oder bessere Generalisierungs-
leistung wie sgd mit sorgfältig von Hand eingestellten Lernraten erbringt.

Der letzte Teil beschäftigt sich mit Suchrichtungen, die robust gegenüber Rauschen sind. Inspiriert von
klassischen Optimierern erster und zweiter Ordnung, modellieren wir die Dynamik der Gradienten-
oder Hesse-Funktion auf dem Optimierungspfad. Dieser Ansatz ist stark verwandt mit klassischen
Filter-Modellen, die aufeinanderfolgende verrauschte Gradienten berücksichtigen können Die Vorteile
sind zweifältig. Zunächst gewinnen wir wertvolle Einsichten in weniger zugängliche oder ad hoc
gewählte Designs klassischer Optimierer als Spezialfälle. Zweitens bereiten wir die Basis für flexible,
eigenständige und nutzerfreundliche stochastische Optimierer mit einem erhöhten Grad an Robustheit
und Automatisierung.

vi

Acknowledgments

I am sincerely and heartily grateful to my advisor Philipp Hennig for the fantastic support and thought-
ful professional and personal guidance he granted me throughout the past years. Philipp is an impres-
sive source of thoughts that reach beyond established concepts. I feel privileged to have worked in his
group.

I am grateful to Ulrike von Luxburg, who supported my PhD, especially towards the end, as supervisor,
as well as with guidance and valuable insight on career paths and opportunities.

I want to thank Bernhard Schölkopf for accepting me to the institute and for providing this fantastic
research environment. The dynamic environment, the skilled people, and the access to science are
amazing and I am thankful for the opportunity to be a part of it.

I am also thankful to the the IT-crew of the MPI, and especially to Sebastian Stark, who run everything
so smoothly, including the cluster.

Research is seldom the works of a single person, and the effort is worth little without joy and laughter. I
thank my present and past colleagues of the Max Planck Institute for Intelligent Systems, and especially
of the Probabilistic Numerics group: Edgar Klenske, Michael Schober, Simon Bartels, Hans Kersting,
Lukas Balles, Alexandra Gessner, Filip DeRoos, Motonobu Kanagawa, Frank Schneider, and Matthias
Werner. I am thankful for the scientific discussions, but also for the quality time we spent together.

Finally, I would like to thank my parents Karin and Thomas for their faith in me, and Steffen, my brother,
for always having my back.

Maren Mahsereci

Cambridge & Tübingen, July 2018

Uncertainty is an uncomfortable position.

But certainty is an absurd one. — Voltaire

Contents

Prologue 1
0 Introduction 3

I Preliminaries 15
1 Gaussian Process Regression 17

1.1 Probability Calculus 17
1.2 Gaussian Distributions 18
1.3 Continuous Indexing—Gaussian Processes 20
1.4 Wiener Processes & Kalman Filters 22

2 Empirical Risk Minimization 29
2.1 Risk and Empirical Risk 29
2.2 Artificial Neural Networks 30
2.3 Iterative Optimization Routines 36
2.4 Uncertain Gradients 48
2.5 Line Searches 52

3 Quadratic Problems & Probabilistic Linear Solvers 57
3.1 Gaussian Inference on Positive Definite Matrices 58
3.2 Kronecker Algebra 59

4 Miscellaneous 63
4.1 Bayesian Optimization 63
4.2 Central Limit Theorem 65

II Overfitting, Generalization & Early-Stopping 67
5 Local Distributions of Losses and Gradients 69

5.1 Likelihood for Losses and Gradients 69
5.2 Variance-Estimation from Mini-Batches 70

6 Early-Stopping Without a Validation Set 77
6.1 Overfitting, Regularization and Early-Stopping 77
6.2 When to Stop?—A Criterion Based on Gradient Statistics 79
6.3 Experiments 83
6.4 Comparison to rmsprop 90
6.5 Conclusion and Outlook 94

III Automated Step Size Adaptation 97
7 Probabilistic Line Searches 99

7.1 Motivation 99
7.2 From Classic to Probabilistic Line Searches 100
7.3 Lightweight BayesOpt for Candidate Selection 104
7.4 Probabilistic Wolfe Conditions for Termination 105

7.5 Experiments 111
7.6 Conclusion and Outlook 123

IV Kalman Filtering for Stochastic Optimization 125
8 First-Order Filter for Gradients 127

8.1 A Model for Once-Differentiable Functions 127
8.2 Diagonal Approximations 130
8.3 Experiments 133
8.4 Conclusion and Outlook 142

9 Second-Order Filter for Hessian Elements 145
9.1 A Model for Twice-Differentiable Functions 145
9.2 Recovering Classic Quasi-Newton Methods 154
9.3 Towards a Fast Solver: Low-Rank Approximations 161
9.4 Experiments 163
9.5 Conclusion and Outlook 165

Epilogue 167
10 Conclusions and Outlook 169

Appendix 173
A Kronecker Algebra 175

A.1 Kronecker Products 175
A.2 Symmetric Kronecker Products 181
A.3 Anti-Symmetric Kronecker Products 186

B Derivation of Filtering Equations for Optimization 189
B.1 Hyper-Parameter Adaptation for First-Order Filter 189
B.2 Second-Order Filter (Non-symmetric) 191
B.3 Second-Order Filter (Symmetric) 192
B.4 Low-Rank Approximation (Second-Order Filter, Symmetric) 194

C Additional Experimental Results for probLS 207
C.1 Noise Sensitivity 207
C.2 Hyper-parameter Sensitivity 210
C.3 Noise Estimation 216

D Detailed Pseudocode of probLS 219
E Bibliography 231

xi

List of Figures

1 Intro: Hexagons in a Honeycomb. 3
2 Intro: Surface-area to volume ratio in 3D. 6
3 Intro: Orbit of a planet & Kepler’s equation. 6
4 Prelim: Cumulative distribution function. 17
5 Prelim: Marginalization and conditioning. 18
6 Prelim: Visualization of correlated 2D Gaussian. 18
7 Prelim: Two-dimensional Gaussian inference. 19
8 Prelim: Illustration of Gaussian process priors. 20
9 Prelim: Illustration of Gaussian process posteriors. 21
10 Prelim: Maximum marginal likelihood estimation. 25
11 Prelim: Chart that illustrates predicting, filtering, and smoothing. 25
12 Prelim: Wiener process, filtering and smoothing. 26
13 Prelim: Integrated Wiener process. 28
14 Prelim: Conceptual illustration of a empirical distribution. 29
15 Prelim: Sigmoidal and ReLU-activation function. 33
16 Prelim: Unit-circle of p-norms. 34
17 Prelim: Gradient descent on 2D-quadratic functions with different condition

numbers. 40
18 Prelim: gd, gd+momentum, and bfgs on Rosenbrock. 45
19 Prelim: Orthogonality of high dimensional Gaussian random vectors. 48
20 Prelim: Two-dimensional Gaussian random vectors. 49
21 Prelim: Sketch of classic line searches. 53
22 Prelim: Bayesian optimization acquisition functions. 64
23 Prelim: Illustration of Central Limit Theorem. 66
24 eb-crit Empirical distribution of mini-batch gradients for |B| = 100. 73
25 eb-crit Empirical distribution of mini-batch gradients for |B| = 10. 74
26 eb-crit Empirical distribution of mini-batch gradients for |B| = 10. 75
27 eb-crit: Sketch of early-stopping criterion. 79
28 eb-crit: Linear least-squares toy problem. 84
29 eb-crit: Synthetic quadratic problem. 85
30 eb-crit: Illustration of buffer-region induced by the eb-criterion. 86
31 eb-crit: Synthetic quadratic problem with sub-optimal initialization. 87
32 eb-crit: Logistic regression on Wisconsin Breast Cancer dataset. 87
33 eb-crit: Multi-layer perceptron on MNIST trained with gd. 88
34 eb-crit: Multi-layer perceptron on MNIST trained with sgd. 89
35 eb-crit: Shallow net and logistic regressor on SECTOR. 90
36 eb-crit: Greedy element-wise stopping on MNIST. 91
37 eb-crit: Sketch of rmsprop-damping relative to an sgd-step. 92
38 eb-crit: Comparison of non-greedy element-wise stopping to rmsprop-damping. 95
39 probLS: Comparison of classic interpolator and iwp-mean. 103

40 probLS: Sketch of candidate selection. 105
41 probLS: Sketch of acceptance procedure. 105
42 probLS: Curated snapshots on MNIST. 106
43 probLS: Sketch of probLS-algorithm. 107
44 probLS: Noise sensitivity: N-II on MNIST. 115
45 probLS: Sensitivity to hyper-parameters c2, and cW . 117
46 probLS: Sensitivity to hyper-parameters c2, and αext. 119
47 probLS: Sensitivity to hyper-parameter θreset. 120
48 probLS: Different choices of acquisition function. 121
49 probLS: Accepted logarithmic learning rate traces. 122
50 probLS: Logarithmic noise levels σf and σf ′ . 122
51 KFgrad: In-model toy example.. 134
52 KFgrad: Out-of-model toy example. 136
53 KFgrad: sgd and KFgrad on Rosenbrock. 138
54 KFgrad: sgd, sgd+momentum, and KFgrad training an mlp on MNIST. 140
55 KFgrad: Distribution of Kalman gains. 140
56 KFgrad: Hyper-parameter traces of KFgrad_scalar. 141
57 KFgrad: Hyper-parameter traces of KFgrad_diag. 142
58 KFhess: Dennis-class hyper-parameters. 159
59 KFhess: bfgs, gd, and l-KFhess training and mlp on MNIST. 164
60 probLS: Noise sensitivity: N-I on MNIST. 207
61 probLS: Noise sensitivity: N-II on CIFAR-10. 207
62 probLS: Noise sensitivity: N-I on CIFAR-10. 208
63 probLS: Noise sensitivity: N-III on GISETTE. 208
64 probLS: Noise sensitivity: N-III on WDBC. 209
65 probLS: Noise sensitivity: N-III on EPSILON. 209
66 probLS: Hyper-parameter sensitivity: c2-cW-space, αext = 1.4. 210
67 probLS: Hyper-parameter sensitivity: c2-cW-space, αext = 1.3. 210
68 probLS: Hyper-parameter sensitivity: c2-cW-space, αext = 1.2. 211
69 probLS: Hyper-parameter sensitivity: c2-cW-space, αext = 1.1. 211
70 probLS: Hyper-parameter sensitivity: c2-cW-space, αext = 1.0. 212
71 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.01. 212
72 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.10. 212
73 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.20. 213
74 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.30. 213
75 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.40. 213
76 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.50. 214
77 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.60. 214
78 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.70. 214
79 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.80. 215
80 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.90. 215

81 probLS: Hyper-parameter sensitivity: c2-αext-space, cW = 0.99. 215

List of Algorithms

1 Prelim: Sketch of an iterative optimizer. 36
2 Prelim: Sketch of a classic line search. 54

3 Prelim: Sketch of Bayesian optimization. 65

4 Sketch of a probabilistic line search. 101

5 Sketch of diagonal KFgrad. 137
6 Sketch of scalar KFgrad. 138

7 Sketch of noise-free KFhess. 164

Acronyms

Gradient Based Optimizers

gd Gradient descent

sgd Stochastic gradient descent

adagrad The Adagrad optimzier

adam The Adam optimizer

rmsprop The RMSprop optimizer

adadelta The Adadelta optimizer

momentum Indicates that a momentum term is added, e. g., sgd+momentum.

nesterov Nesterov accelerated gradients

bfgs The BFGS optimizer (Broyden-Fletcher-Goldfarb-Shanno)

dfp The DFP optimizer (Davidon-Fletcher-Powell)

KFgrad The KFgrad optimizer (Kalman filter on gradients)

KFhess The KFhess optimizer (Kalman filter on Hessian elements)

Processes, Models and Probability

pdf Probability density function

cdf Cumulative distribution function

gp Gaussian process

wp Wiener process

iwp Integrated Wiener process

bo Bayesian optimization

clt Central Limit Theorem

mlp Multi-layer perceptron

cnn Convolutional neural network

Notation

Risk, Gradients and Distributions (all Chapters)

w Inputs to an objective function (Usually L or LD); parameters of a model

N Size of w, i. e., w ∈ RN

d Single datapoint from a data distribution

ℓ(w, d) Loss, goodness of fit on datapoint d for parameters w

D A finite and fixed dataset (usually the training dataset); elements are i. i. d.
samples from the data distribution

B A mini-batch; B is a subset of D with elements sampled i. i. d. from D with or
without replacement

S Placeholder for arbitrary dataset, can e. g., be D, B

|S|, |D|, |B| Dataset sizes; number of elements in datasets S , D, and B

L(w), ∇L(w) Risk and its gradient at w

LD(w), ∇LD(w) Empirical risk defined by full dataset D and its gradient

LB(w), ∇LB(w) A mini-batch loss defined by mini-batch B and its gradient

LS (w), ∇LS (w) A mean-loss defined by arbitrary dataset S and its gradient; can be e. g., an
empirical risk, or a mini-batch loss

Λ(w) Population variance of ℓ(w)

Σ(w) Population covariance of ∇ℓ(w)

Λ̂(w) An Estimator for Λ(w)

Σ̂(w) An Estimator for diag[Σ(w)]

Probabilistic Line Searches (Chapter III)

αt Learning rate; step size

pt Search direction (not normalized), defining a one-dimensional search space

t One-dimensional input to the objective along search direction, in units of αextαt;
overloaded with iteration index t

f (t), f ′(t) Function value and gradient of one-dimensional search space

y(t), y′(t) Noisy evaluations of f (t) and f ′(t)

σ2
f , σ2

f ′ Variances of y and y′

pWolfe Wolfe probability

c1 Parameter of Armĳo condition

c2 Parameter of sufficient decrease condition

cW Parameter for Wolfe threshold

αext Extrapolation parameter

θ Scale of Wiener process kernel

Filtering Framework (Chapters I, IV)

xt State of a probabilistic state space model

D Size of state xt ∈ RD

Ft Drift matrix

At Transition matrix

Ht Measurement matrix

yt Noisy observation of Htxt

Rt Measurement covariance

xvi

Gt Innovation covariance/ Gram-matrix

gt Kalman gain

Lt Diffusion/ dispersion matrix

Qt Diffusion covariance

q Intensity matrix

mt+1− Mean estimator of predictive state xt+1 given y1,...,t

Pt+1− Covariance of predictive state xt+1 given y1,...,t

mt Mean estimator of updated state xt given y1,...,t

Pt Covariance of updated state xt given y1...t

ms
t Mean estimator of smoothed state xt given y1,...,T

Ps
t Covariance of smoothed state xt given y1...T

xvii

Prologue

0Introduction

Optimization problems, or rather the solutions thereof manifest in
the very basic laws of nature: Light travels the path of mini-

mal time (Fermat’s principle), closed physical systems settle in states
of lowest energy (2nd law of thermodynamics), or the dynamics of a
system arise from minimizing the action functional (Hamilton’s princi-
ple). Vaguer versions appear in biology, when scarce iron in red blood
cells is recycled by an organism, or in the structure of honeycombs (Fig-
ure 1). They are artificially created in human-defined objectives, for
example a concrete engineering task like the fuel efficiency of an inter-
nal combustion engine, or the growth of sales figures and profit. Even
in our daily lives, we might seek to minimize the time to get to work
by choosing an appropriate travel path.

Figure 1: The honeycomb is composed
of many hexagons. The shape is bene-
ficial to minimize building cost for the
bees. [Image taken from S. G. Goodrich
Animal Kingdom Illustrated Vol 2 (New
York, NY: Derby & Jackson, 1859), public
domain]

The concept of optimization is thus often related to a fundamental
law, a limited and/or valuable resource, a subjective loss or gain.
Optimization itself is a powerful principle and mathematical tool that
prevailed over time, and hence has been extensively studied, albeit
with varying focus in different fields, motivations and applications.
Solvers find the solutions to optimization problems, and are thus of
utmost practical relevance.

Definition and Task

Nowadays, automated computers are used to solve optimization prob-
lems. While the design of such a solver can be guided by intuition
and experimental feedback, further constrained by hardware require-
ment and finite computational budgets, mathematics provides a for-
mal definition of the problem setting: Formally, optimization is the
task of finding the extremal value of a function, also called the objective,
f : RN→R, w ↦→ f (w); without loss of generality, hereafter always
phrased as minimization:

min
w

f (w). (1)

In practice though, we are often interested in the the point w∗ where
the objective attains its extremal value, i. e., w∗ = arg minw f (w),
rather than the minimal value of f alone. We will call the point
w∗ the solution. It determines our course of action, an optimal algo-
rithm, or the specific manifestation of a production line. Formally,
w∗ is the global minimizer of f (w), that is a point w∗ ∈ RN where
f (w∗) ≤ f (w) for all w ∈ RN . There might be multiple points ful-

4 | INTRODUCTION

filling this requirement, in which case any of them is a solution. For
our purposes, we will further assume that f is bounded from below,
and that w∗ is attained in RN . We also assume that f is at least
once-differentiable everywhere, such that the multi-output gradient
function ∇ f : RN→RN , w ↦→ ∇ f (w) exists. Therefore w∗ equals a
point of vanishing slope, i. e., ∇ f (w∗) = 0.1 1 Other objectives that will not be dis-

cussed here might include functions
with discrete input and/or output, non-
differentiable functions, or constrained
solution domains.

If the input-dimension N is large, we often simplify the task fur-
ther, and assume that any local minimizer, that is a point w∗ that
fulfills f (w∗) ≤ f (w), for all w ∈ Ω, with Ω ⊂ RN a neighborhood
of w∗, is an acceptable solution as well. The latter statement enables
the use of greedy, gradient-based optimizers that do not explore the
whole domain of f (w), but rather focus on exploiting promising areas
towards a local minimum. This is algorithmically and structurally
more appealing and easier to handle, but comes at the expense of
potentially not finding the best solution possible. Still, local mini-
mizers often perform well in the task they are applied to later, even
though they might not be optimal by definition. The goodness of
an algorithm that performs optimization tasks, also simply called an
optimizer, can be evaluated in the light of mathematical convergence
results, or alternatively (but not mutually exclusive) by an extended
empirical evaluation. The former arguably provides more rigor, but
possibly only for a restricted class of functions whose assumptions
are hard to check in practice, or are possibly not fulfilled by definition
of f . The latter argues in the light of experimental evidence, which
is less rigorous, but sometimes the only accessible tool at hand. In
practice, both methods often go hand in hand and provide a more
complete picture about an optimization algorithm. In this thesis we
will focus on experimental evidence, not as a matter of principal, but
rather for reasons of personal taste, and since the aim of this disserta-
tion is to design novel optimizers of immediate practical and applied
relevance. The immediate feedback from toy-examples with a con-
trolled environment as well as real-world applications is valuable in
that respect.

Optimization in Machine Learning & General Outline

Optimization problems occur in many different disciplines. This dis-
sertation specifically deals with optimization tasks arising from ma-
chine learning applications, where computers learn a task without be-
ing explicitly programmed for it.2 Since computers are deterministic 2 This definition is commonly attributed

to Arthur Lee Samuel.calculators, this means that these programs need to select or continu-
ously change a model that subsequently identifies their current strat-
egy and hence the algorithm, rather than directly encoding it. This is
done according to a finite amount of data that they see sequentially, or
alternatively at one point in time. If this selection process is non-trivial,

INTRODUCTION | 5

it is typically performed by optimizers which find a good model under
some measure among a parametrized class of potentially infinitely
many models. This might be the hyperparameters of a hierarchical
probabilistic model under the model’s evidence, the indicators and
group parameters of a clustering model under some average distance
relation, or the weights of a neural network under an empirical risk.
A particular instance of this is high-dimensional, stochastic empirical
risk minimization, which currently is a major workhorse for solving
supervised regression and classification tasks, and has been attract-
ing attention especially in combination with artificial neural network
models. This dissertation develops novel concepts for optimization
and the latter will provide the main application for testing. All rel-
evant concepts briefly mentioned here will be introduced in greater
detail in later chapters.

Intriguingly though, even numerical methods like optimizers, which
are applied to a variety of different tasks are not at all static methods
and, they, too, need to adapt and change according to the ‘data’ they
collect from the CPU, usually in the form of possibly stochastic func-
tion evaluations and gradients, albeit in a much more lightweight,
efficient, and hence often approximate way. Thus, a part of this thesis
will be concerned with elaborating on the connection to probabilistic
inference, and the interpretation of optimizers as being learning ma-
chines themselves that exhibit additional requirements on tractability,
constraints on hardware, memory and computational cost. This will
be done by tackling three sub-challenges, present in contemporary
empirical risk minimization problems. These are: i) Improvement of
generalization performance, ii) Gains in automation by removing tun-
ing parameters, and, iii) Design of search directions that are robust to
stochastic gradient evaluations.

The next section provides a brief, targeted historic overview, fol-
lowed by a section that summarized the main tasks and contributions
of this thesis in greater detail.

A Short Historic Introduction

The history of optimization is vast and old. The following paragraphs
thus mention some selected historic steps in the development of defin-

ing, solving and analyzing non-trivial optimization problems, with the
aim to position this thesis in today’s knowledge and challenges. To-
wards the end, contextual emphasis will be placed on topics relevant
to this dissertation; as mentioned above, these are stochastic high-
dimensional optimization problems, in particularly empirical risk min-
imization.

• First geometric optimization problems: The first optimization
problems that were analyzed in a structured way, were probably of

6 | INTRODUCTION

geometric nature. Especially the works of Euclid of Alexandria3, [21] Cauchy, “Méthode générale pour la
résolution des systèmes d’équations si-
multanées,” 1847

[38] Euclid and Fitzpatrick, Euclid’s Ele-

ments, 2009
3 He also invented the phrase ‘Quod erat

demonstrandum.’, still used to date to end
mathematical proofs.

The Elements–Books I-XIII,∼ 300 B.C. [38], is an extensive collection
and study of geometric and trigonometric shapes and their rela-
tions, some of which are the solutions to questions of optimality:
The minimal distance of a point to a plane, the square as the rect-
angle of largest area for a given circumference, or the sphere as the
3D-object with largest volume for a given surface area (Figure 2).
Most of these problems have an analytic representation of f , as
well as an analytic solution w∗. Also the honeycomb-conjecture
mentioned above and illustrated in Figure 1, proven to be correct
just recently in 1999, 2001 by T. C. Hales, was already phrased back
then, as the division of a 2D-surface into equal areas that minimizes
the perimeter (optimal packing).4

4 Pappus of Alexandria provided a proof
for divisions by the polygons triangle,
square and hexagon in Collection Book V
(∼ 300 B.C.).

Figure 2: For a given surface area A, the
sphere has the largest volume V of all
3D-objects.

• From analytic solutions to iterative techniques: It became
apparent soon that some equations would not have analytic solu-
tions, such as finding the eccentric anomaly E of a star’s orbit in
Kepler’s equation M = E− ϵ sin(E), given the eccentricity ϵ of the
ellipse and mean anomaly M (Figure 3). Issac Newton famously
solved it by first starting at a good guess close to E∗, and then adding
terms to it, found by an algebraic expansion, with the goal to ap-
proach the true solution ever closer. With the advent of calculus,
and thus gradients (fluxions), by Newton and Leibniz (∼ 1670), and
later Euler and Lagrange (calculus of variations, ∼ 1750), similar
solvers appeared, such as steepest descent by Cauchy [21] that low-
ered a function’s value by walking cautiously but ad infinitum into
a descent direction. The first iterative solvers were born, breaking
down a difficult problem into multiple, successive easier ones.

Figure 3: Orbit of a planet (P) around the
sun (S). Solving Kepler’s equation (Jo-
hannes Kepler, 1609 in Astronomia Nova

Chapter 60) corresponds to minimizing
the 1D-function

f (E) = 0.5E2 −ME + ϵ cos(E),

where ϵ ∈ (0, 1) is the eccentricity of the
elliptical orbit.

• Computers and new mathematical concepts: In the meantime,
new mathematical concepts appeared (∼ 1850 − 1950), and ex-
isting ones were formulated more rigorously, such as continuity
(Weierstraß), convexity (Jensen), or Lipschitz continuity of func-
tions, which made it possible to analyze iterative solver in the light
of convergence and convergence rates. The questions “Can the true
minimizer be returned if we just iterate long enough, and, if yes,
how fast will we get there?” that had only been hypothesized before,
e. g., by Cauchy, became more prominent and of practical concern
since it was now possible to consider more than a handful of iter-
ates. Automated computers finally leveraged the full potential of
iterative techniques that showed very good behavior just beyond
the first few iterations, notably quasi-Newton methods (∼ 1950), or
iterative solvers for constrained linear problems (linear program-
ming). Computational complexity and memory requirement of
algorithms became primary issues, due to the increasing demand
for also solving multi-dimensional optimization problems.

Source Fig. 2: Wikipedia CC BY-
SA 3.0, ‘Tetrahedron.svg’, by Cmglee
https://commons.wikimedia.org/w/

index.php?curid=26667051

Source Fig. 3: Wikipedia CC BY-SA 4.0,
‘Mean Anomaly.svg’, by CheCheDaWaff
https://commons.wikimedia.org/w/

index.php?curid=48381371

https://commons.wikimedia.org/w/index.php?curid=26667051
https://commons.wikimedia.org/w/index.php?curid=26667051
https://commons.wikimedia.org/w/index.php?curid=48381371
https://commons.wikimedia.org/w/index.php?curid=48381371

INTRODUCTION | 7

• Faster computers, GPUs and large datasets: Towards the end
of the 20th century, the possibility to collect and store large amounts
of data became ubiquitous. Processing it, though, still remained
slow, but was considerably sped up by graphics processing units
(GPUs) which enabled parallel processing of a limited amount of
datapoints, as long as algebraic operations could be expressed
as independent arithmetic operations, e. g., matrix-vector prod-
ucts. In an attempt to lower the cost further, stochastic optimizers,
such as stochastic gradient descent (sgd), were invented, ground-
breakingly proven to converge under certain conditions by Robbins
and Monro [113]. These methods only process a small fraction of [113] Robbins and Monro, “A stochastic

approximation method,” 1951data at a time, sub-sampled from a much larger, finite dataset, or
an online stream of data that is infinite theoretically, but finite at
every point in time. This arguably led to a shift in the optimization
community, towards solvers needing an excessive amount of, but
therefore very cheap iterations. Especially stochastic empirical risk
minimization became a major workhorse, where unbiased gradient
estimators are easily accessible by sub-sampling a large dataset. At
the same time, this also opened up new questions, as how to trade-
off potential progress per step, and the cost involved in doing so,
which were not as present before and still are mostly unsolved to
date.

• Today’s challenges and new questions: The success of certain
practical machine learning applications foremost in industry (the
second advent of AI), revealed that optimization is still often a
bottleneck in a larger chain of learning procedures. Thus, the need
for better (faster, data-efficient) optimizers is again at a high today
and already led to a pool of variants of sgd that are easier to use
and more cost efficient.

A notable difference, though, in today’s challenges, is that opti-
mizers increasingly are not only concerned about minimizing the
objective function, but become intertwined with the whole learning
problem itself. In empirical risk minimization, for instance, where
the objective f (w) of Eq. 1 is the empirical risk, ‘good’ optimizers
nowadays, are expected to return solutions that also generalize well
to unseen data, reduce overfitting, or react robustly to the noise, that
originates from sub-sampling the dataset. These solutions are not
necessarily equal to the solution of arg minw f (w), and are subject
to questions of information theory and statistics. This connection is
intriguing, but comes with the drawback that the desired objective
can often not be written down analytically anymore, or is subject
to disputable approximations and assumptions. Consequently, it
is up to controversy what the optimizer’s objective should be after

8 | INTRODUCTION

all, if not f (w); and, throwing Eq. 1 out of the window, the notion
of ‘what a good optimizer is’, is even debated today.

Detailed Outline
Optimization is and has always been a combined effort of disciplines
such as math, physics, and later computer science, driven by appli-
cations and practical problems to solve. Standing on the shoulders
of giants, in this thesis we will attempt to tackle some of the current
open questions of the optimization community, and contribute to the
knowledge and progress of scientific research. In particular, we focus
on stochastic, high-dimensional optimization, with an emphasis on
empirical risk minimization for supervised classification and regres-
sion tasks. As outlined above, current open questions include:

• Improving generalization performance that can not directly be mea-
sured by f (w).

• Gaining automation by removing tuning parameters.

• Designing search directions that are robust to stochastic gradient
evaluations.

Partially based on the publications listed below, this thesis contains
the following parts that are summarized here briefly. Several concepts
that are mentioned here without further note, will be introduced in
more detail in later chapters.

• Early-stopping without a validation set: Consider empirical
risk minimization, where f (w) is the empirical risk, defined by
a finite dataset D that contains pairs of an unknown input-target
relation. A very expressive model Mw, parametrized by w, that
learns this relation, might overfit to the dataset and perform poorly
on unseen data from the same (true) input-target relation. This
is unsurprising, since the encoding ofMw, and thus the objective
f (w), has knowingly ignored all other possibly occurring input-
target-pairs not contained in D.

Besides regularization techniques that change the modelMw and
thus f (w), and some others, arguably the widely accepted paradigm
to prevent overfitting is early-stopping; a procedure that simply halts
the optimizer before it reaches the minimizer w∗ of the empirical
risk. The rational behind it is that the sequence of models Mwt ,
t = 0, . . . , T that the optimizer proposes at iterations t, generally
lead from underfitting to overfitting, and generalize well some-
where along the path. A good stopping point is then identified
by monitoring the loss of a validation set; that is, the dataset D is
partitioned into two or three smaller disjoint datasets: One for train-
ing/defining f (w), a validation set for monitoring generalization

INTRODUCTION | 9

that also induces stopping, and possibly another for a final evalu-
ation, since the stopping decision is biased towards the validation
set, too. This is a very reliable technique when the datasetD is large
enough, such that splitting it up does not deprive each partition, but
especially the optimizer’s objective, of valuable information about
the input-target relation it has to learn; but for smaller, medium
sized or highly diverse datasets, splitting can notably affect the
generalization performance ofMw that can possibly be reached.

In Chapter 6, we will thus formulate a weaker, novel early-stopping
criterion which allows to fold-in the validation set into the training
procedure. The optimizer is halted when gradients can be fully ex-
plained by sample-noise arising from the finite size of the dataset,
and not by an informative gradient direction, even if the full dataset
is used per iteration. We show on several test cases that the addi-
tional data accessible to the training procedure helps to improve
generalization on a withheld test-set, and also empirically induces
well calibrated stopping decisions, especially on small to mid-sized
datasets, where the stopping decision induced by a validation set
can be corrupted or heavily biased.

• Gaussian likelihoods for losses and gradients: We will make
a general point on the form of the distribution of local (for a given
w) losses and gradients of an empirical risk function. We will argue
that, by the central limit theorem, the former can be approximated
by Gaussians whose parameters can be estimated at run-time with
little computational overhead. We will also support this claim with
heuristic evidence. This yields an analytic likelihood of the un- [126] Skilling, “Bayesian solution of ordi-

nary differential equations,” 1991

[103] Poincaré, Calcul des probabilités,
1896

[57] Hennig and Kiefel, “Quasi-Newton
methods – a new direction,” 2012

[56] Hennig, “Probabilistic Interpreta-
tion of Linear Solvers,” 2015

known true loss and gradient at every input-location w, which sub-
sequently can be incorporated into an inference scheme. This is in
line with a re-emerging field called probabilistic numerics [58], based

[58] Hennig, Osborne, and Girolami,
“Probabilistic numerics and uncertainty
in computations,” 2015

on previous works by Diaconis [31] and O’Hagan [101] (for univari-

[31] Diaconis, “Bayesian numerical anal-
ysis,” 1988

[101] O’Hagan, “Some Bayesian Numer-
ical Analysis,” 1992

ate integration, which led to Bayesian quadrature), Skilling [126]
(for ODEs), and more philosophically Poincaré [103]. Specific recent
works on optimization include Hennig and Kiefel [57] on probabilis-
tic quasi-Newton methods, as well as Hennig [56] for works on the
solution of linear systems which is closely related to optimization
of quadratic problems. In all these, ‘data’, such as the evaluations
of mini-batch gradients, is of computational nature, mined by a
brain or a CPU at the cost of time or energy consumption; and the
objects of inferential interest are solutions to non-trivial numerical,
non-physical problems.

For optimization in particular, this means that having incorporated
more knowledge about the distribution of possibly occurring, but
yet unseen gradients, the optimizer has an increased potential to
learn and adapt its internal model parameters such as smoothing

10 | INTRODUCTION

constants, learning rates et cetera, that would need to be hand-
crafted otherwise. In other words, the capability of the optimizer
to encode crucial information about the objects it collects from a
CPU, increases its ability to foresee, weigh, and react to yet unseen
evaluations thereof. We will see that, adopting an empirical Bayes
approach, the specific parameters of these distributions, in partic-
ular the variances, can often be estimated with little overhead that
justifies the overall performance gains. The possible results are op-
timizers with a higher degree of automation as well as robustness;
two examples thereof will be discussed next.

• Automated step size adaptation for stochastic gradient de-
scent: We will choose to look at optimizers as models, themselves
parametrized by tunable quantities like smoothing constants, de-
cay factors, learning rates or parameters of learning rate schedules.
Some are more prominent than others, but they all identify a par-
ticular algorithm uniquely. In general, parameters can either be set
to roughly insensitive design choices, or, if that is not possible, they
need to be hand-tuned by an expert, according to a performance
measure, such as generalization loss after a finite budget of CPU-
or wall-clock-time. Given a function handle to f (w), the single
parameter of stochastic gradient descent (sgd) is the step size, or
learning rate α, which is often tedious to tune or to hand-craft and,
even then, is virtually never optimal per step.

In Chapter 7, we will introduce a novel subroutine, called a prob-

abilistic line search, of constant, small cost that adapts the learning
rate of sgd at each step by checking local probabilities of descent.
The algorithm is based on the idea of a line search subroutine (e. g.,
[100, § 3]), classically designed for deterministic gradient and loss [100] Nocedal and Wright, Numerical Op-

timization, 1999evaluations. We take design parts of the algorithm one-by-one and
translate them to their probabilistic equivalent where possible, or
generalize them where necessary. We show on several classifica-
tion tasks that the novel line-search-adapted sgd exhibits superior
or same generalization performance in comparison to sgd with
carefully hand-tuned learning rates; but with the advantage of not
having to do any explorative experiments or expert-user interaction.
It shows that previous tuning-parameters can be removed entirely,
by explicitly encoding and estimating not only loss and gradient
estimators, but also the structure of their distribution.

• A filtering framework for stochastic optimization: If one
compares the computer-codes of stochastic gradient descent (sgd)
and full-batch gradient descent (gd), given a function handle to f ,
they are indistinguishable. They also share the same set of tunable
parameters: scalar learning rates αt. This means that sgd in fact
does not understand that it is exposed to corrupted gradients; all we

INTRODUCTION | 11

know, as users, is that it does not matter to some extend because we
were able to proof, that it converges anyway (with constraints on its
own model parameters αt [113]). Thus, the question arises if also the [113] Robbins and Monro, “A stochastic

approximation method,” 1951search direction, and not just a small subroutine like line searches,
might benefit from an explicit encoding of gradient distributions.
After all, it has been shown before [57] [56] that some update rules [57] Hennig and Kiefel, “Quasi-Newton

methods – a new direction,” 2012

[56] Hennig, “Probabilistic Interpreta-
tion of Linear Solvers,” 2015

of deterministic optimizers are special cases of Gaussian inference on
Hessians, involving Gaussian likelihood functions that collapse on
delta-peaks for exact gradient evaluations, i. e., vanishing variances.
Now that we know that Gaussian likelihoods are quite accurate as-
sumption even, what would happen for finite variances? Would
inference still be tractable? How would we use the posterior dis-
tributions in a concrete iterative scheme? And would an optimizer
even benefit from the potentially more involved iterations?

There can be many more questions asked, though Chapters 8 and
9 can be understood as a cautious approach (similar to [57] who
did not solve tractability) to motivate and derive tractable updates
for noise-informed first- and second-order search directions for
stochastic optimization. We will draw connections to current pop-
ular methods and show direct support of exponential smoothing
of gradients in first-order methods, as done rather ad-hoc in rules
such as momentum-sgd [105] [116] or the denominator of the adam- [105] Polyak, “Some methods of speed-

ing up the convergence of iteration meth-
ods,” 1964

[116] Rumelhart, Hinton, and Williams,
“Learning representations by back-
propagating errors,” 1986

update [74]. We will also see that objects, such as sample variances

[74] Kingma and Ba, “Adam: A Method
for Stochastic Optimization,” 2014

of stochastic gradients, appear implicitly and much less structured
in many popular updates (see also the works of Balles and Hen-
nig [5]) which supports the use of possibly better, since unbiased,

[5] Balles and Hennig, “Follow the
Signs for Robust Stochastic Optimiza-
tion,” 2017

local variance estimates. Based on these findings, we propose KF-
grad, a momentum-like update, derived from a Gauss-Markov
model for the true gradient function defined on the optimization
path, which can learn its own natural smoothing factors (also called
‘gains’ in filtering/signal processing), and is richer in structure than
momentum-sgd. [123] Shanno, “Conditioning of quasi-

Newton methods for function minimiza-
tion,” 1970In a similar manner, we analyze a novel class of probabilistic quasi-

Newton methods, arising from a tractable estimator based on a
Gauss-Markov model for Hessian elements. We draw connections
to classic quasi-Newton methods (like the members of the Dennis
family [29], including its famous member bfgs [19] [40] [44] [123]) [29] Dennis, “On some methods based

on Broyden’s secant approximations,”
1971

[19] Broyden, “A new double-rank mini-
mization algorithm,” 1969

[40] Fletcher, “A new approach to vari-
able metric algorithms,” 1970

[44] Goldfarb, “A family of variable
metric updates derived by variational
means,” 1970

for the limit of deterministic gradient evaluations. We are then
able to analyzes the implicit model assumptions made by these
classic methods and argue that similar strategies or choices of hyper-
parameters, in stochastic settings, might in fact be less preferable,
and should not blindly be transferred. We also show first steps
towards a scalable probabilistic quasi-Newton optimizer that might
be worth investigating in the future.

12 | INTRODUCTION

We hope that the above points, and the corresponding detailed texts
below, contribute to progress in optimization research, and that they
will be found useful by the community. Optimization, as a problem-
setting or task, is located at an intriguing mid-ground somewhere in
between a clear inference task with a clear goodness-measure, such as
approximating the Newton direction, and the task of the user that is
evaluated in another measure, such as the performance of returnedMw

after a finite computational budget. This trade-off is still poorly under-
stood and hard to analyze. We hope that this work contributes towards
disentangling both sides, such that interpretability, user-friendliness,
and automation of optimization machines can be improved further.
Towards that end, we present first practical algorithms in three sub-
tasks: Search directions, learning rates, and generalization; all based
on probabilistic models that use and rely on statistics of stochastic
gradients and losses, and either analyze model assumptions, ease the
usage, or improve the performance of stochastic optimizers today.

Content

Part I introduces concepts and notation that will be used throughout
the text, as well as relevant related literature. These are: Chapter 1
General concepts of reasoning and probabilistic inference: Basic probabil-
ity calculus, Gaussian distributions, Gaussian processes, probabilistic
state space models, Wiener processes, and Kalman filters. Chapter 2
Optimization and applications: Empirical risk minimization, artificial
neural networks, gradient-based deterministic and stochastic optimiz-
ers, regularization, early-stopping, and deterministic line searches.
Chapter 3 Closely related literature: Quadratic problems, Kronecker al-
gebra, and the probabilistic linear solver of Hennig [56]. Chapter 4 [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015
Miscellanea: Bayesian optimization, and the central limit theorem.

Parts II, III & IV contain the main contributions of this disserta-
tion. These are: Chapter 5 Explicit description of conditional distri-
butions of stochastic gradients and losses. Chapter 6 A novel early-
stopping criterion for better generalization. Chapter 7 A probabilistic
line search sub-routine for fully automated learning rate tuning of
sgd. Chapter 8 A novel filtering framework for stochastic gradients
and first-order optimization. Chapter 9 A novel filtering framework
for stochastic Hessians and second-order optimization.

The Appendix contains additional results, derivations, plots, and
pseudo-codes of Chapters 5-9.

Publications
Parts of the work in this thesis were done in collaboration with col-
leagues and are based on the following publications:

INTRODUCTION | 13

Chapter 7 is based on the following peer-reviewed journal publication:

M. Mahsereci and P. Hennig. “Probabilistic Line Searches for
Stochastic Optimization.” In: Journal of Machine Learning Re-

search 18.119 (2017), pp. 1–59. url: http://jmlr.org/papers/
v18/17-049.html

A peer-reviewed conference version, selected for a full oral presenta-
tion was published in :

M. Mahsereci and P. Hennig. “Probabilistic Line Searches for
Stochastic Optimization.” In: Advances in Neural Information

Processing Systems (NIPS). vol. 28. 2015, pp. 181–189

Chapter 6 is based on the on the following pre-print (in preparation
for submission to JMLR):

M. Mahsereci, L. Balles, C. Lassner, and P. Hennig. Early Stop-

ping without a Validation Set. 2017. eprint: arXiv:1703.09580

Chapters 8 and 9 are unpublished at the time of writing and in prepa-
ration for submission to JMLR.

I also contributed major parts to the following peer-reviewed work:

L. Balles, M. Mahsereci, and P. Hennig. “Automating Stochastic
Optimization with Gradient Variance Estimates.” In: ICML

AutoML Workshop (2017)

Additionally, the Preliminaries (Part I), the Appendix, as well as Chap-
ter 5 are partially taken from the publications mentioned above, or are
collections thereof, as indicated in the running text.

http://jmlr.org/papers/v18/17-049.html
http://jmlr.org/papers/v18/17-049.html
arXiv:1703.09580

Part I
Preliminaries

1Gaussian Process Regression
[75] Kolmogorov, “Grundbegriffe der
Wahrscheinlichkeitsrechnung,” 1933

[25] Cox, “Probability, frequency and rea-
sonable expectation,” 1946

Uncertainty is fundamentally inherent to smart decision making.
In other words, if there is no uncertainty, there is always a clear

answer. A mathematical notion of uncertainty is probability theory
which can be derived e. g., from the Cox axioms [25]; these are ba-
sic notions of reasoning in agreement with ‘comparability’, ‘common
sense’, and ‘consistency’.1

1 Another commonly used axiomatic
system is due to Kolmogorov [75]. Both
systems yield the same probability calcu-
lus. The difference is merely and mostly
in the interpretation of the word ‘proba-
bility’, as a statement of plausibility of
a hypothesis (Cox), or a frequency of
an event from an experiment with ran-
dom outcomes (Kolmogorov). In this
thesis we will also assign probabilities to
values of non or not obviously random
quantities, without making a rigorous
point that this is the only way probabil-
ities should be looked at. We will also
use wording and notation of either ap-
proach depending on the task and the
related literature.

1.1 Probability Calculus
The symbol p(A) denotes the probability that proposition A is true,
and p(A ∩ B) the probability that both A and B are true. Given that
B is true, p(A|B) is the conditional probability that A is also true. The
two basic rules of probability calculus are the product rule and the sum

rule:

p(A ∩ B) = p(A|B)p(B) product rule (2a)

p(A) = ∑
B

p(A ∩ B) = ∑
B

p(A|B)p(B) sum rule (2b)

The sum rule computes p(A)by adding up all conditional probabilities
p(A|B) weighted with the probability that B is true, for all possible
propositions B. All probabilities are normalized between zero and
one, i. e., p(A) ∈ [0, 1].

0

1

0

1

0

1

0

1

x

Figure 4: Probability density () and
cumulative distribution function ().
Top: uniform. Second: steps. Third:
single Gaussian. Bottom: mixture of two
Gaussians. The cdfs are computed over
the whole real line for pdfs that are non-
zero outside of the shown interval.

Bayes’ Theorem and Probabilistic Reasoning

A direct consequence of the product rule of Eq. 2 is Bayes’ theorem [9]

[9] Bayes, “On a problem in the doctrine
of chances,” 1763

[80]

[80] Laplace, “Mémoire sur la probabil-
ité des causes par les évènemens,” 1774

p(A|B) = p(B|A)p(A)

p(B)
, for p(B) ̸= 0. (3)

Bayes’ theorem states that given the conditional probability p(B|A)

and the probabilities p(A) and p(B), it is possible to compute the
inverse conditional probability p(A|B).

Instead of general propositions A and B, we are particularly inter-
ested in the probability that a variable X is equal to a value x from a
discrete non-empty set X . We then say that p(X = x) is the probabil-
ity that X takes the value x, and likewise for another variable Y, with
values y from Y . Then, p(X = x, Y = y) is called a joint probability,
and e. g., p(X = x) a marginal probability. Additionally, it is common

18 | GAUSSIAN PROCESS REGRESSION

to use the short-hand notation p(x) instead of p(X = x) et cetera, and
to use x as the symbol for both, the variable X as well as the value x.
In applications, realizations of y are often associated with observations

or data, and x with an unknown quantity. The probability p(y|x) is then
called the likelihood, p(x) the prior, p(y) the evidence, and p(x|y) the
posterior, all of the unknown x. This means that given a joint or gen-

erative
2 model of observed and unobserved variables y and x, we can 2 The term ‘generative’ is used used non-

uniquely in the literature. We will use it
to denote a procedure, that can generate
(x, y)-pairs from their joint probability
distribution.

reason about the unobserved ones, given some examples of y, even if
they do not identify x completely.

Continuous Variables and Densities

Figure 5: Marginalization and condition-
ing. Contours of two-dimensional prob-
ability density (), marginal density
of abscissa (), conditional density
of ordinate (), location of condition-
ing on abscissa ().

If the variables X and Y are not discrete but real-valued, then p might
also denote a probability density function (pdf) and the sum in Eq. 2b
turns into an integral. Another relevant function is the cumulative

distribution function (cdf):

cdfX(x) :=
∫ x

−∞
p(a)da (4)

which is the probability p(X ≤ x) that X has a value smaller than x.
Figure 4 shows examples of four different pdfs (uniform, steps, Gaus-
sian, mixture of two Gaussians) and their corresponding cdf. Some
cdfs can be computed analytically, e. g., the cdfs shown in Figure 4,
others involve solving the integral in Eq. 4 numerically. The probabil-
ity p(x1 < X ≤ x2) that X lies in the half-open interval (x1, x2] can
be obtained from twice evaluating the cdf: cdfX(x2)− cdfX(x1). Fig-
ure 5 visualizes ‘marginalization’ and ‘conditioning’ of a multi-modal
probability density. Pictorially speaking, conditioning defines a nor-
malized slice trough the the joint pdf, while marginalization over a
single variable defines a weighted average of all of those possible slices.

1.2 Gaussian Distributions

Figure 6: Visualization of mean and
covariance. 2D-Gauss with mean vec-
tor µ () eigenvectors of Σ scaled
with the square root of their eigenval-
ues (/), contour of p(x) =

(2π)−1(|Σ|e)− 1
2 ().

The density of a one-dimensional Gaussian or normal distribution is
of the form:

p(x) =
1√

2πσ2
exp

[
−1

2
(x− µ)2

σ2

]
, (5)

also denoted as calligraphicN (x; µ, σ2). It has two parameters µ ∈ R

and σ2 ∈ R+ which identify the distribution.3 If p is unknown but

3 The parameters can also be repre-
sented in other bases: A common one
is µ

σ2 and− 1
2σ2 which are also called nat-

ural parameters.

known to be Gaussian, it is thus enough to collect statitics about µ

and σ2 from independent and identically distributed (i. i. d.) samples.
These statistics are called sufficient statistics, meaning that, roughly
speaking, it suffices to keep around these two numbers instead of
the collected samples. The parameters µ and σ2 have a geometric

GAUSSIAN DISTRIBUTIONS | 19

interpretation: µ is the mean (first moment, or expected value) of x,
and σ2 is the variance (second central moment). For Gaussians the
mean is also simultaneously the location of the maximum of p(x).

The Gaussian distribution can be generalized to multi dimensions:
x ∼ N (µ, Σ), where x ∈ RD is now a vector, µ ∈ RD is the mean
vector, and Σ ∈D×D is the positive semi-definite covariance matrix. If
Σ is positive definite (thus non-singular), the pdf can be written as:

p(x) = (2π)−
D
2 |Σ|− 1

2 exp
[
−1

2
(x− µ)⊺Σ−1(x− µ)

]
, (6)

where |Σ| > 0 is the determinant of Σ (illustration of 2D-Gauss in
Figure 6).

Gaussian Inference

Figure 7: Two-dimensional Gaussian in-
ference . Probability densities shaded
for 1, 2, and 3 standard deviations. Prior
(), likelihood () and posterior
(). Top: noisy observation. Mid-
dle: noisy observation of axis-aligned
1D-subspace. Bottom: noisy observa-
tion of arbitrary 1D-subspace.

Marginalization and conditioning—the elementary operations of prob-
abilistic inference—are analytic for Gaussians. This means that given
the joint pdf

N
⎛⎝⎡⎣x

y

⎤⎦ ;

⎡⎣µx

µy

⎤⎦ ,

⎡⎣Σxx Σxy

Σyx Σyy

⎤⎦⎞⎠ , (7)

the marginals areN (x; µx, Σxx) andN (y; µy, Σyy), and the conditional
for observed y is N (x|y; µx|y, Σx|y) with:

µx|y = µx + ΣxyΣ−1
yy (y− µy), Σx|y = Σxx − ΣxyΣ−1

yy Σyx. (8)

Σx|y is called the Schur complement of Σyy. Pictorially it shrinks the
covariance Σxx by subtracting parts that contain information about x,
observed through y. In other words if the vector [vx, vy]⊺ is drawn
according to Eq. 7, then vy and the vector vx|y := vx − ΣxyΣ−1

yy vy are
independent.

If additionally y is a noise corrupted linear map of x, i. e., y =

Hx + ϵ, with ϵ ∼ N (0, R) (H and R are matrices of appropriate size
and properties), then Eq. 8 turns into:

µx|y = µx + Σxx H⊺(HΣxx H⊺ + R)−1(y− Hµx)

Σx|y = Σxx − Σxx H⊺(HΣxx H⊺ + R)−1HΣxx.
(9)

Figure 7 shows inference on a 2D-Gaussian variable for differing noisy
observations i) top: both dimensions are observed (H = I), ii) middle:
only one dimension (abscissa) is observed (H = [1, 0]), iii) bottom: a
one-dimensional arbitrary subspace is observed (H = [1, 0]Θ, where
Θ is a 2D-rotation). For observed parts, the posterior variances are
always smaller than both the prior and the likelihood variances; for
unobserved parts they are identical to the prior variance. This can be
seen from the middle plot where the variance of the unobserved ordi-

20 | GAUSSIAN PROCESS REGRESSION

nate component does not change. The posterior mean µx|y of Eq. 9 is
always an elementwise linear combination of the projected prior mean
Hµx and the observation y weighted by g := Σxx H⊺(HΣxx H⊺ + R)−1;
in other words µx|y = (I − gH)µx + gy and Σx|y = (I − gH)Σxx.4

4 If H is a selector map, i. e., a projection
onto a subspace, like e. g., in Figure 7,
instead of an arbitrary linear map, then
it is a convex combination in the observed
parts.

Exact inference in fully Gaussian systems thus only involves opera-
tions of linear algebra such as matrix-matrix products, matrix-vector
products or matrix-inverses. Gaussian fits to arbitrary probability
distributions can thus be seen as a tool to approximate probabilistic
inference to first order (linear) computations. This insight is tremen-
dously helpful for the design of probabilistic numerical methods, as
considered in this thesis, since numerical linear algebra are operations
that a computer can perform to high precision in finite time.

1.3 Continuous Indexing—Gaussian Processes

x

z

x
x

z

x

Figure 8: Illustration of continuous in-
dexing. Rows 1-3: 5- and 9-dimensional
finite Gaussians. Rows 4-6: 200-
dimensional representation of two Gaus-
sian processes.

The concept of a multi-dimensional Gaussian distribution can be gen-
eralized to continuous index spaces Z , e. g., the real line. Therefore,
an infinite dimensional object like a function instead of a finite dimen-
sional random variable can be modeled with it. A Gaussian process (gp)
is a collection of random variables {xz}z∈Z indexed by z. The random
variables {xzi}i=1,...,T associated with any finite subset {zi}i=1,...,T ⊂ Z
of these indices are jointly Gaussian distributed [109], [73].5 Similar

[109] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006

[73] Karatzas and Shreve, Brownian Mo-

tion and Stochastic Calculus, 1991

5 We will mostly skip the curly brackets
which indicate sets, i. e., {xzi}i=1,...,T will
be denoted as xz1,...,T . We will later also
overload this notation and represent vec-

tors and matrices for double indices with
it.

to finite-dimensional Gaussian distributions, the Gaussian process is
fully specified by a mean function µ(z), µ : Z →R and a covariance or
kernel function k(z, z′), k : Z × Z →R. For the distribution we also
write calligraphic x ∼ GP(µ, k).

Any T-dimensional finite subset of the gp can be computed for an
index set z1,...T by evaluating µ(zi) and k(zi, zj) for all i, j = 1, . . . , T.
This yields a T-dimensional mean vector and a T × T-dimensional
positive definite covariance, or kernel-Gram matrix.

Figure 8 illustrates this idea: Row 1 shows two covariance ma-
trices (5- and 9-dimensional). Rows 2 and 3 show illustrations of
the corresponding 5- and 9-dimensional Gaussians: Samples ()
and mean ±1 standard deviation () versus the discrete index sets
z1,...5 = {1, 3, 5, 7, 9} and z1,...9 = {1, 2, 3, . . . , 9} (the drawback of this
visualization is that off-diagonal elements of the covariance matrix
can not be represented explicitly). Row 4 shows two 200-dimensional
kernel-Gram matrices for real-valued, equally spaced and sorted in-
dices on the shown interval of z.6 Rows 5 and 6 again show cor-

6 The left covariance matrix is in-
duced by the well-known stationary
squared exponential kernel k(z, z′) =

exp (− (z−z′)2

2). The right one k(z, z′) =
exp (−2 sin2(0.5π|z− z′|)) + min(z, z′)
is a combination of a periodic kernel and
a Wiener kernel and is non-stationary.

responding samples (), mean () and ±1 standard deviation
() versus z. The dashed and solid interpolations between indices
were rather associative in rows 2-3, representative for the covariance
structure, but no distribution over x was actually defined there. For
the kernel-induced covariances of the gp (rows 4-6), in principle z1,...T

CONTINUOUS INDEXING—GAUSSIAN PROCESSES | 21

could be chosen arbitrarily dense in the shown interval (or inZ), such
that the random vectors approach infinite-dimensional functions.

Gaussian Observations

Similar to the finite-dimensional case, observations y of x with additive
Gaussian noise can be easily integrated into gps:

yz′i
= xz′i

+ ϵ, ϵ ∼ N (0, r), i ∈ {1, . . . , M} (10)

where z′1,...,M denotes the set of M observed locations. Since any finite
subset of outputs x is Gaussian distributed with covariance given by
the kernel-Gram matrix, it is possible to define a finite-dimensional
Gaussian joint over the outputs xz1,...T corresponding to predictive loca-
tions z1,...,T , and observations yz′1,...,M

at locations z′1,...,M. The posterior
mean and covariance is given by Eq. 9:

x

z

x
x

z
x

Figure 9: Posterior gp and covariances.
Rows 1-3: squared exponential kernel
Rows 4-6: periodic with additive Wiener
kernel; colors and both kernels as in
rows 4-6 of Figure 8.

µxz1,...,T |yz′1,...,M
= µxz1,...,T

+ Σxy(Σyy + rI)−1(yxz′1,...,M
− µxz′1,...,M

)

Σxz1,...,T |yz′1,...,M
= Σxx − Σxy(Σyy + rI)−1Σyx

(11)

where e. g., Σxy is shorthand for the off-diagonal covariance block
of the joint with the ijth element Σij

xy := k(zi, z′j), i ∈ {1, . . . , T},
j ∈ {1, . . . , M} computed by the kernel function; and similarly mean
elements, e. g., µi

xz1,...,T
:= µ(zi), i ∈ {1, . . . , T}, computed by the mean

function. Since the predictive locations z1,...T are arbitrary on the con-
tinuous index domain, µx(·) |yz′1,...,M

can be interpreted as posterior mean

function and Σx(·) |yz′1,...,M
as posterior kernel function which identify the

posterior gp.
Figure 9 illustrates the posterior of a gp. It uses the same kernels

as in Figure 8: Squared exponential kernel (rows 1-3), and periodic
plus Wiener kernel (rows 4-6). Rows 1 and 4 show a 200-dimensional
covariance matrix of the prior Σxx and posterior Σx|y, left and right
plot respectively, for equally spaced and sorted z on the shown domain.
Rows 2 and 5 show the prior, as in rows 5 and 6 of Figure 8; rows 3 and
6 show the posterior. Both kernel choices give rise to quite different
posterior structures, i. e., patterns in the posterior covariance matrix
and probable regressors, although they were conditioned on the same

partly noisy observations yz1,2,3 ().7 Thus kernel design and also

7 The patterns are visible because the in-
dices i of zi are chosen such that the z
are sorted and kernels usually encode
some kind of distance or larger-smaller-
comparison. A random permutation of
i would render this pattern unrecogniz-
able for the eye, but since the kernel func-
tion k defines how an arbitrary pair of
(zi , zj) covaries, the gp is invariant un-
der the permuatation as long as the link
between input zi and output xi can be
identified.

fitting of the kernel parameters is a crucial element in gp-regression
tasks.8 8 gps can also be derived as an infinite

limit of parametric linear feature regres-
sion (e. g., [109]). Since the infinitely
many weights corresponding to these
features are the ‘actual’ parameters of
the gp-model, it is common to call the
kernel parameters ‘hyper-parameters’.

The largest computational cost of gp-inference usually stems from
inverting the Gram-matrix Σyy + rI ∈ RM×M which has cubic cost
in its size O(M3). The next section explores structures of Σyy which
reduce the complexity to linear cost for certain choices of kernels and
‘time’-ordered inputs z. In these settings exact gp-inference can be

22 | GAUSSIAN PROCESS REGRESSION

cast as the solution of a linear filtering and smoothing problem of a
probabilistic state space model which, from a practical point of view,
leverages fast and analytic computations.

Section 1.4 introduces notation for probabilistic state space models,
Kalman filters and smoothers, and draws connections in particular to
the Wiener process and the related integrated Wiener process.

1.4 Wiener Processes & Kalman Filters
An excellent overview over discrete-time probabilistic state space mod-
els and Kalman filtering can be found in [117], which this section [117] Särkkä, Bayesian filtering and smooth-

ing, 2013closely follows.

State Space Models

A probabilistic state space model is a Markov-model defined by the initial
state distribution p(x0) and a sequence of conditional probabilities:

xt ∼ p(xt|xt−1) dynamic model (12a)

yt ∼ p(yt|xt) measurement model (12b)

The vector xt ∈ RD is the hidden state of the system at iteration t, and
yt ∈ RDy is a possibly noisy measurement related to this state. Since
the model is Markov9, Eq. 12 together with an initial distribution p(x0)

9 This means that the distribution of
xt is independent of past xi , i =
0, . . . , t− 2, given the preceding one, i. e.,
p(xt|x0,...,t−1) = p(xt|xt−1).

fully describes the joint probability distribution over all xt, t = 0, . . . , T,
and yt, t = 1, . . . , T. The discrete-time filtering equations are recursively
given by the predictive marginal distributions p(xt+1|y1,...,t) and updated

marginal distributions p(xt|y1,...,t). The discrete-time smoothing equa-

tions are given by the marginal distributions p(xt|y1,...,T) conditioned
on all observations up to time step T.

1.4.1 Kalman Filter
Given a state space model as in Eq. 12, the Kalman filter is the closed
form solution of the discrete-time filtering equations for linear dynam-
ics and linear measurements with additive Gaussian disturbances, and
Gaussian initial condition:

x0 ∼ N (m0, P0) (13a)

xt+1 = Atxt + ηt, ηt ∼ N (0, Qt) dynamic model (13b)

yt = Htxt + νt, νt ∼ N (0, Rt) measurement model (13c)

At ∈ RD×D is called the transition matrix, since it transitions the old
state xt into the deterministic part of the new one xt+1, and Ht ∈
RDy×D is called the measurement matrix, since it maps the state xt onto

WIENER PROCESSES & KALMAN FILTERS | 23

the space where the measurement yt happens. Qt and Rt are the
covariances of the diffusion and the measurement noise respectively.
Under these assumptions the probabilities of Eq.12 as well as the
filtering equations can be rephrased as:

p(x0) = N (x0; m0, P0)

p(xt+1|xt) = N (xt+1; Atxt, Qt)

p(xt+1|y1,...,t) =
∫

p(xt+1|xt)p(xt|y1,...,t)dxt = N (xt+1; mt+1−, Pt+1−)

p(yt+1|xt+1) = N (yt+1; Ht+1xt+1, Rt+1)

p(xt+1|y1,...,t+1) ∝ p(yt+1|xt+1)p(xt+1|y1,...,t) = N (xt+1; mt+1, Pt+1).

(14)

All expressions in Eq. 14 are analytic for Gaussian distributions. The
explicit forms for the means and covariances divide into two predictive

equations for the mean vector mt+1− ∈ RD and covariance matrix
Pt+1− ∈ RD×D, and two update equations for mt+1 ∈ RD and Pt+1 ∈
RD×D. They have the general forms:10

10 A more common way to denote the
mean an covariance of the predictive
state is m−t+1 and P−t+1, instead of mt+1−
and Pt+1−. So, this slightly awkward
sub-script is introduced, because in later
chapters we will also heavily use super-
scripts in addition.

mt+1− = Atmt

Pt+1− = AtPt A⊺
t + Qt

mt+1 = mt+1− + Pt+1−H⊺
t+1[Ht+1Pt+1−H⊺

t+1 + Rt+1]
−1[yt+1 − Ht+1mt+1−]

Pt+1 = Pt+1− − Pt+1−H⊺
t+1[Ht+1Pt+1−H⊺

t+1 + Rt+1]
−1Ht+1Pt+1−.

(15)

Equations 15 are commonly known as the Kalman filter equations [72]. [72] Kalman, “A New Approach to Lin-
ear Filtering and Prediction Problems,”
1960

Often, the last two rows of Eq. 15 are presented in a slightly different
way:

Gt+1 = Ht+1Pt+1−H⊺
t+1 + Rt+1

gt+1 = Pt+1−H⊺
t+1G−1

t+1

mt+1 = [I − gt+1Ht+1]mt+1− + gt+1yt+1

Pt+1 = [I − gt+1Ht+1]Pt+1−

(16)

where Gt+1 is the innovation covariance and gt+1 is the Kalman gain. The
gain encodes how much the current predictive estimator Ht+1mt+1− is
trusted in comparison to the noisy measurement yt+1. If observations
yt+1 are noise free (Rt+1 = 0), then the observed part of the state xt+1

collapses on Ht+1mt+1 = yt+1 with Ht+1Pt+1H⊺
t+1 = 0.

Connection to Stochastic Differential Equations

A linear, time-invariant stochastic differential equation (sde) is of the
form:

dx = (Fx)dz + Ldβ. (17)

The first term (Fx)dz is called the drift and describes the deterministic
dynamics of the sde; Ldβ is called diffusion and encodes the stochastic

24 | GAUSSIAN PROCESS REGRESSION

contribution; β is a Wiener process with intensity q that will be defined
in Section 1.4.2. The solution of this sde with initial distribution
xz0 ∼ N (mz0 , Pz0) is a Gaussian process (e. g., [73, § 2.9 and 5.6] or [73] Karatzas and Shreve, Brownian Mo-

tion and Stochastic Calculus, 1991[118, Theorem 2.7]) with mean m(z) and covariance P(z, z0), for z ≥ z0:

m(z) = exp (F∆z)mz0 (18a)

P(z, z0) = exp (F∆z) Pz0 exp⊺ (F∆z) +
∫ z

z0

exp(F(z− κ))LqL⊺ exp⊺(F(z− κ))dκ. (18b)

The difference ∆z = z− z0 is the traveled path, often also called ‘time’.
The forms of F, L and q thus define the forms of Q and A of Eq. 13; in [118] Särkkä, “Recursive Bayesian In-

ference on Stochastic Differential Equa-
tions,” 2006

particular

xt+1 = Atxt + ηt, ηt ∼ N (0, Qt)

At = exp(F∆z) =
∞

∑
k=0

(F∆z)k

k!

Qt =
∫ z

z0

exp(F(z− κ))LqL⊺ exp⊺(F(z− κ))dκ,

(19)

where xt := xz0 is the current state and xt+1 := xz the predicted state.
The dynamic model of the Kalman filter is thus the exact discretized

solution of the time-invariant linear sde of Eq. 17, even if the underly-
ing dynamics are continuous. The Kalman filter predictive equations
compute the marginal means and the covariances of the exact solution.

Marginal Likelihood

Maximum marginal likelihood estimation is a way of fitting a parame-
trized model to data. Suppose that observations occur in a finite
interval of time steps 1, . . . , T. Eqs. 13, 17 and 19 define a class of
probabilistic models which is parameterized by θ := {F, L, q, R1,...,T}.
The marginal11 likelihood or evidence pθ(y1,...T) for one of these models 11 The term ‘marginal’ is used to

distinguish from the likelihood
pθ(y1,...,yT |x0,...,yT), x ∼ GP θ . Note that
both p as well as GP can depend on
(parts of) θ.

is the integral

pθ(y1,...T) =
∫

p(y1, . . . , yT |x0, . . . , xT)p(x0, . . . , xT)dx0 . . . dxT . (20)

This is the probability of observing y1,...,T , given that the filtering
model, indexed by θ, is the true data-generating process The subscript
θ, omitted in other places, emphasizes this dependence. Usually Eq. 20
involves solving a non-trivial integral, but in the Kalman filtering
framework it is analytic and cheap since the model is Markov and

Gaussian:

pθ(y1,...T) =
∫ T

∏
t=1

p(yt|xt)p(xt|xt−1)p(x0)dxtdx0

=
∫ T

∏
t=1
N (yt; Htxt, Rt)N (xt; Atxt−1, Qt)N (x0; m0, P0)dxtdx0 =

T

∏
t=1
N (yt; Htmt−, HtPt−H⊺

t + Rt).

(21)

WIENER PROCESSES & KALMAN FILTERS | 25

Thus the logarithmic marginal likelihood becomes:12

12 The logarithm is a monotonic func-
tion and does not alter the location of
optima. It is usually used since it is nu-
merically more stable than pθ itself.

log pθ(y1,...T) = −1
2

T

∑
t=1

[
(yt − Htmt−)⊺G−1

t (yt − Htmt−) + log|Gt|
]
+ const. (22)

Eq. 22 mostly contains terms which are being computed already in
the prediction and update step of the Kalman filter (Eq. 15, 16), thus
tracking pθ(y1,...,T) during filtering only adds minimal computational
overhead (log|Gt| is cheap since G−1

t is computed anyway). There is an
intuitive explanation to both terms in Eq. 22: The first one, quadratic in
(yt − Htmt−), roughly speaking tries to fit the mean prediction Htmt−
of the model as close as possible to the observation yt (bias term); the
second term log|Gt| is related to the differential entropy of the filtering
distribution and enforces low variance in the prediction.

Figure 10 shows a simple example of a one-dimensional Gaussian
random walk (F = 0, L, H = 1, R1,2 given) with two noisy observations
y1,2. The top plot shows log pθ(y1,2) versus the only free parameter
q ∈ R+. The bottom plot shows the observations yt ± R1/2

t () as
well as filtering distributions for three different q: The model with a
large q () fits the observations well, but is under-confident, while
the model with a small q () does not fit the observations well
and is over-confident at the same time. The max-marginal likelihood
estimator for q yields a model () which is a trade-off between fitting
the datapoints well without sacrificing too much predictive power.

0 q

lo
g(

p q
(y

1,
...

,T
))

0 z
x

Figure 10: Maximum marginal likeli-
hood. Top: log marginal likelihood ver-
sus different values of intensity q (),
composed of a variance part (), and
a bias part (). Bottom: filters (mean
solid, ± 1 standard deviation shaded)
for the best fit (), and too small/too
large q fits (/). Correspond-
ing q indicated in the top plot as verti-
cal lines; observations y with error bars
±R1/2 ().

The maximum marginal likelihood estimator θ̂ is the global maxi-
mizer of Eq. 22. In some (rare) cases θ̂ can even be found analytically.
Alternatively, a gradient based optimizer can be used, if the gradient
with respect to θ is available. This is usually straightforward and
quite user-friendly, but it requires multiple runs of the filter (one after
each update of the outer optimization loop) and also only finds local
maxima of log pθ(y1,...T). If the dimensionality of θ is not too large,
other approaches include Bayesian optimization (bo) which strategi-
cally searches for parameters with a large marginal likelihood (§ 4.1).
All three approaches are not applicable if the filter needs to adapt its
parameters θ online, i. e., while it is running, which is the case that is
mostly considered in this thesis.

Smoother

1 t T

Figure 11: Illustration of predicting,
filtering and smoothing. State esti-
mate (), observations (). Top:
smoothing. Middle: filtering. Bottom:
prediction. Figure inspired by Figure 1.7
in [117].

A filter computes the solution of the discrete-time filtering equations.
These are the marginal probabilities of the state xt conditioned only
on the history as well as the current observation y1,...,t, meaning that
possible future observations yt+1,...,T do not affect older states. This is
especially useful when only the distribution of latest state is needed,
e. g., in online applications, since it depends on all available data up to
that point in time. The smoother computes the solution of the discrete-

26 | GAUSSIAN PROCESS REGRESSION

time smoothing equations. It modifies the filtered solution such that [110] Rauch, Striebel, and Tung, “Maxi-
mum likelihood estimates of linear dy-
namic systems,” 1965

[36] Einstein, “Über die von der moleku-
larkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen,”
1905

the state xt is conditioned on all, also future observations (illustration
in Figure 11). This is useful if the marginal probabilities of each xt

conditioned on all observations y1,...T is needed, e. g., in regression
tasks, but it also requires additional computations. They are about
the same cost as the filtering run with complexity linear in T. In
particular, given the filtered predictive and updated probabilities with
means and covariances as in Eq. 15 we get the backwards recursion
for the smoothed marginal probabilities p(xt|y1,...T) = N (xt; ms

t , Ps
t):

Ãt = Pt A⊺
t P−1

t+1−
ms

t = mt + Ãt
(
ms

t+1 −mt+1−
)

Ps
t = Pt + Ãt

(
Ps

t+1 − Pt+1−
)

Ã⊺
t .

(23)

The recursion is initialized with ms
T = mT and Ps

T = PT since the last
distribution p(xT |y1,...,T) of the filtering state is already conditioned
on all data and is thus equivalent to its smoothed distribution. Eq. 23
is commonly known as the Rauch–Tung–Striebel smoother [110]. Its
derivation is based on the Markov property that p(xt|xt+1, y1,...,T) =

p(xt|xt+1, y1,...,t).

x
x

z

x

Figure 12: Wiener process/Filtering and
smoothing. Mean (), ±1 stan-
dard deviation (), 5 samples (),
observations y with error bars ±R1/2

(). Top: prior. Middle: filter. Bot-
tom: posterior/smoother.

1.4.2 Wiener Process
A Wiener process (wp) is a stochastic process x with continuous sam-
ple paths, x(0) = 0, and independent increments x(z + δz) − x(z)
for every δz that are Gaussian distributed with zero mean and vari-
ance δz. A proper mathematical definition can be found e. g., in [73,
§ 2.1]. The Wiener process β(z) is a special Gaussian process [73,

[73] Karatzas and Shreve, Brownian Mo-

tion and Stochastic Calculus, 1991

§ 2.9]. It is also the solution to the arguably most basic sde of Eq. 17:
A one-dimensional state x ∈ R, no dynamic component (F = 0), unit
dispersion (L = 1) and initial condition x(0) = 0; thus x(z) = β(z).
In fact, this is how the stochastic part of the sde was defined in
the first place. Let us for now denote this simple one-dimensional
Wiener process with β1(z). A D-dimensional correlated Wiener pro-
cess with positive definite intensity matrix q ∈ RD×D is of the form
x(z) = q

1
2 β(z), where β(z) ∈ RD is a vector of D independent one-

dimensional Wiener processes β1(z), and q
1
2 is the square root of the

matrix q. For simplicity, we will use the word ‘Wiener process’ also for
the D-dimensional correlated Wiener process. Especially in physics
the Wiener process is also known as Brownian motion.13

13 Named after the botanist Robert
Brown. One of the first mathematical
descriptions include one of Albert Ein-
stein’s famous 1905-papers “Über die
von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in
ruhenden Flüssigkeiten suspendierten
Teilchen” [36], where he mentions the
‘Brownian molecular movement’ but
could not decide if his description of
molecular kinetics matches those of the,
at that time, heuristic notion of Brown-
ian motion; even earlier mentions were
done e. g., by the Danish astronomer
Thorvald N. Thiele in 1880.

The corresponding kernel function k(z, z′) = min(z, z′) can be
found by computing the covariance between two arbitrary outputs
x(z) and x(z′). This means that the Wiener process can be represented
either as a state space model, or by a gp with kernel function k. The
solutions for the prior and posterior induced by the vanilla ‘kernel’-

WIENER PROCESSES & KALMAN FILTERS | 27

view and the state space view are identical for initial condition x0 = 0,
but the algorithmic complexity in the number of datapoints M of the
latter is drastically reduced: Linear cost in M instead of cubic cost in
M. This is due to the fact that, although the kernel-Gram matrix Σxx

is dense, its inverse is block-tridiagonal and is represented explicitly
in the state space view. The filtering model thus never constructs
Σxx and Σyy explicitly but works directly with the block-tridiagonal
inverses [8], [50], [51]. Vanilla gp-inference on the other hand sim- [8] Barfoot, Tong, and Särkkä, “Batch

Continuous-Time Trajectory Estimation
as Exactly Sparse Gaussian Process Re-
gression,” 2014

[50] Grigorievskiy and Karhunen,
“Gaussian Process Kernels for Popular
State-Space Time Series Models,” 2016

[51] Grigorievskiy, Lawrence, and
Särkkä, “Parallelizable sparse inverse
formulation Gaussian processes (Sp-
InGP),” 2016

ply does not exploit this structure. Practical approaches and work
on mapping Gaussian processes to state space models, exact or with
approximations, include e. g., [54], [8], [50], [129], and [51].

[54] Hartikainen and Särkkä, “Kalman
filtering and smoothing solutions to tem-
poral Gaussian process regression mod-
els,” 2010

[129] Solin and Särkkä, “Explicit link be-
tween periodic covariance functions and
state space models,” 2014

Figure 12 illustrates the Wiener process: The top and bottom plot
show the prior and posterior respectively, again for equally spaced
and sorted z on the shown interval (symbols and colors as in Figure 9).
The middle plot shows the filtering distribution where successive xt

are only conditioned on observations y up to this point in time zt. The
sampled functions are continuous but non-differentiable (by construc-
tion), but the mean function is constant for the prior and piece-wise

linear (between observations) for the posterior. This is intuitive, since
the drift is zero (F = 0), thus the transition matrix A = exp(0) = 1 is
the unity operator and the independent Gaussian increments are zero
in expectation. The standard deviation (std) of the prior grows with
the square root of z because the diffusion variance grows linearly with
z: Q =

∫ z
z0

exp(0)2dκ = z− z0.

Integrated Wiener Process

The integrated Wiener process (iwp) is the time-integral of the Wiener
process. Since integration is a linear operator, the iwp is also a Gaus-
sian process. Its kernel function is the kernel function of the Wiener
process integrated in both arguments:

k(z, z′) =
1
3

min3(z, z′) +
1
2

⏐⏐z− z′
⏐⏐min2(z, z′). (24)

The corresponding two-dimensional state x = [x f , x f ′]⊺ of the state
space model represents a function x f and its time-derivative x f ′ which
are correlated through the dynamic model. The corresponding sde is:

d

⎡⎣ x f

x f ′

⎤⎦ =

⎡⎣0 1

0 0

⎤⎦⎡⎣ x f

x f ′

⎤⎦dz +

⎡⎣0

1

⎤⎦dβ =

⎡⎣x f ′dz

dβ

⎤⎦ . (25)

The gradient x f ′ still evolves like a Wiener process and the func-
tion value x f is deterministically connected to it through the integral
(x f ′dz). From Eq. 25 we can also read off F = [[0, 1]⊺[0, 0]⊺] and

28 | GAUSSIAN PROCESS REGRESSION

L = [0, 1]⊺. The drift matrix F is nilpotent of order two (F2 = 0), thus
the matrix exponential in At and Qt is analytic:

At = exp(F∆z) =
∞

∑
k=0

(F∆z)k

k!
= I + F∆z =

⎡⎣1 ∆z

0 1

⎤⎦ .

Qt =
∫ z

z0

⎡⎣(z− κ)

1

⎤⎦ q
[
(z− κ) 1

]
dκ = q

⎡⎣ 1
3 ∆z3 1

2 ∆z2

1
2 ∆z2 ∆z

⎤⎦ , with ∆z = z− z0 = zt+1 − zt.

(26)

The marginal of the derivative block x f ′ again evolves like a Wiener
process with constant mean, std ∝ z

1
2 . The marginal of x f evolves like

an integrated Wiener process with standard deviation proportional to
z

3
2 and a mean function that is linear for the prior and piece-wise cubic

(between observations) for the posterior. Again this is intuitive since
the drift term is linear thus the transitions matrix At is the identity
operator plus a linear contribution proportional to the derivative.

Figure 13 illustrates the integrated Wiener process: The top and
bottom plots show the prior and posterior respectively (colors as in
Figure 12). The samples [x f , x f ′] are jointly drawn from the iwp and
represent once-differentiable functions: The differentiated parts of the
samples x f ′ are again continuous but non-differentiable, the function
value parts x f are smooth as can be seen from the figure.

x
f

z

x
f′

Figure 13: Integrated Wiener process.
Mean (), ±1 standard deviation
(), 5 samples (), observations y
with error bars±R1/2 (). Top: poste-
rior marginal on function value. Bottom:
posterior marginal on derivative.

In the state space notation it is also straightforward to include
partly observed states and differing observation noise. In particu-
lar in Figure 13 the first two datapoints only observe the derivative:
H1 = H2 = [0, 1]⊺ with noise free (R1 = 0) y1 ∈ R, and noisy (R2 > 0)
y2 ∈ R, the third datapoint observes the whole state: H3 = I, y3 ∈ R2,
but noise corrupted R3 = diag([R f

3 , R f ′
3]) ∈ R2×2.

The filtering formulation of probabilistic state space models and the
connection to Gaussian processes will be used heavily in Chapters 8
and 9.

2Empirical RiskMinimization

Given some dataset D containing pairs of input x ∈ X and tar-

get y ∈ Y , the task of classification is to learn some general,
predictive law between the input and categorical target-space of the
data-distribution. The same holds for regression, where the targets are
real-valued. A common approach is to choose a class of functional
relationships fw(x), indexed by parameters w, as a surrogate for this
map, as well as a loss ℓ f (y) which penalizes discrepancies between
the predictor fw(x) and the targets y. Then, one function fw∗(x) is
selected by minimizing the empirical risk (Section 2.1), which is the
expected loss over the empirical distribution defined by the dataset
D. A powerful as well as algebraically appealing class of functional
relationships fw(x), are artificial neural networks (Section 2.2) which
exhibit a particular structure in their gradients ∇ fw(x) that enables
their efficient computation, and thus sped-up optimization of the pa-
rameters w. Sections 2.3 and 2.4 introduce some of the most common
iterative solvers for this optimization problem, first for exact, and then
for noise corrupted evaluations of the empirical risk. Some of the text
is based on the introductory chapters of the publications listed at the
end of Chapter 0.

2.1 Risk and Empirical Risk

p

d

p

Figure 14: Illustration of empirical dis-
tribution Q̂ = 1

|D| ∑d∈D δ(d). Top: The
point masses δ(d) are indicated as ver-
tical bars (). Q̂ is used to approxi-
mate the true data-distribution Q (,
shown as pdf in this sketch). Espe-
cially areas of large ‘gaps’ between point
masses (but non-trivial density q) are not
modeled well by Q̂. Bottom: Same as
top plot but for a mini-batchB ⊂ Dwith
|B| ≈ 0.1|D|. The approximation is even
coarser, especially rare samples and low
density regions are not represented well.

Many contemporary machine learning problems involve minimizing
an expected loss (risk) of the form

L(w) = Ed∼Q [ℓ(fw(x), y)] , risk (27)

where w ∈ RN is the parameter vector, and ℓ(fw(x), d) quantifies how
well w performs on datapoint d = (x, y) ∈ X ×Y .1 In practice, though

1 Depending on which dependence we
want to emphasize we will use short-
hands like ℓ f (y), ℓw, ℓ f , or ℓ(f) for the
loss as well. The same holds for the func-
tion f .

it is often not possible to compute the expectation in 27 precisely,
and instead the empirical risk, define by a dataset D of size |D|, is
optimized

LD(w) =
1
|D| ∑

d∈D
ℓ(fw(x), y). empirical risk (28)

The datapoints contained inD are assumed to be independent samples
from the (usually unknown) data-distribution Q (Figure 14). Likewise

30 | EMPIRICAL RISK MINIMIZATION

the gradient of the risk∇L(w) = Ed∼Q [∇ℓ(fw(x), y)] with respect to
w can be approximated by

∇LD(w) =
1
|D| ∑

d∈D
∇ℓ(fw(x), y). (29)

When the size |D| of the dataset is large, even computing LD might
pose challenging, and ∇L is approximated with an even coarser esti-
mator ∇LB by sub-sampling a mini-batch B ⊂ D

∇LB(w) =
1
|B| ∑

d∈B
∇ℓ(fw(x), y). (30)

The number of elements |B| in B is referred to as the mini-batch size.
We see here already that there is no fundamental difference between
choosing ∇LD or ∇LB as local (i. e., for a given w) estimator for ∇L.
Both of them are noisy, unbiased estimators of the same quantity using
a dataset which is sampled i. i. d. from the true data-distribution. The
former though is much more precise, meaning that its variance is
reduced by a factor of (|D|/|B|)−1/2. This will be further discussed in
Chapter 5.

2.2 Artificial Neural Networks
An artificial neural network2 is a function fw(x) parametrized by w ∈

2 The name ‘neural network’ was moti-
vated by the structure of fw(x) which
was originally designed after the brain,
where neurons (nodes) are connected to
each other through neural pathways/
weights of varying strength, that ideally
can be learned by observing examples.
The literature is vast, starting approxi-
mately in the 1970s in the machine learn-
ing community, so the citations below
only capture some of the contributions.RN which maps from some input space x ∈ X ⊆ Rn0 to a target space

y ∈ Y ⊆ RnL . In addition, fw(x) is a concatenation of alternating
affine maps with linear transformations Wl (weights), translations bl

(biases), and non-linear maps σl ; e. g., for one linear, and one non-
linear map:

fw(x) = σ1(W1x + b1), w = {W1, b1}. (31)

There is a variety of different types of neural networks, which differ in [48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016the structure of how linear and non-linear maps are arranged. These

include rather classic ones like perceptrons or multi-layer perceptrons
[114] [65], and more recent developments like convolutional neural [114] Rosenblatt, “The Perceptron–A Per-

ceiving and Recognizing Automaton,”
1957

[65] Hinton and Sejnowski, “Optimal
Perceptual Inference,” 1983

networks (cnn) [83], or recurrent neural networks [68] [66]. Also lo-

[83] LeCun et al., “Object Recognition
with Gradient-Based Learning,” 1999

[68] Hopfield, “Neural networks and
physical systems with emergent collec-
tive computational abilities,” 1982

[66] Hochreiter and Schmidhuber,
“Long Short-Term Memory,” 1997

gistic regression is a simple instance of a neural network3 that even

3 Precisely, that is for fw(x) as in Eq. 31,
σ1 is the sigmoidal function, ℓ f (y) the
cross-entropy loss, and y ∈ {0, 1}.

has a convex optimization surface (in general, neural networks are
non-convex functions and yield non-convex risks). A recent overview
on networks and developments can e. g., be found in [48]. The ex-
perimental part of this thesis mostly considers logistic regressors and
multi-layer perceptrons (mlps). The next section will thus focus sim-
ply on the computations involved in finding fw(x) and ∇ fw(x) of
fully-connected nets. These restrictions do not mean, however, that
the results obtained in Parts II, III, and IV can not in the future be

ARTIFICIAL NEURAL NETWORKS | 31

extended to cnns or the like, and we will refer to (ongoing) related
works towards that direction throughout the text.

2.2.1 Multi-Layer Perceptrons

Forward Pass

In general, for L linear and L non-linear maps, fw(x) can be computed
recursively for mini-batch-inputs X ∈ Rn0×|B| as:

a0 = X first activation is equal to input (32a)

zl = W⊺
l al−1 + bl linear layer (32b)

al = σl(zl) non-linear layer, activations (32c)

fw = aL = σL(zL) last activation is equal to output (32d)

ℓ f = ℓ(fw, Y) individual losses (32e)

LB =
1
|B| ℓ

⊺
f 1|B|×1 mean loss of mini-batch (32f)

The parameters w are the set of all weights and biases w = {W1, bl , . . . , [11] Bergstra et al., “Algorithms for
hyper-parameter optimization,” 2011

[69] Hutter, Hoos, and Leyton-Brown,
“Sequential model-based optimization
for general algorithm configuration,”
2011

[127] Snoek, Larochelle, and Adams,
“Practical Bayesian Optimization of Ma-
chine Learning Algorithms,” 2012

[84] Li et al., “Hyperband: A Novel
Bandit-Based Approach to Hyperparam-
eter Optimization,” 2016

WL, bL}. Computing one or multiple function values fw(X) as in Eq. 32
is called a forward pass. A collection of variables and maps of a single
index l that only involve affine transformations (Wl , bt, zl) is loosely
called a linear layer, while a collection involving a non-linear transform
(σl , al) is called a non-linear layer. All variables which have no direct
connection to the input x or the output fw are called hidden layers, the
remaining two layers are called input and output layer. Depending on
the number of hidden layers, a network is vaguely called deep (many)
or shallow (none or little). The sizes of all matrices of Eq. 32, except
input and output, are fixed by the mini-batch size |B| as well as the
user-defined architecture of the network; they will be denoted as nl

with Wl ∈ Rnl−1×nl and bl , zl , al ∈ Rnl×|B|.4 4 Finding the right architecture is an-
other area of research, which will not
feature here. Popular recent approaches
include systematic automated hyper-
parameter searches e. g., by Bayesian op-
timization [11] [69] [127] [84].

Backpropagation

The recursive structure of Eq. 32 immensely simplifies the compu-
tation of fw(X) but more importantly of the gradient ∇ fw(x) with
respect to w because (analogously to the forward pass in Eq. 32) the

32 | EMPIRICAL RISK MINIMIZATION

chain rule for computing ∇ fw(x) decomposes into successive low-
dimensional matrix vector products:

δL =
∂ℓ f

∂ fw
output residual (33a)

∇ℓL = aL−1δ⊺L output gradient (33b)

δl = (Wl+1δl+1)⊙
∂al(zl)

∂zl
residual of layer l (33c)

∇ℓl = al−1δ⊺l gradient of layer l (33d)

where δl ∈ Rnl×|B| and∇ℓl ∈ Rnl−1×nl . For biases bl , the gradient per
layer is ∇ℓl = 11×|B|δ

⊺
l . Eq. 33 is also called backpropagation [116] [81]. [116] Rumelhart, Hinton, and Williams,

“Learning representations by back-
propagating errors,” 1986

[81] LeCun et al., “Efficient BackProp,”
1998

As in Eq. 32 the matrix-vector products are of the size of the mini-batch
as well as the weights, biases and activations of the individual layers,
and not the whole net, and can be computed efficiently and in parallel
on CPUs and GPUs.

Losses

The loss ℓ f (y) = ℓ(fw(x), y) encodes how much a misfit of fw(x)
to the corresponding target y is penalized, or, in other words, how
well fw(x) performs in hitting the target y. The choice of the loss is
usually up to the user, a typical one for regression problems is the
squared loss ℓ f (y) = 1

2 (fw(x)− y)2 which quadratically penalizes mis-
fits of fw(w) on y. A usual choice for binary classification tasks is the
cross-entropy loss ℓ f (y) = −y log(fw(x))− (1− y) log(1− fw(x)), for
targets y ∈ {0, 1}. Both can be interpreted as negative log-likelihoods,
− log p(y| fw(x)) of the parameters w, or as conditional distributions
of y given fw(x): a Gaussian with mean fw(x) and arbitrary finite
variance for the squared loss, and Bernoulli with parameter fw(x) for
the cross-entropy loss. Thus training an mlp can sometimes be seen
as finding the maximum likelihood estimator of the parameters of a
probabilistic discriminative model. Not all losses though have this
interpretability (only if the integral of exp [−ℓ f (y)] over y is finite).

Multi-class classification tasks either need non-binary targets y (if
the target classes exhibit a natural order), or binary vectors y ∈ RnL

which contain 1 only for the true class label and 0 otherwise. In
addition, it is sometimes useful to move the last non-linear layer of
the net, and regard it as part of the loss-function instead since it might
benefit certain optimizer (Section 2.3).

ARTIFICIAL NEURAL NETWORKS | 33

Activation Functions

Activation functions are the non-linear maps σl between two linear
layers. Examples include the tangens hyperbolicus σ(z) = tanh(z) ∈
(−1, 1), or the sigmoidal function

σ(z) =
1

1 + exp (−z)
=

1
2
+

1
2

tanh
(z

2

)
∈ (0, 1). (34)

Both of them saturate for large absolute values of z. This is beneficial
on the one hand, since it can be ensured that the input to each linear
layer ranges between certain digits. On the other hand, once saturated,
it is hard for the optimizer to ‘move away’ from the saturated areas
again, since gradients become very small, too. A somewhat compro-
mise is the rectifier (ReLU-activation, for rectified linear unit) where
σ(z) = zI[z], with I[z] the indicator function.

An activation which is often used in the output layer for multi-class
classification is the softmax-function σi

L(z) = exp (−zi
L)/∑

nL
i=1 exp (−zi

L) ∈
(0, 1). In contrast to the others, it couples the activations of the layer
and can thus be interpreted as categorical distribution of the classes.
Figure 15 shows the sigmoidal and the ReLU-activation function ()
as well as their derivatives ∂σ(z)/∂z (), which are needed for com-
puting Eq. 33c.

0

0.5

1

si
gm

oi
d

−4 −2 0 2 4

0

2

4

z

re
ct

ifi
er

Figure 15: Sigmoidal and ReLU-
activation function (top and bottom re-
spectively). Function values () and
gradients (). The derivative of the
sigmoidal is σ(z)′ = σ(z)(1− σ(z)) and
the one of ReLu is σ(z)′ = I[z].

2.2.2 Overfitting, Regularization, and Generalization
Very flexible, expressive models tend to overfit, and in extreme cases
only memorize the exact input-target mapping of the finite dataset
they were trained on. They then loose the ability to generalize. This is
usually circumvented by a variety of regularization techniques which
involve model design, data selection and augmentation, but also the
optimizer itself. There is an up- and a down-side to the latter: Entan-
gling the optimizer formally and algorithmically with model design,
can lead to less clear answers to the question, what exactly contributed
to better or worse performance, and why. On the other hand, it en-
ables exploration of the unknown error surfaces on the fly, and the
optimizer can attenuate possible design flaws.

If the loss function can be interpreted as negative log-likelihood,
optimizing for the weights can be seen as finding a maximum likeli-
hood estimator which is known to potentially overfit for a (virtually
always) finite amount of data [13] § 1.1. Since the topic of over-fitting [13] Bishop, Pattern Recognition and Ma-

chine Learning, 2006

[48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016

will be picked up later again in Chapter 6, we will introduce some
of the most prominent regularization techniques here, which can be
roughly grouped into i) changes about the model, i. e., in fw or ℓ f ,
ii) changes in the empirical distribution Q̂, iii) changes in the opti-
mization routine. A recent overview can be found in [48] § 7. The

34 | EMPIRICAL RISK MINIMIZATION

following subsections mostly focus on regularization in classification
tasks, the major application area of Chapters II, III, and IV.5 5 Another issue which will not be fea-

tured here is under-fitting, when greedy
optimizers converge to a sub-optimal lo-
cal minimum or get stuck on a stationary
saddle point. Currently it is believed
that saddle points are the bigger practi-
cal concern for very deep networks, and
that local minima with a high loss rather
occur in shallow architecture. For a dis-
cussion see e.g. [48] § 8.2 or [26].

[26] Dauphin et al., “Identifying and
Attacking the Saddle Point Problem
in High-dimensional Non-convex Opti-
mization,” 2014

[48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016

Changing the Model

Additive terms to the loss ℓ change how weights6 are penalized.

6 We will use the term ‘weights’ also to
denote all parameters w, and not only
the elements of the weight matrices Wl .
The distinction is not essential for the
made arguments.

A term proportional to the squared Euclidean norm of the weighs
∥w∥2 (also sometimes called ‘weight decay’ [78] and more sloppily

[78] Krogh and Hertz, “A simple weight
decay can improve generalization,” 1991

‘Tikhonov regularization’, or ‘ridge regression’) pulls weights towards
zero, while the 1-norm ∑i|wi| also enforces sparsity (the latter is also
called the lasso-regularizer [134]). The idea behind the 2-norm is that

[134] Tibshirani, “Regression shrinkage
and selection via the lasso,” 1996

large weights tend to overfit more because they represent more flex-
ible function, while the 1-norm reduces complexity by reducing the
number of effective parameters. Additionally, both can be interpreted
as adding a prior probability on the weights: a zero-mean Gaussian
for the Euclidean norm and Laplace for the 1-norm. Figure 16 shows
the unit-circle of p-norms for p = 0.5, 1, 2, and 10 from ‘inner’ to
‘outer’. Unit-norm-vectors for p = 0.5, 1 tend to lie close to an axis in
comparison to p = 2, 10, thus sparsity is enforced.

−1 0 1
−1

0

1

Figure 16: Unit-circle of the p-norm for
a two-dimensional vector. From inner to
outer: p = 0.5, 1, 2, and 10.

Another way to regularize, is to once in a while drop (non-output)
activations or weights by setting them to zero. The former is called
‘Dropout’ [63] [131] and the latter ’DropConnect’ [139]. Effectively

[63] Hinton et al., “Improving neural net-
works by preventing co-adaptation of
feature detectors,” 2012

[131] Srivastava et al., “Dropout: A Sim-
ple Way to Prevent Neural Networks
from Overfitting,” 2014

[139] Wan et al., “Regularization of Neu-
ral Networks using DropConnect,” 2013

both procedures reduce the number of active connections, and hence
the model complexity. At each iteration, a different random sub-model
is updated with a random subset of the data, thus it can be seen as
training all possible sub-models (weighted by the probability that they
occur) as done in bagging, but all of them sharing the same weights.

A more involved change in the model is ‘batchNorm’ [70], which

[70] Ioffe and Szegedy, “Batch Normal-
ization: Accelerating Deep Network
Training by Reducing Internal Covariate
Shift,” 2015

adds two additional learnable parameters per activation to the existing
weights w, as to minimize the shift in input distribution that occurs
when the weights of the preceding layer change. In contrast to a
vanilla neural network, these additional batchNorm-transformations
tie together the elements in a mini-batch. BatchNorm was initially
designed to help avoid saturated gradients, but it also does seem to
have a regularizing effect. Although less well understood, a possible
explanation is that, similar to Dropout, more activations lie close to
zero, which lead to less extreme values in the weights w.

Changing the Dataset

Data augmentation techniques approach the problem from the op-
posite point of view: If there is too little data to match the model-
complexity, increase it. This is only possible if something is known

about the gaps that need to be filled in the data-distribution, for ex-
ample if there are transformations of the input that should leave the
output invariant. Prominent examples for image-inputs are rotations,

ARTIFICIAL NEURAL NETWORKS | 35

translations, stretching or scaling of the inputs as to represent more
possible variations of the same example.

An opposite approach is to reduce the differences between individ-
ual datapoints (not classes), for example by injecting noise of the same
scale that ‘blurs out’ irregularities, applied to the inputs but also the
hidden units or the weights [124] [137]. A structured approach in case [124] Sietsma and Dow, “Creating arti-

ficial neural networks that generalize,”
1991

[137] Vincent et al., “Extracting and com-
posing robust features with denoising
autoencoders,” 2008

of RGB-images, is contrast and colorspace augmentation which mim-
ics different external conditions, such as light exposure, for pictures of
the same content [77]. All of the above (besides choosing the dataset

[77] Krizhevsky, Sutskever, and Hinton,
“Imagenet classification with deep con-
volutional neural networks,” 2012

itself) bias toward the artificially created data, but the effect might be
affordable if a better generalization can be achieved thereby.

A third approach is importance sampling, or weighing of data-
points. This locally changes the empirical distribution of the data,
or weighs individual datapoints non-uniformly [145] [23]. The as- [145] Zhao and Zhang, “Stochastic Op-

timization with Importance Sampling,”
2014

[23] Chang, Learned-Miller, and McCal-
lum, “Active Bias: Training More Accu-
rate Neural Networks by Emphasizing
High Variance Samples,” 2017

sumption here is that the collected dataset does not represent the
data-distribution well enough, or that certain classes or examples are
harder to learn than others and thus need to be shown more often
to the optimization machine. Though not originally motivated as a
regularizer it helps to learn easier and harder input-target relations at
the same speed, which then yields better generalization. In contrast to
a pre-processing step, this approach is formally and algorithmically
dependent on the optimizer.

Adapting the Optimizer

[24] Chaudhari et al., “Entropy-SGD: Bi-
asing Gradient Descent Into Wide Val-
leys,” 2016

[87] Maclaurin, Duvenaud, and Adams,
“Early Stopping is Nonparametric Varia-
tional Inference,” 2015

[94] Morgan and Bourlard, “Generaliza-
tion and parameter estimation in feed-
forward nets: Some experiments,” 1989

[111] Reed, “Pruning algorithms-a sur-
vey,” 1993

[107] Prechelt, “Early Stopping — But
When?” 2012

The arguably most straightforward means of regularization, as part
of the optimization procedure, is to reduce its resolution by injecting
noise into the search direction. The (possibly unsatisfying) pictorial
idea is that certain indents, local minima, or even the precise location
of a minimum are artifacts of a finite dataset. If these are, roughly
speaking, on a smaller scale in w and ℓ-space than the structure of the
true risk, then softening the resolution of the optimizer will lead to
better generalization. This is usually done by mini-batching since then,
gradients are still unbiased estimators of the true gradients.7

7 There are further benefits of mini-
batching: Stochastic gradients might
overcome flat plateau-like areas faster
than deterministic ones, but more impor-
tantly it also allows for trading of preci-
sion of calculation with its cost.

More recent works include optimizers that encode the goodness
of an optimum in terms of probable generalization performance and
bias their update towards these regions [24] [87]. A measure for this
in [87] is the entropy of the distribution of weights at convergence.

A last, but not incompatible, approach is to simply halt the optimiza-
tion process when it starts to overfit. This is also called early-stopping,
[94] [111] [107]. The point of stopping is usually found by withholding
some data (a validation set) from the training procedure and monitoring
generalization performance on it. This estimator is unbiased but only
precise if the validation set is large enough. In addition, it reduces
the effective size of the training data that defines the empirical risk

36 | EMPIRICAL RISK MINIMIZATION

and hence that the optimizer can access. For large enough datasets,
though, it is arguably the gold standard and a reliable method to
induce early-stopping (further discussion in Chapter 6).

2.3 Iterative Optimization Routines
The empirical risk minimization problem

w∗ = arg min
w

LD(w) (35)

(LD(w) defined in Eq. 28) is usually solved by greedy, iterative optimiza-
tion routines, all of which will only find local minimizers of LD (we
will assume that this is satisfactory). There are many good textbooks
for an overview on (non-)convex optimization e. g., [100] [16], some [100] Nocedal and Wright, Numerical Op-

timization, 1999

[16] Boyd and Vandenberghe, Convex Op-

timization, 2004

specifically target neural network optimization [81] [48, § 8].

[81] LeCun et al., “Efficient BackProp,”
1998

[48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016

Most iterative optimizers loop over the following subroutines: i) They
initialize w randomly as a current best guess for w∗. ii) They approx-
imate LD(w) around wt, usually with a first- or second-order model.
iii) They define a direction of descent pt ∈ RN , also called search direc-

tion, based on this model. iv) They set a scalar step size αt ∈ R+ (also
called learning rate in the neural network community) conditioned on
this direction, and, finally, v) They make a step into the scaled descent
direction:

wt+1 = wt + αt pt. (36)

A pseudocode is shown in Algorithm 1. The following subsections

Algorithm 1: Sketch of iterative opti-
mizer. The subroutines that compute
the search direction pt ∈ RN and the
step size αt ∈ R+ might take additional
arguments e. g., a history of evaluated
gradients, the previous search direction,
or the current position wt. computeStep-
Size could for example be a line search
subroutine (§ 2.5).

1: function iterativeOptimizerSketch(LD(·), w0)
2: wt←w0 � initial guess for weights
3: while budget not used do
4: [LD,t,∇LD,t]← LD(wt) � evaluate objective
5: pt←computeSearchDirection(∇LD,t, . . .)
6: αt←computeStepSize(LD , . . .)
7: wt←wt + αt pt � update best guess
8: end while
9: return wt

10: end function

discuss instances of Algorithm 1, where it is assumed that LD(wt) and
∇LD(wt) can be computed exactly; this is usually called deterministic

optimization. Section 2.4 gives an overview over stochastic optimiza-
tion, where gradient evaluations are inexact, since they are computed
on mini-batches only. Before we proceed, we motivate common con-
cepts in optimization, and introduce some terms and notation that
become relevant in the later chapters.

ITERATIVE OPTIMIZATION ROUTINES | 37

Lipschitz Continuity

The gradient function∇LD(w) is called Lipschitz continuous if there ex-
ists a constant L > 0 such that ∥∇LD(w)−∇LD(w′)∥ ≤ L ∥w− w′∥
for all w and w′. If this holds, the function LD(w) is also called L -

smooth. In practice, not all loss-functions LD are Lipschitz continuous
or L -smooth, but the assumption that LD(w) does not change ‘all too
much’ from one iteration to the next is inherent to most practical imple-
mentations of iterative optimizers. This manifests for, example, when
learning rates, Hessian estimates, or summary statistics of gradient-
magnitudes are propagated from one iteration to the next. This is
only viable if the function, for all practical purposes, does not change
unexpectedly from one step to another; and a way of approximately
capturing this sloppy notion in mathematical terms, and without be-
ing too restrictive, is Lipschitz continuity on gradient, the loss, or the
Hessian function.

Global Convergence

An optimizer of the form of Eq. 36 is globally convergent if

lim
t→∞

∥∇LD(wt)∥ = 0 (37)

for arbitrary w0, meaning that the gradient vanishes if the optimizer
runs ‘long enough’.8 Assume that pt is a descent direction, and that 8 To avoid confusion, the word ‘global’

only implies that the optimizer con-
verges to a stationary point from any
globally initialized point, and not that
it converges to a global minimum.

the angle θt between pt and∇LD(wt) is bounded away from±90◦, i. e.,
there exists a δθ such that cos θt ≥ δθ > 0 for all iterations t. For func-
tions LD(w) which are bounded below, L -smooth, and for iterates
LD(wt) and p⊺t∇LD(wt) that fulfill the weak Wolfe conditions (decay
constraints on LD(wt) and p⊺∇LD(wt), definitions in Section 2.5 Eq. 68
below), it is

∞

∑
t=0

cos2 θt∥∇LD(wt)∥2 < ∞. (38)

This is the Zoutendĳk theorem and Eq. 38 is often referred to as Zou-

tendĳk’s condition (e. g., [100, § 3.2]). It implies that limt→∞ ∥∇LD(wt)∥ = [100] Nocedal and Wright, Numerical Op-

timization, 19990, and thus global convergence. In practice, imposing the weak Wolfe
conditions is fairly easy, since they can simply be checked at runtime
and controlled by αt, but finding search directions pt such that cos θt

is bounded away from zero is often harder.

Convergence Rates

Optimizers that are globally convergent might still have very slow
convergence rates; or a fast convergent optimizers might not necessar-
ily be globally convergent. The latter is intuitive, since some search

38 | EMPIRICAL RISK MINIMIZATION

directions, e. g., the Newton direction, might be nearly orthogonal to
the gradient, but, if initialized well, still convergence rapidly.

Suppose the sequence xt converges to x∗, then the rate of Q-convergence

is defined as:

∥xt+1 − x∗∥
∥xt − x∗∥ ≤ rt, rt→ 1, sub-linear (39a)

∥xt+1 − x∗∥
∥xt − x∗∥ ≤ r, r ∈ (0, 1), linear (39b)

∥xt+1 − x∗∥
∥xt − x∗∥ ≤ rt, rt→ 0, super-linear (39c)

∥xt+1 − x∗∥
∥xt − x∗∥2 ≤ r, 0 < r < ∞, quadratic (39d)

each for t sufficiently large. From top to bottom, the sequence xt

converges faster to x∗.9 The reduction factors r and rt define the 9 Examples for γ ∈ (0, 1) are:

(t + 1)−1 sub-linear

γt linear

γt2 super-linear

γ2t quadratic.

local or global slope of reduction. They depend on the choice of the
optimizer, in particular pt and αt, as well as on the specific problem
LD . An optimizer with linear rate but with a less preferable slope r
close to one, will reduce the distance to x∗ very little even for many
steps (e. g., if r = 0.999, after 100 steps the total reduction will be just
0.999100 ≈ 0.9). In practice, the performance of an optimizer will not
be measured in the relative reduction of the loss per step, but the total

reduction after a computational budget is used up. This means that a
good optimizer need to trade off rates, by computing more involved
pt and αt, with the cost in doing so.

Scale Invariance

Scale-invariant updates pt posses the unit of the weight space, such
that they re-scales exactly right if the loss or the weights are re-
parametrized. This is especially helpful since parameters of the op-
timizer (such as the step size αt) do not have to be re-learned or
re-tuned when applied to a different problem. One might even
say that tuned parameters in some way encode the scales unique to
one optimization problem in case the update is not scale-invariant.
Consider for example re-scaling the loss by a scalar c > 0, such
that Lscaled

D (w) := cLD(w). In this example, the update pt should
ideally not change, since the parameterization of the weights did
not change. Newton’s method, which is scale-invariant, produces
pscaled

t = −(c∆LD)−1(c∇LD) = −∆L−1
D ∇LD = pt, which is exactly

what is required; the gradient decent update, on the other hand, is
not scale-invariant and produces pscaled

t = −c∇LD = cpt. Thus the
learning rate αt would have to be changed accordingly, in this example
exactly by αscaled

t := c−1αt, to retain the same optimizer.10 Non-scale-

10 Scale invariance can be checked by
computing the unit of pt. Let [w] de-
note the unit of the weights and [L] the
unit of the loss, then Newton’s update
has the units ([L]/[w]2)−1 [L]/[w] = [w].
The update of gd has units [L]/[w] ̸= [w].
The parameters of the optimizer have to
capture this scale, e. g., αsgd

t will need
to encode the unit [w]2/[L] which can be
thought of as a (scalar) inverse Hessian
or an inverse Lipschitz constant for L -
smooth functions.

invariant optimizer are often used in practice, since learning the right
scale is more difficult than just learning a direction. In order to mini-

ITERATIVE OPTIMIZATION ROUTINES | 39

mize re-tuning cost, usually care is taken not to confront the optimizer
with all too different optimization problems. For example neural net-
works usually consist of similar puzzle pieces, and one might argue
that these also yield losses of similar scales; these puzzle pieces might
be similar choices of loss functions, normalizing the data X, similar
choices of activations, batchNorm, and so on, such that re-tuning e. g.,
of learning rates is milder. In general though, if used in different con-
texts, non-scale-invariant updates can require re-tuning of parameters
of arbitrary and unknown scale.

2.3.1 Gradient Descent
The arguably most basic algorithm that follows Eq. 36 is gradient de-

scent
11 (gd) where the search direction pt = −∇LD(wt) locally points

11 It is likely that gradient descent was
invented multiple times. A very clearly
documented instance of this, however, is
by Augustin-Louis Cauchy in his 1847
paper “Méthode générale pour la résolu-

tion des systèmes d’équations simultanées”

[21]. He explicitly states the importance
of choosing the step size: “It is easy to

conclude from it that the value Θ of u [u
is objective, Θ is updated value], deter-

mined [. . .] will become inferior to u, if θ
[step size] is sufficiently small.”. He also
emphasizes the iterative nature of his al-
gorithm: “If the new value of u is not a

minimum, one will be able to deduce, by op-

erating always in the same manner, a third

still smaller value; and, by continuing thus,

one will find successively some values of u
more and more small, which will converge to-

ward a minimum value of u.”. (Translation
by Richard J. Pulskamp.)

into the direction of the steepest path downhill in Euclidean norm,
meaning that for δ ∈ RN , ϵ > 0:

lim
ϵ→ 0

1
ϵ

arg min
δ:∥δ∥≤ϵ

LD(wt + δ) =
−∇LD(wt)

∥∇LD(wt)∥
=:

pt

∥pt∥
, (40)

which yields the update:

wt+1 = wt − αt∇LD(wt). (41)

The underlying model can be thought of as a first-order Taylor ex-

[21] Cauchy, “Méthode générale pour la
résolution des systèmes d’équations si-
multanées,” 1847

pansion LD(w) ≈ LD(wt) + (w − wt)⊺∇LD(wt) around the current
location wt, i. e., the tangent plane to LD(w) at wt. This also means that
the local approximation is unbounded below, and does not provide a
meaningful estimate for the step size αt.12 The assumptions on LD(w)

12 In principle αt could be any positive
number, since the search direction pt =
−∇LD can be arbitrarily scaled by mul-
tiplying LD with a positive constant. As
mentioned above, this is known as non-

scale-invariance of the gradient descent
search direction.

and αt which lead to Zoutendĳk’s condition are typically met (apart
from L -smoothness), since LD(w) is bounded below by definition
and cos θk = 1 can be bounded below by any fixed number δθ ∈ (0, 1).
Thus gd is globally convergent. It does converge rather slow, espe-
cially in cases where the condition numbers of the local Hessian is
large: For example for a quadratic function with positive definite Hes-
sian and conditions number κ and exact line searches (meaning that αt

minimizes the 1D-function LD(wt + αt pt)), gd is linearly convergent
in the loss with rate r = (κ−1)2/(κ+1)2. For large condition numbers
κ ≫ 1, r is close to one, thus the reduction is very little.13 This is illus- 13 For isotropic quadratic problems

though (κ = 1), r becomes zero and
gd converges in only one step.trated in Figure 17; Top: positive definite Hessian with low condition

number κ = 4 (, r ≈ 0.36) and middle: positive definite Hessian
with a larger condition number κ = 20 (, r ≈ 0.82). Both optimiza-
tion runs start at the same distance from the minimizer w∗ = [0, 0]⊺

at w0 = [−0.1,−0.98]⊺, and line searches were exact at each iteration
(closed form exists for quadratic functions). The zig-zagging of gd is
clearly visible, especially for the ill-conditioned problem; also the em-

40 | EMPIRICAL RISK MINIMIZATION

pirical relative reduction of the loss LD (bottom plot) is close to the
theoretical upper bound r. For inexact line searches, the rates are not
expected to improve, but they also do not necessarily worsen e. g.,
with minor restrictions on the step size αt, such as upper bounding it
with the Lipschitz constant of the gradient αt ≤ L −1. Nevertheless,
gd is computationally inexpensive such that many iterations can be
performed; it is quite robust meaning that it is applicable to many
problems as well as numerically stable, and also incredibly easy to
implement (all you need is the gradient). These characteristics make
gd still one of the most widely used iterative optimization routines,
since more than 150 years.

Momentum Methods

−1

0

w
2

−1 0 1
−1

0

w1

w
2

10 20 30
0

0.2

0.4

0.6

0.8

1

iteration t

r

Figure 17: Gradient descent on 2D-
quadratic functions with different condi-
tion numbers κ. Top: κ = 4, middle: κ =

20. Path of optimizers (/). Bot-
tom: theoretical upper bound on slopes
r ≈ 0.36, 0.82 (/ , κ = 4, 20 re-
spectively), and the heuristic values in
the same colors as the paths above.

Momentum methods are inspired by physical systems: the motion
of a massive particle in a potential that experiences friction. Due to
the inertia of the particle, the solution to the dynamics equations is
smoother, and, even when discretized, less saw-toothed than a gradi-
ent descent path. For instance, for a differential equation of the form
mẅ = −ẇζ −∇LD(w) and a linear approximation of LD(w) around
w0 (just like in gd), the solution for the velocity v(τ) is:

v(τ) := ẇ(τ) = −α∇LD(w(τ0)) + γv(τ0) (42)

where the scalars α and γ depend on the mass m ≥ 0, the friction
ζ ≥ 0, and the time interval τ − τ0.14 In optimization, the learning

14 The constants are γ = e−
ζ
m (τ−τ0) ∈

(0, 1) and α = 1
ζ

(
1− e−

ζ
m (τ−τ0)

)
> 0.

The time τ has arbitrary scale in the op-
timization setting.

rate αt and the momentum parameter γt ∈ (0, 1) do not have an obvious
interpretation and are set heuristically, usually γt = 0.9. Eq. 42, in
fact, leads to the famous gd+momentum algorithm [105] [116]:

[105] Polyak, “Some methods of speed-
ing up the convergence of iteration meth-
ods,” 1964

[116] Rumelhart, Hinton, and Williams,
“Learning representations by back-
propagating errors,” 1986

vt = −αt∇LD(wt) + γtvt−1

wt+1 = wt + vt.
(43)

The velocity term has an intuitive behavior: If similar gradients are
seen in succession, v increases and larger steps are taken; if gradi-
ents rather point in different directions, v decreases which yields
more cautious steps. Pictorially, this allows the optimizer to tra-
verse ravines more smoothly as well as to speed up on plateaus.
The approximation of the potential in the differential equation is
linear; although their flexible behavior suggests otherwise, many
momentum algorithms are thus first-order methods. Another mo-
mentum method is nesterov accelerated gradients [97], where vt = [97] Nesterov, “A method of solving a

convex programming problem with con-
vergence rate O(1/sqr(k)),” 1983

αt∇LD(wt + αtvt) + γtvt−1, which encodes a ‘look-ahead’ by evaluat-
ing∇LD not at at current position wt but at the position which would
be reached if the search direction was not altered. gd+momentum is
illustrated in Figure 18 together with the unaltered gd-direction and

ITERATIVE OPTIMIZATION ROUTINES | 41

the bfgs-optimizer (§ 2.3.4) on the 2D Rosenbrock polynomial. It is
clearly visible that gd+momentum exhibits a smoother optimization
path than gd.

2.3.2 Second-OrderMethods
Second-order methods model the curvature or Hessian ∆LD(wt) of
the loss, or a related quantity. The local approximation around wt is
quadratic:

LD(w) ≈ LD(wt) + (w− wt)
⊺∇LD(wt) +

1
2
(w− wt)

⊺Bt(w− wt), (44)

where Bt ∈ RN×N is the second derivative of the quadratic approxima-
tion, i. e., Bt = ∆LD(wt) would yield a second-order Taylor expansion.
Often, but not necessarily, the corresponding search directions pt are
scale-invariant, e. g., the Newton direction, such that they also pro-
vide a natural length-scale for each step, defined by the distance to
the optimum of the local approximation. If this is not the case, they
usually capture some kind of relative scaling of the input-axis which
have been proven to be very helpful in practice.

The search direction is defined as the vector to the unique root
of the gradient of the right hand side of Eq. 44: ∇LD(wt) + Bt(w−
wt)

!
= 0, therefore pt = −B−1

t ∇LD(wt);15 or, for positive definite Bt, 15 Unless noted otherwise, it will always
be assumed that Bt is invertible.alternatively through the weighted norm minimization:

lim
ϵ→ 0

1
ϵ

arg min
δ:∥δ∥

B
1/2
t
≤ϵ

LD(wt + δ) =
−B−1

t ∇LD(wt)B−1
t ∇LD(wt)


B1/2

t

:=
pt

∥pt∥B1/2
t

, (45)

for δ ∈ RN , ϵ > 0, and ∥w∥2
A1/2 := w⊺Aw = ∥A1/2w∥2 with A ∈ RN×N

positive definite. Thus the update of Eq. 36 is:

wt+1 = wt − αtB−1
t ∇LD(wt). (46)

This defines a descent direction only if Bt is positive definite, since
then, −∇LD(wt)⊺pt = ∇LD(wt)⊺B−1

t ∇LD(wt) > 0 (for ∇LD ̸= 0).
There are optimizers which enforce this property when designing Bt

(e. g., bfgs, dfp, § 2.3.4), but for example Newton’s method does not
fulfill this property for non-convex functions.

The cost of computing pt depends on the cost of inverting Bt. This
can range from cubic cost in N for methods that invert a dense Bt,
to methods that are quadratic or only linear in cost. The latter two
usually exploit low-rank structures of successive updates to Bt. Still,
the additional cost for computing pt, in comparison to a simple update
like gd, has to be outweighed by faster descent per step in order to
yield a superior optimizer.

42 | EMPIRICAL RISK MINIMIZATION

An additional benefit of second-order methods, is that they often
expose less to none manual tuning parameters. This is a big advan-
tage in the context of automation and user-friendliness, over algo-
rithms that do expose free parameters. Three direct consequences are:
i) Increased applicability, especially in build-in black-box subroutines,
ii) decreased overall training time, since additional runs for param-
eter search are not needed, and iii) usually better performance for
restricted budgets. One type of arguably parameter free second-order
methods are quasi-Newton optimizers (§ 2.3.4) in combination with a
line search (§ 2.5).

Newton’s Method

Newton’s method16 is a true classic and follows from Eq. 44 if the right 16 The Newton-Raphson method also
denotes a more generic root-finding al-
gorithm. In optimization this refers to
finding the root of the gradient of a
function, thus Newton’s method for op-
timization, described here, is a specific
instance of the more general Newton-
Raphson algorithm.

The Newton-Raphson method is
named after Sir Isaac Newton and
Joseph Raphson. Like gradient descent,
it was most likely invented multiple
times (traces go back to the 12th cen-
tury, an Iranian algebraist called Sharaf
al-Din al-Tusi, who applied it to cubic
equations). Newton applies his method
successfully to the non-polynomial prob-
lem x − ϵ sin(x) = M (Kepler’s equa-
tion) in the 2nd and 3rd edition of his
Philosophiae naturalis principia mathemat-

ica [98] (around 1713 and 1726, 1st ap-
peared in 1687) which states: “But since

the description of this curve is difficult, a so-

lution by approximation will be preferable.

[. . .] diminished by the cosine of the an-

gel [xt] [. . .] And so we may proceed in

infinitum. [. . .] But since the series [. . .]

converges so very fast that it will be scarcely

ever needful to proceed beyond second term

[iteration].” (translated from Latin by
Andrew Motte).

hand side is the second-order Taylor expansion of LD(w) around wt,
i. e., Bt = ∆LD(wt). Then:

wt+1 = wt − αt∆LD(wt)
−1∇LD(wt). (47)

This only defines a descent direction if ∆LD(wt) is positive definite,
which holds for convex functions or in a neighborhood around a true
minimum. Thus Newton’s methods only converges (with αt = 1 and
for a Lipschitz-continuous Hessian functions) if started ‘close enough’
to a minimizer. Then, the rate is quadratic for the iterates wt as well as
the gradient norms ∥∇LD(wt)∥. In practice, sometimes a mild version
of a line search, e. g., a backtracking line search that always tests αt = 1
first, is used for robustness. Newton’s method is computationally
quite expensive (cubic in N), since the Hessian ∆LD(wt) has to be
computed as well as inverted at every iteration.

[98] Newton, Philosophiæ naturalis prin-

cipia mathematica, 1726

Generalized Gauss-Newton

The generalized Gauss-Newton matrix at point w is defined as:

G(w) :=
1
|D| ∑

(x,y)∈D
J f (w)∆ f ℓ(f)J f (w)⊺, (48)

where the operators∇ f and ∆ f are the first and second partial deriva-
tive with respect to f , and J f (w) ∈ RN×nL is the Jacobian of f (w) ∈
RnL with respect to w. The loss ℓ(f) is written in such a way to em-
phasize the dependence on f . The matrix G(w) is an approximation
to the Hessian ∆LD(w) of the loss. To see this write:

ITERATIVE OPTIMIZATION ROUTINES | 43

∆LD(w) =
1
|D| ∑

(x,y)∈D
∆ℓ(fw(x), y)

=
1
|D| ∑

(x,y)∈D

[
nL

∑
k=1
∇ f ℓk(f)∆ fk(w) +

nL

∑
k,l=1

∆ f ℓkl(f)∇ fk(w)∇ fl(w)⊺
]

=
1
|D| ∑

(x,y)∈D

[
nL

∑
k=1
∇ f ℓk(f)∆ fk(w) + J f (w)∆ f ℓ(f)J f (w)⊺

]
,

(49)

where, from the second row on, we dropped the ys and we used f (w)

shorthand for fw(x) to highlight the dependence on w.
The last row of Eq. 49 is equivalent to Eq. 48 for either a root of

∇ f ℓk(f), or a vanishing Hessian ∆ fk(w). This means, for instance, that
the generalized Gauss-Newton matrix is identical or very similar to
the Hessian at minimizers of the loss where ∇ f ℓ is supposedly small,
too. The geometric interpretation is that the Gauss-Newton matrix
only models the Hessian of the most outer of the nested functions: the
loss ℓ(f), but not the Hessian of f (w). Thus it is a lightweight Newton
step, which only captures parts of a full second-order approximation.
The benefit of the Gauss-Newton matrix is that it is always positive
definite if the loss ℓ(f), as a function of f , is convex (convexity of
f (w) is not needed; can be seen from Eq. 48 for pos. def. ∆ f ℓ). It
thus always yields descent directions pt = −G−1

t ∇LD . There are
also connections to the Fisher information matrix discussed below.
When the Gauss-Newton direction is used, sometimes fw and ℓ f are
re-defined, and the last non-linearity of fw is assigned to ℓ, such that
more of the curvature can be captured in the update. For nL < N the
pseudo-inverse of one of the summands is (J⊺f J f)

−1 J f which can be
computed at cost O(n3

L + Nnl).

2.3.3 Natural Gradient
The natural gradient direction [2] ([92] for overview) is based on the [2] Amari, “Natural Gradient Works Effi-

ciently in Learning,” 1998

[92] Martens, “New insights and per-
spectives on the natural gradient
method,” 2014

idea to measure progress not in the loss-space, but in the distribution

space of the learned conditional distribution Pw(y|x), parametrized
by w, between input- and target-space.17 A measure for the differ-

17 This interpretation only holds if the
loss LD can be interpreted as negative
log likelihood as described in 2.2.1.

ence of two distributions P and Q is the Kullback-Leibler divergence
KL(P∥Q).18 Now suppose we move in weight space by δ ∈ RN ,

18 The KL-divergence is not a distance,
since it is not generally symmetric:
KL(P∥Q) ̸= KL(Q∥P); but it is always
positive and only zero iff Q = P. For
densities p(x) and q(x) it is defined as
KL(P∥Q) =

∫
p(x) log p(x)

q(x) dx and also
known as the relative entropy. Pictori-
ally it measures how well p(x) is approx-
imated by q(x) weighted by p(x), and
then averaged over all weighted differ-
ences. This also explains why KL is not
symmetric, since discrepancies between
p and q might matter more or less de-
pending if p or q has nontrivial mass
there.

analogously to above, then the difference between the old and new
distribution is given by:

KL (Pw+δ(x, y)∥Pw(x, y)) =
∫

pw+δ(x, y) log
pw+δ(x, y)

pw(x, y)
dxdy

= EQ(x) [KL (Pw+δ(y|x)∥Pw(y|x))] .
(50)

44 | EMPIRICAL RISK MINIMIZATION

where Q(x, y) is the unknown joint data distribution with density
q(x, y), Q(x) the marginal distribution, and Pw(x, y)has density pw(x, y).19 19 The last line of Eq. 50 holds since

only the conditional probability between
inputs and targets is modeled and
pw(x, y) = pw(y|x)q(x).

Since the KL-divergence is non-negative, the steepest descent direction
in distribution space can be defined as:

lim
ϵ→ 0

1
ϵ

arg min
δ:KL(Pw+δ(x,y)∥Pw(x,y))≤ϵ2

LD(wt + δ) =
−F−1

t ∇LD(wt)F−1
t ∇LD(wt)


F1/2

t

. =:
pt

∥pt∥F1/2
t

. (51)

The limit of Eq. 51 includes a weighted norm with positive definite
matrix Ft defined as:

Ft = −EPwt (x,y) [∆ log pwt(x, y)] = −EQ(x)

[
EPwt (y|x) [∆ log pwt(y|x)]

]
= EPwt (x,y) [∇ log pwt(x, y)∇ log pwt(x, y)⊺] = EQ(x)

[
EPwt (y|x) [∇ log pwt(y|x)∇ log pwt(y|x)⊺]

]
.

(52)

Ft is known as the Fisher information matrix, and (for ℓ(fw(x), y) =

− log pw(y|x)) is the expected Hessian of ℓ under Pw(x, y) (not Q). An
intuition for this result can be obtained by developing Eq. 50 around
δ = 0N , which by some calculus yields:

KL (Pwt+δ(x, y)∥Pwt(x, y)) =
1
2

δ⊺Ftδ +O(δ3). (53)

This is an explicit approximation of the KL-divergence in weight space,
and, since Ft is positive definite (can be seen from Eq. 52), it also
defines a distance.20 The update of the optimizer is scale-invariant 20 The metric tensorF (w) (locally given

by Eq. 52), under some assumptions
yields a Riemannian manifold. Since op-
timization steps are discrete, the metric
defined byFt = F (wt) is used in a vicin-
ity around wt.

and given by

wt+1 = wt − αtF−1
t ∇LD(wt). (54)

Assuming Ft can be computed, the update is of cost O(N3) which is
the same as the cost of a Newton update.

Connections

The Fisher information matrix F is the expected Hessian of the loss ℓ
under the learned distribution Pw(x, y). The Hessian ∆LD , though,
is not the Fisher information matrix for the empirical distribution
P̂(x, y), but rather the expected Hessian of the loss over the sample-
distribution Q̂(x, y) (the expected Hessian of the loss over Q(x, y)
is ∆L). The Gauss-Newton matrix Gt is identical to the Fisher if
we approximate the marginal Q(x) (not the joint) with the empirical
distribution Q̂(x) while computing F and if Pw(y| fw) is in the expo-
nential family (this include e. g., the squared and the cross-entropy
loss). Since the Gauss-Newton matrix is a good approximation to the
Hessian close to a minimum, thus also F is, under these constraints.
This does not hold further away from minima.21

21 All of this can be checked by re-
arranging terms in the definitions of F ,
G, ∆L and ∆LD and using the empirical
distributions where applicable.

ITERATIVE OPTIMIZATION ROUTINES | 45

Empirical Fisher

Often, it is not practical or even impossible to compute the integrals
in Eq. 52 since Q(x) is unknown and Pw(y|x) complicated. The Fisher
information matrix is occasionally approximated by the empirical Fisher

information matrix F̂ (short: empirical Fisher) which replaces Q(x) and
Pw(y|w) by their empirical distributions:

F̂t =
1
|D| ∑

(x,y)∈D
∇ log pwt(y|x)∇ log pwt(y|x)⊺

=
1
|D| ∑

(x,y)∈D
∇ℓ(fwt(x), y)∇ℓ(fwt(x), y)⊺.

(55)

The update pt = −F̂−1
t ∇LD(wt) arising from the empirical Fisher

is not scale-invariant anymore, and F̂ , in contrast to F , is also in
general not a meaningful approximation to the Hessian or the gener-
alized Gauss-Newton matrix; and even not to the Fisher itself. The
benefits, though, are that it is easy to compute since the gradients
∇ℓ(fwt(x), y) are readily available; it conserves the property of posi-
tive (semi-)definiteness for, and it still provides some relative scaling
of the weights (§ 2.4.2). Some of the currently most popular stochastic
optimization algorithms (rmsprop, adam, . . .) are based on a diago-
nal approximation to F̂ .

2.3.4 Quasi-NewtonMethods

−2 0 2

0

1

2

w1
w

2

100 101

iteration t

lo
g

L D

Figure 18: gd, gd+momentum, and
bfgs on Rosenbrock. Top: paths of the
optimizers (/ / , for gd,
gd+momentum, and bfgs respectively);
start value (), minimizer at w∗ = [1, 1]⊺

(). Bottom: Corresponding function
values per iteration (double logarithmic).
gd+momentum performs better than gd,
although bfgs is the only optimizer of
the three that reaches the minimum. The
2D-Rosenbrock polynomial is L(w) =

100(w2 − w2
1)

2 + (1− w1)
2.

As the name suggests, quasi-Newton methods ([30], [100, § 6] for an
overview) perform Newton-like updates by approximating the Hes-
sian ∆LD(wt). They are cheaper (O(N2) or O(N)) than a Newton
update and build their approximation entirely by using previously col-
lected gradient differences ∆yt := ∇LD(wt+1)−∇LD(wt) and path
segments st := wt+1 − wt. The basic model assumption for all quasi-
Newton methods is that the estimator Bt+1 for the Hessian must fulfill
the secant equation:

Bt+1st = ∆yt for all t, (56)

such that Bt can be interpreted as being the mean Hessian on the
line between points wt and wt+1. The matrix Bt ∈ RN×N is not fully
identified by the N constraints of Eq. 56. Thus, for obtaining the
next approximation Bt+1, one imposes the condition that Bt+1 must
be close to the previous one Bt in some weighted norm. The complete [30] Dennis and Moré, “Quasi-Newton

methods, motivation and theory,” 1977

[100] Nocedal and Wright, Numerical Op-

timization, 1999

optimization problem to identify Bt+1 can be phrased as:

Bt+1 = arg min
B
∥B− Bt∥W,F s.t. Bst = ∆yt, (57)

46 | EMPIRICAL RISK MINIMIZATION

where ∥A∥W,F = ∥W1/2 AW1/2∥F is the Frobenius norm weighted by
a positive definite matrix W ∈ RN×N .22 Different choices of W lead 22 The standard Frobenius norm ∥A∥F is

defined as ∥A∥2
F := ∥A∥2

I,F = ∑ij A2
ij =

tr[A⊺A] = ∥ #»

A∥2 and can be obtained
by setting W = I. It is not to be con-
fused with the weighted vector-norm
above used to derive steepest descent di-
rections (overloaded notation).

#»

A ∈ RN2×1 is a vectorized version of
A, constructed by stacking the elements
of the matrix A row-by-row, and not
column-by-column. This is just for no-
tational convention at this point, but we
will use this notation repeatedly in later
chapters.

to different quasi-Newton methods, but the optimization update is
always:

wt+1 = wt − αtB−1
t ∇LD(wt). (58)

The Hessian estimate Bt is usually initialize with a multiple of the
identity B0 = bI, b ∈ R+, the update to Bt at each step is of rank
one or two, and its inverse thus analytic by the Sherman–Morrison
formula.23 In general, this leads to an update with cost quadratic in N

23 Let B be a matrix with known inverse,
and v, w vectors, then (B + vw⊺)−1 =
B−1 + (B−1vw⊺B−1)/(1 + w⊺B−1v).

due to the matrix vector product B−1∇LD . Even more efficient linear
updates, in cost and memory, can be achieved by only keeping the
last M≪ N gradient differences {∆yt−i+1}i=1,...,M and path segments
{st−i+1}i=1,...,M in storage. These limited memory versions of quasi-
Newton optimizers, e. g., l-bfgs, are highly successful, although they
only model a handful of off-diagonal curvature contributions.24 For 24 This might even suggest, that the Hes-

sians of typical losses LD are structured
and can locally be captured by a simple
model like a scalar-plus-low-rank ma-
trix. Alternatively one might argue, that
‘old’ observations which identify a large
part of the matrix Bt in the infinite mem-
ory version are outdated to some de-
gree, since the Hessian changes with w
for non-quadratic functions, and rather
hamper the optimizer.

non-trivial Hessians, they usually perform superior to gd in overall
performance. Figure 18 shows an example of a quasi-Newton method
(bfgs) in comparison to gd, and gd+momentum on a toy problem; es-
pecially the bottom plot shows how much more rapidly (super-linear
in wt for mild assumptions, plot shows log-log of LD vs. t) bfgs con-
verges than gd.

Broyden’s Method

Broyden’s method [18] is the update corresponding to the solution of [18] Broyden, “A class of methods for
solving nonlinear simultaneous equa-
tions,” 1965

Eq. 57 for W = I, i. e., for the standard Frobenius norm:

Bt+1 = Bt +
(∆yt − Btst)s

⊺
t

s⊺t st
. (59)

It is in spirit much closer to root-finding methods, which approximate
the Jacobian of a multi-output function. This can be seen from the
estimator Bt, which is not generally symmetric, although Hessians
are, because Eq. 57 did not encode this. Broyden’s method is listed
here for historic completeness, and also since we will use it later to
draw connections to novel probabilistic second-order methods. The
general solution to Eq. 57 for any positive definite W is given by

Bt+1 = Bt +
(∆yt − Btst)c

⊺
t

c⊺t st
, (60)

where ct := Wst is a vector in RN (e. g., [30, Thm. 7.3 and below]). [30] Dennis and Moré, “Quasi-Newton
methods, motivation and theory,” 1977Thus for the special case of choosing W (non-uniquely) such that

ct = ∆yt − Btst, the estimator Bt is indeed symmetric and known as
symmetric rank-one (sr1) update, probably first introduced by Davidon
[112]. [112] Davidon, Variable metric method for

minimization, 1959

ITERATIVE OPTIMIZATION ROUTINES | 47

Dennis Family

The Dennis family of quasi-Newton methods [29] is obtained by solv- [29] Dennis, “On some methods based
on Broyden’s secant approximations,”
1971

ing Eq. 57 with an additional symmetry constraint on the estimator
Bt+1, i. e., :

Bt+1 = arg min
B
∥B− Bt∥W,F s.t. Bst = ∆yt ∧ B = B⊺. (61)

The solution to Eq. 61 is given by:

Bt+1 = Bt +
(∆yt − Btst)c

⊺
t + ct(∆yt − Btst)⊺

c⊺t st
− cts

⊺
t (∆yt − Btst)c

⊺
t

(c⊺t st)2 , (62)

again with ct = Wst ∈ RN . The estimator Bt+1 is symmetric by
construction and the additive terms to Bt are of rank two, or, for special
choice of ct, of rank one. In general, different choices of ct define [106] Powell, “A new algorithm for un-

constrained optimization,” 1970

[49] Greenstadt, “Variations on variable-
metric methods,” 1970

[112] Davidon, Variable metric method for

minimization, 1959

[41] Fletcher and Powell, “A rapidly con-
vergent descent method for minimiza-
tion,” 1963

[19] Broyden, “A new double-rank mini-
mization algorithm,” 1969

[40] Fletcher, “A new approach to vari-
able metric algorithms,” 1970

[44] Goldfarb, “A family of variable
metric updates derived by variational
means,” 1970

[123] Shanno, “Conditioning of quasi-
Newton methods for function minimiza-
tion,” 1970

different members of the Dennis family of quasi-Newton updates,
some of which are listed below:

sr1 ct = z(∆yt − Btst) (63a)

psb ct = st (63b)

greenstadt ct = zBtst (63c)

dfp ct = z∆yt (63d)

bfgs ct = z

(
∆yt +

√
s⊺t ∆yt

s⊺t Btst
Btst

)
. (63e)

The scalar z > 0 is an arbitrate positive constant. Eq. 63a again recovers
the sr1 update, the others are Powell-symmetric-Broyden (psb, Eq. 63b
[106]), Greenstadt (Eq. 63c [49]), Davidon-Fletcher-Powell (dfp, Eq. 63d
[112], [41]), and the infamous Broyden-Fletcher-Goldfarb-Shanno (bfgs,
Eq. 63e [19] [40] [44] [123]). Again all inverses of Bt can be computed
analytically by the Sherman–Morrison formula. For dfp and bfgs,
positive definiteness of Bt, and thus a descent direction pt, can be
ensured by appropriate line search routines (§ 2.5), which gives them
a huge advantage over their siblings. Empirically, bfgs has proven to
perform very well, and, in deterministic optimization, is arguably the
state-of-the-art of quasi-Newton method to date.25

25 It is not entirely clear why this is so.
[100, § 6.1] mention ‘self-correcting prop-
erties’ if the Hessian estimate is off, in
combination with Wolfe-governed line
searches; or [30, § 7.3] state that there
are results for the dfp-estimator to ap-
proximate the Hessian well, which also
hold for the bfgs-estimator and the in-

verse Hessian (which seems to be more
useful, since B−1

t is ultimately used for
computing pt). We will follow up on this
discussion in Chapter 9.

2.3.5 (Non-)Linear Conjugate Gradients
The linear conjugate gradient method (cg) [62] solves for w∗ ∈ RN

[62] Hestenes and Stiefel, “Methods of
conjugate gradients for solving linear
systems,” 1952

in the systems Aw∗ = b, with b ∈ RN given, and A ∈ RN×N

symmetric positive definite (spd).26 The method is iterative and
26 Such a system can be interpreted as
finding the optimum of a quadratic func-
tion of the form L(w) = 1

2 w⊺Aw− b⊺w,
with derivative ∇L(w) = Aw− b.

starts with a random guess w0 for w∗. Then, it constructs successive
wt+1 = wt + αt pt, with exact line searches αt = − r⊺t pt

p⊺t Apt
and residuals

rt = Awt − b, such that search directions pt are A-conjugate, meaning

48 | EMPIRICAL RISK MINIMIZATION

that p⊺j Api ∝ δij. It can be shown that the residuals {ri}t
i=0 as well

as the search directions {pi}t
i=0 span the Krylov subspace of degree t,

that is K(r0, t) = span{r0, Ar0, . . . , Atr0}, and therefore approximate
the leading vectors of the eigen-basis of A.

The non-linear conjugate gradient method (n-cg, first due to [42]) [42] Fletcher and Reeves, “Function min-
imization by conjugate gradients,” 1964are variants of cg, tailored for non-linear problems, i. e., where the

Hessian of a function changes with w. The residuals rt are replaced [96] Nazareth, “A relationship between
the BFGS and conjugate gradient algo-
rithms and its implications for new algo-
rithms,” 1979

e. g., by the gradient ∇L(wt) of the function and a line search is used
since the exact root along pt can not be found analytic anymore. For
quadratic losses (constant Hessians A), the iterates wt produced by
the bfgs-algorithm for exact line searches are identical to those of
cg. Thus both algorithms coincide on linear problems [96]; but they
split into separate algorithms for non-linear objectives. While, by
the secant equation, it is quite clear that bfgs still infers a mean-
Hessian along pt, the inferred second-order object of n-cg is a bit
more opaque; nevertheless both methods are successfully used in
practice and especially the mathematical properties of linear cg are
very well studied.

2.4 Uncertain Gradients
When the dataset D is very large, it can be impractical or too costly to
compute the gradient ∇LD(wt). Eq. 30 defines a mini-batch gradient

∇LB which is only computed on a random i. i. d. subset B ⊂ D of the
full dataset. It is thus an inexact but unbiased estimator of ∇LD ; and
its quality depends on the data distribution as well as on the size |B|
of the mini-batch. Iterative optimizers which use ∇LB instead of, or
additionally to, ∇LD are called stochastic, in contrast to deterministic.
The preceding as well as the following subsections are to a certain de-
gree arbitrary, since e. g., the diagonal preconditioners (§ 2.4.2) could
also be used with full batch gradients; they are grouped here since
they are commonly used with stochastic gradients in practice.

0 1
0

1

∥µ
∥

0

20

40

60

80

0 1
0

20

40

0 1
0

45

90

σ

θ

0 1
0

1

σ

∥µ
∥

0

20

40

60

80

0 1σ
0

0.5

1

1.5

Figure 19: Orthogonality of high dimen-
sional Gaussian random vectors. Top
and middle row: mean angle θ̂ (left),
and corresponding standard deviation

ˆstd (right). The axis are ∥µ∥ and σ for
an equally spaced grid between 0 and 1.
Top row shows dimensionality N = 2
and middle plot N = 1000. Bottom:
θ̂ ± 1 ˆstd for a fixed ∥µ∥ versus σ (the
slice is indicated in the top and middle
row.)

Before we motivate stochastic algorithms, we first need to get an
intuition about the behavior of random vectors in high dimensions.

Random Vectors in High Dimensions

Vectors in high dimensions act differently than in lower dimensions
when their elements are corrupted by noise as it is the case for mini-
batch gradients. As a toy experiment, suppose that z ∼ N (µ, σ2 I)
with z, µ ∈ RN and σ ≥ 0 (Gaussian assumptions for mini-batch gradi-
ents will be discussed in Chapter 5). Then, what are the mean and vari-
ance of the angle θ between z and µ, i. e., E[θ] = E[arccos(µ⊺z/∥µ∥∥z∥)],
and var[θ] = E[θ2]− E[θ]2? We can estimate these quantities by sam-
pling independent {zi}M

i=1 and computing E[θ] ≈ θ̂ = 1/M ∑i θi and

UNCERTAIN GRADIENTS | 49

var[θ] ≈ ˆvar = 1/M ∑i θ2
i − θ̂2 for θi := arccos(µ⊺zi/∥µ∥∥zi∥). Figure 19

shows results for ∥µ∥-σ combinations, using M = 103 samples each.
The top and middle row show the mean angle θ̂ (left) and its sample
standard deviation ˆstd (right) for an equally spaced grid of ∥µ∥ and
σ between [0, 1]. The top and middle row show low and high dimen-
sionality, N = 2, 1000 respectively. The bottom row depicts θ̂ ± 1 ˆstd
for a fixed ∥µ∥ versus σ; the corresponding slices are indicated in the
upper plots in the same colors (/ for N = 2, 1000). The curve
for N = 1000 concentrates much faster and tighter around θ ≈ 90◦

than the one for N = 2, even for very small ratios σ/∥µ∥.

0

0

z1

z 2

Figure 20: Distributions of angle θ de-
pending on µ and σ in two dimen-
sions. Shown are two Gaussian distri-
butions with means (/), 1 std
(/), and 20 random samples
each (/). θ is the angle be-
tween a sample and its corresponding
mean. For 2D (as shown here), the dis-
tribution of θ is quite dependent on ∥µ∥
and σ, which is less the case in high di-
mensions.

The same can be observed for the whole ∥µ∥-σ-grid (middle row)
where all vectors (except the ones for vanishing noise σ) stand roughly
orthogonal to their mean, and, at the same time, exhibit a low vari-
ance in doing so (colorbars for scale, and Figure 20 for a 2D illustration
for two instances of µ-σ combination). For an optimizer for instance,
where N as well as σ/∥µ∥ might be even larger, this means that the
collected stochastic gradients {∇LB(wi)}t

i=1 span a very different sub-
space than the noise free ones {∇LD(wi)}t

i=1 would, even if evaluated
at the same locations wi. This has major implications on the robustness
of methods which inherently rely on inner or outer products involving
e. g., ∆yt := ∇LD(wt+1)−∇LD(wt) such as all, but especially limited
memory versions, of quasi-Newton methods. This can be observed
empirically as well, where these methods either perform poorly, or fail
when used with noise corrupted gradients.

2.4.1 Stochastic Gradient Descent
Stochastic gradient descent (sgd) [113] is the exact same algorithm
as gd with the exception that all gradients ∇LD(wt) are replaced by
mini-batch gradients27 ∇LB(wt), thus

27 This includes mini-batches of size one.
If the samples originate from a contin-
uous data-stream rather than from a
fixed, finite dataset, this is also some-
times called ‘online-learning’.

wt+1 = wt − αt∇LB(wt). (64)

This also means that pt = −∇LB(wt) does not necessarily define a
descent direction anymore (in fact, by the previous section, it won’t
in up to 50% of the cases), and it is also not possible to know this for
certain unless the full∇LD was be computed (which we will assume is
no, or an un-desirable option). sgd does not seem to bother about this;
in fact, given a function handle to some gradient—might it be noisy or
not—the computer codes for gd and sgd are identical; it is oblivious to
the choice of the gradient estimator or even to the size of |B|. Robbins
and Monro [113] showed ground-breakingly28 that the sequence wt [113] Robbins and Monro, “A stochastic

approximation method,” 1951

28 The exposition in [113] covers the
case for one-dimensional functions only,
but it has since been extended to multi-
dimensional settings, too.

defined by Eq. 64 converges to a minimizer w∗ in expected squared
error, for a diminishing learning rate schedule that fulfills ∑∞

i=1 αi = ∞
and ∑∞

i=1 α2
i < ∞.29 Compared to gd, the convergence rate is worse,

29 Convergence in expected squared er-
ror is defined as

lim
t→∞

E[∥wt − w∗∥2]→ 0.

If this holds, then wt converges to w∗

in probability and the method is also
called consistent for a given distribution
p(∇ℓ(w)|w). For sgd, this is fulfilled
e. g., for a learning rate decay of type
αt =

α0
t and additional (typical) assump-

tions on p(∇ℓ|w) as well as the loss
LD(w) (strong convexity and bounded
gradients).

50 | EMPIRICAL RISK MINIMIZATION

but at the same time a lot more iterates can be performed for the same
budget. This is because one sgd-step is much cheaper to compute, by
a fraction of |B|/|D|, than one gd-step. So, roughly, if the progress per
|D|/|B| steps outweighs a single one of gd, then sgd is more efficient.30

30 One might argue, that it should not
matter, if the information contained in
a dataset is evaluated at once, or per
mini-batch, hence there should not be
a difference in performance. The dif-
ference, however, lies in the fact that
sgd-mini-batches can be evaluated at dif-
ferent locations in weight space, while
the full batch evaluation is only locally
performed for fixed weights; addition-
ally mini-batches allow the optimizer to
explore redundant information in the
dataset, as well as use hardware opti-
mally.

In practice, there is usually an inter-
mediate sized mini-batch size |B| that
performs best for a given computational
budget, but ideally one would like to
also adapt |B| during the optimiza-
tion run, since the distribution p(∇ℓ|w)
changes with w.

To get an intuition for the need of a diminishing learning rate, note
that the probability for a stochastic gradient to vanish might in fact be
zero, even at a true root of∇LD ; if B is sampled without replacement
from D, the variance of ∇LB is proportional to (|D|−|B|)/(|D||B|−|B|) ≈
1/|B| for |B| ≪ |D|. Thus, since ∇LB(wt) does not decay as much as
∇LD(wt) would for large t, the learning rate must.

Similar to gd, sgd is easy to implement, cheap, and quite robust
(applicable to many problems), but the manual tuning of αt is often
quite intricate. The idea of sgd though—reducing cost per step by
sampling random gradients—carries over to more involved stochastic
updates, some of which are discussed below. Most of them collect
statistics, which in fact have some relation to p(∇ℓ|w) and reduce the
required effort for tuning their class parameters.

2.4.2 Diagonal Preconditioners
Instead of constructing a matrix Bt which is scalar-plus-low-rank, as
quasi-Newton methods do, diagonal preconditioners

31 learn a diagonal 31 We adopt the therm ‘precondition-
ers’ from other works, e. g., [26]. ‘Pre-
conditioner’ often only describes a the-
oretically desired, or a priori imposed
preconditioner-matrix, and not empiri-
cal estimates thereof. Here we will call
both as such.

matrix. Each dimension is thus treated independent of all others,
and separate summary statistics over many iterations are collected
for each entry of diag[Bt], which mostly includes estimators for the
first and second moment of gradients. This averaging, i. e., collecting
many noisy numbers to estimate one scalar, yields a more robust
estimator Bt under noise, in contrast to quasi-Newton updates. The
downside is that correlations between dimensions, i. e., off-diagonal
elements of Bt, are neglected. Corresponding algorithms often go by
the name of ‘element-wise learning rate tuning’ in the literature; we
will avoid this terminology here, since it virtually covers all possible
search directions, and seldom these methods actually fit an absolute
scale which is the purpose of a learning rate. The diagonal matrix Bt

is usually related to the Hessian or the Fisher.
Define exponential running averages over collected gradients, gra-

dient squares, and path segments as

mt = βmt−1 + (1− β)∇LB(wt) (65a)

vt = γvt−1 + (1− γ)∇L⊙2
B (wt) (65b)

ht = ζht−1 + (1− ζ)(wt − wt−1)
⊙2, (65c)

each with some decay factor γ, β, ζ ∈ (0, 1). The symbol ‘⊙’ denotes
the Hadamard-product (elementwise multiplication), and ‘⊘’ elemen-
twise division. Additionally, define the sum (not mean) of collected

UNCERTAIN GRADIENTS | 51

gradient squares as v̄t = ∑t
i=1∇L⊙2

B (wi). Ignoring the bias from mov-
ing in w-space, with slight abuse of notation, it is

m(w) ≈ EQ̂[∇LB(w)] = ∇LD(w),

v(w) ≈ EQ̂[∇LB(w)⊙2] = ∇LD(w)⊙2 + varQ̂[∇LB(w)]

= diag[F̂t]− varQ̂[∇ℓ(f (w))](1− |B|−1).

(66)

The last line of Eq. 66 shows that for |B| = 1, vt can also be viewed
as an estimator for the diagonal of the empirical Fisher information
matrix F̂t; and for |B| > 1, vt is something like a noise-reduced
diag[F̂t], or a diag[F̂t] where the empirical distribution Q̂ is defined
for mini-batches, not individual (x, y) data-pairs. The goodness of the
estimators vt and mt depends on the number of samples they are aver-
aged over. For exponential running averages this means, how much
samples significantly contribute to them, which directly depends on
the smoothing factors γ and β. If they are close to one, the estima-
tors are less noisy, but therefore biased from evaluating samples at
different locations in weight-space. Smoothing factors thus need to
be tuned when used in an actual algorithm in order to find a good
trade-off. Default choices for smoothing factor usually range between
0.9− 0.999. Some of the most famous diagonal preconditioners are
composed of the estimators of Eq. 65 as well as v̄t:

adagrad pt = −∇LB(wt)⊘
(

v̄⊙1/2
t + ϵ

)
(67a)

rmsprop pt = −∇LB(wt)⊘
(

v⊙1/2
t + ϵ

)
(67b)

adam pt = −mt ⊘
(

v⊙1/2
t + ϵ

)
(67c)

adadelta pt = −∇LB(wt)⊙ ((ht + ϵ)⊘ (vt + ϵ))⊙1/2 , (67d)

where ϵ = ϵ0I ∈ RN , ϵ0 ≈ 10−8 are small positive perturbations for
numerical stability. The list includes adagrad [34], rmsprop [135], [34] Duchi, Hazan, and Singer, “Adap-

tive subgradient methods for online
learning and stochastic optimization,”
2011

[135] Tieleman and Hinton, RMSprop

Gradient Optimization, 2015

adadelta [143], and the adam-optimizer [74].32 The only scale-

[143] Zeiler, “ADADELTA: An Adaptive
Learning Rate Method,” 2012

[74] Kingma and Ba, “Adam: A Method
for Stochastic Optimization,” 2014

32 Additionally, adam performs a mild
bias correction for mt and vt, not for the
reason that samples originate from dif-
ferent locations w, but that vt is initial-
ized with v0 = (1 − γ)∇LB(w0), and
similarly for m0.

invariant update among the four is adadelta, which can be ob-
served empirically as well (αt = 1 usually works best). rmsprop and
adam scale the search direction inversely proportional to the square
root of vt, thus damping the enumerator if |B|−1varQ̂[∇ℓ(fw(x), y)] or
∇L⊙2
D is large. adam additionally uses the biased but therefore noise

reduced estimator mt for the gradient ∇LD(wt).
Although none of the above methods model correlations between

elements of ∇ℓ, they are highly successful and widely used in empir-
ical risk minimization tasks and neural network training. They do,
however, expose free parameters (β, γ, ζ, as well as the global learning
rate αt) that can be more or less fiddly to tune.

52 | EMPIRICAL RISK MINIMIZATION

2.4.3 Second-OrderMethods
[91] Martens, “Deep learning via
Hessian-free optimization,” 2010Robust second-order methods that also estimate the off-diagonal of

the Hessian are rather rare in stochastic optimization (for a recent
overview see e. g., [15]). Some notable papers include [20], [95], and [15] Bottou, Curtis, and Nocedal, “Op-

timization Methods for Large-Scale Ma-
chine Learning,” 2016

[20] Byrd et al., “A Stochastic Quasi-
Newton Method for Large-Scale Opti-
mization,” 2014

[95] Moritz, Nishihara, and Jordan, “A
Linearly-Convergent Stochastic L-BFGS
Algorithm,” 2015

[146] which all, in one way or another, reduce the variance on gradients

[146] Zhao, Haskell, and Tan, “Stochastic
L-BFGS: Improved Convergence Rates
and Practical Acceleration Strategies,”
2017

by either evaluating on more than one mini-batch per iteration or
averaging. A hybrid of deterministic and stochastic second-order
optimization is Hessian-free optimization (hf) or truncated Newton [100,
§ 7] which was tailored further for the purpose of training deep mlps
by [91]. In its original deterministic form, hf runs a few steps of
the linear conjugate gradient algorithm (cg) on the problem Bpt :=
(∆LD(wt) + λI)pt = ∇LD(wt), where λ ≥ 0 is a scalar ensuring that
the matrix B is positive definite, or additionally that the approximate
Newton steps are shortened and stay inside of a trusted region of
the local quadratic approximation. The hybrid proposed by [91] also
computes ∇LD(wt) on the full training dataset but, in contrast to the
original hf, it runs cg on a single local mini-batch only.33

33 This means that the Hessian-vector
products needed for cg are computed
on a mini-batch Hessian only, and in
essence a linear problem of the form
(∆LB(wt) + λI)pt = ∇LD (with D for
gradient and B for Hessian) is solved in-
stead. For neural networks, it is possible
to compute a Hessian product with an
arbitrary vector without explicitly com-
puting and storing the Hessian matrix
itself (see e. g., [102] [120]).

Nevertheless, especially in neural network applications involving
large datasets, where even computing ∇LD(wt) is prohibitively ex-
pensive, fully fletched second-order methods do not yet exist, or are

[100] Nocedal and Wright, Numerical Op-

timization, 1999

[120] Schraudolph, “Fast curvature
matrix-vector products for second-order
gradient descent,” 2002

[102] Pearlmutter, “Fast exact multiplica-
tion by the Hessian,” 1994

massively outperformed by sgd, momentum methods, or the diagonal
preconditioners mentioned above.

2.5 Line Searches
Line searches control the step size αt of the optimization routine. Their
main goal is to stabilize the optimizer (avoid divergence by reducing
αt, but also push progress by increasing αt), though sometimes they
have auxiliary functionality in the construction of the search direction
(in case of the quasi-Newton optimizers bfgs and dfp they only accept
points which ensure positive definiteness of the Hessian estimate Bt).
From a practical perspective they also automate one of the most sensi-
tive hyper-parameters of Algorithm 1, which is extremely tedious if it
needed to be set by hand. Hence line searches might seem like small/
non-essential subroutines at first glance but often they are at the heart
of the optimizer and the most intricate problems to solve efficiently
as well as to implement them robustly. The text below is partly based
on sections taken from [89] and [90], listed at the end of Chapter 0. [89] Mahsereci and Hennig, “Probabilis-

tic Line Searches for Stochastic Optimiza-
tion,” 2015

[90] Mahsereci and Hennig, “Probabilis-
tic Line Searches for Stochastic Optimiza-
tion,” 2017

We will assume again for now that the loss LD(wt) and its gradients
∇LD(wt) can be computed exactly (no mini-batching).

There is a host of existing line search variants [100, § 3]. In essence,
though, these methods explore a univariate domain ‘to the right’ of
a starting point, until an ‘acceptable’ point is reached. More pre-

LINE SEARCHES | 53

cisely, consider the problem of minimizing LD(w) as in Eqs. 28, 35,
with access to ∇LD(w). At iteration t, some ‘outer loop’ chooses,
at location wt, a search direction pt ∈ RN as in Algorithm 1. The
line search operates along the univariate domain w(α) = wt + αpt

for α ∈ R+. Along this direction it collects scalar function values
and projected gradients that will be denoted f (α) = LD(w(α)) and
f ′(α) = p⊺t∇LD(w(α)) ∈ R. Most line searches involve an initial
extrapolation phase to find a point αr with f ′(αr) > 0 (point ➂ in
Figure 21).

5.5

6

6.5
➀

➁
➂

❹

f(
α
)

0 0.5 1 1.5

−2

0

2

4

➀ ➁

➂

❹

distance α in line search direction

f′
(α
)

Figure 21: Sketch of line searches. The
task is to tune α along a univariate search
direction. The search starts at the end-
point ➀ of the previous line search, at
α = 0. Top: Function values (/ / /)
numbered in the order of their evalu-
ation. Armĳo acceptable region W-I
() Bottom: Corresponding gradi-
ents (/ / /). Acceptable region for W-
II/W-IIa (/ , weak, strong re-
spectively) A sequence of extrapolation
steps ➁,➂ finds a point of positive gra-
dient at ➂. It is followed by interpola-
tion steps until an acceptable point ❹ is
found (,).

This is followed by a search in [0, αr] or [αr−1, αr], by interval nest-
ing or by interpolation of the collected function and gradient values,
e.g. with cubic splines (Figure 21 and Algorithm 2, the pseudocode
denotes the evaluations of f (α) and f ′(α) as y and y′ respectively).34

34 This is the strategy in minimize.m

by C. Rasmussen. It also provided a
model for the probabilistic line search
of Chapter 7, and it is thus explained
here in more detail. At the time
of writing, minimize.m can be found
at http://learning.eng.cam.ac.uk/carl/
code/minimize/minimize.m

2.5.1 Wolfe Conditions for Termination
As the line search is only an auxiliary step within a larger iteration, it
need not find an exact root of f ′; it suffices to find a point ‘sufficiently’
close to a minimum. The Wolfe conditions [141] are a widely accepted

[141] Wolfe, “Convergence conditions
for ascent methods,” 1969

formalization of this notion; they consider α acceptable if it fulfills

f (α) ≤ f (0) + αc1 f ′(0) (W-I) and (68a)

f ′(α) ≥ c2 f ′(0) (W-II), (68b)

using two constants 0 ≤ c1 < c2 < 1 chosen by the designer of the line
search, not the user.35 W-I is the Armĳo or sufficient decrease condition

35 The constraints on c1 and c2 ensure
that there exists a Wolfe point for α ∈ R+

for functions f (α) which are bounded
below (e. g., [100, Lemma 3.1]).

[3]. It encodes that acceptable functions values should lie below a

[3] Armĳo, “Minimization of functions
having Lipschitz continuous first partial
derivatives,” 1966

linear extrapolation line of slope c1 f ′(0). W-II is the curvature condition,
demanding a decrease in slope. The choice c1 = 0 accepts any value
below f (0), while c1 = 1 rejects all points for convex functions. For the
curvature condition, c2 = 0 only accepts points with f ′(α) ≥ 0; while
c2 = 1 accepts any point of greater slope than f ′(0). W-I and W-II
are known as the weak form of the Wolfe conditions. The strong form
replaces W-II with | f ′(α)| ≤ c2| f ′(0)| (W-IIa). This guards against

[100] Nocedal and Wright, Numerical Op-

timization, 1999

accepting points of low function value but large positive gradient.
Figure 21 and Algorithm 2 shows a conceptual sketch illustrating
the typical process of a line search, and the weak and strong Wolfe
conditions.

Ensuring Positive Definiteness of Hessian Estimates

As shown in Section 2.3.4, quasi-Newton optimizers (such as bfgs or
dfp) do not explicitly encode positive definiteness of the Hessian esti-
mate Bt. Still, this property is desirable since then, the quasi-Newton
direction pt = −B−1

t ∇LD(wt) always yields a descent direction. It can

http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m

54 | EMPIRICAL RISK MINIMIZATION

be shown that the estimates Bbfgs
t and Bdfp

t as in Eqs. 62 and 63 stay
positive definite if they are constructed with gradients that fulfill the
Wolfe conditions at each iteration. To see this write (with s(α) = αpt):

s(α)⊺∆yt = αp⊺t∇LD(w(α))− αp⊺t∇LD(w(0))

= α f ′(α)− α f ′(0)
!
> 0

→ f ′(α)
!
> f ′(0)

(69)

which is fulfilled by imposing Eq. 68b (note that f ′(0) is negative).
Theorems 7.7 and 7.8 in Dennis and Moré [30] show that Bbfgs

t and [30] Dennis and Moré, “Quasi-Newton
methods, motivation and theory,” 1977Bdfp

t are positive definite iff s⊺t ∆yt > 0, thus when W-II is fulfilled.

Algorithm 2: Sketch of line searches.
The main algorithm consists of a loop
which alternates between evaluating the
objective LD , then checking the point
for acceptance (by Wolfe conditions),
and finding a new candidate for eval-
uation by collapsing the search space
α ∈ R+ efficiently. The latter is done
by the subroutine computeNextCandi-
date which extrapolates with exponen-
tially increasing steps until a gradient of
positive slope is found, then interpolates
between points of the last promising cell
(with a cubic polynomial). Note that all

relevant quantities (y, y′, α, etc.) are
scalar; this means that besides evaluat-
ing f , line searches virtually add no over-
head to the optimization routine. An-
other important characteristic of a line
search is the ability to ‘immediately-
accept’ after the very first function eval-
uation (lines 8,10), such that well scaled
initial trials α0 add no overhead.

1: function lineSearchSketch(f , y0, y′0, α0)
2: T, Y, Y′←initStorage(0, y0, y′0) � for scalar observation
3: α← α0 � position of initial candidate
4:

5: while budget not used and no Wolfe-point found do
6: [y, y′]← f (α) � evaluate objective
7: T, Y, Y′←updateStorage(α, y, y′)
8: pWolfe←checkWolfeConditions(y0, y′0, y, y′)
9: if pWolfe true then

10: return Wolfe-point
11: else
12: α←computeNextCandidate(α, y, y′, T, Y, Y′)
13: end if
14: end while
15:

16: �no Wolfe point found in budget
17: return observed location in T with lowest value y
18: end function

19: function computeNextCandidate(α, y, y′, T, Y, Y′)
20: if y′ < 0 and extrapolation done then � still negative slope
21: α← 2α � double step size
22: else
23: α←cubicMinimum(y, y′, T, Y, Y′) � of previous cell
24: end if
25: return α

26: end function

Limitation

The classic concept of a line search is based on (at least) two hard
assumptions: First, that the Wolfe conditions can be checked exactly
(needs descent direction pt), and second that the search space of α

LINE SEARCHES | 55

can be collapsed efficiently. This can be ensured if and only if LD
and ∇LD can be evaluated exactly, but not anymore if the evaluated
gradients and losses are noisy. In other words, if one is uncertain

about the true values of f (α) and f ′(α) it is unclear what it means
to evaluate W-I, W-II, and unclear how to find suitable locations to
evaluate the objective. For this reason line search subroutines can not
be used in stochastic optimization settings increasingly prominent in
machine learning application. Consequently the step size αt is a free
parameters again that requires tuning and attention. This is done
manually or (semi-)automated in an ‘outer-outer loop’, either by a
parameter search algorithm, grid search, or an expert user, burning
through a lot of CPU and GPU time on the way. But even leaving the
cost aside, these approaches do not adapt steps sizes locally like line
searches do, and are thus arguably always less optimal.

In an effort to gain the same automation and user-friendliness as
met by classic line searches, Chapter 7 extends this concept to a prob-

abilistic line search which can take in noisy evaluations of f and f ′

and return an analytic probability measure on the Wolfe conditions.
Instead of collapsing the search space of α, it will propose locations
in R+ which are likely to fulfill the Wolfe conditions and bring about
descent. Importantly, the algorithm will be of the same cost as a clas-
sic line searches (small, constant, and independent of N), and create
little to no overhead to the outer optimization routine whose cost is
dominated by the evaluation of the mini-batch gradient ∇LB(wt).

3Quadratic Problems & Probabilistic Linear Solvers

This chapter provides basic notation and algebra for Gaussian in-
ference on matrices for linear systems. This includes Kronecker

products and Kronecker algebra (Section 3.2). It is introduced here
since we will use similar models, notions, and notation in Chapter 9,
where we solve a sequence of correlated linear systems instead of only
one. Linear systems Ax = b (solve for vector x) with symmetric posi-
tive definite (spd) matrices A can be phrased as quadratic optimization
problems of the form minx x⊺Ax− x⊺b. Thus Section 3.1 also bridges
the gap to classic quasi-Newton methods for optimization that were
discussed in Section 2.3.4. In linear systems, the quantity of interest
A−1b is a purely mathematical object, but since it is unknown, finding
it by evaluating related mathematical objects, usually Axt for some
vectors xt, can be phrased as inference task. The general notion of
probabilistic inference on computational objects will be shortly dis-
cussed next.

Inference on Computational Objects

Numerical methods estimate hard to compute or intractable mathe-
matical objects, such as Hessians in optimization, or an integral of a
function. This is done by computing well-posed1 mathematical quan- 1 ‘Well-posed’ is supposed to mean that

the task is clearly defined as solvable by
a computer in finite time, and apart from
numerical errors, the precision of the es-
timator to the true solution is known ex-
actly, and can be imposed a priori. These
well-posed problems might be a charac-
ter string encoding an analytic gradient
or an integrand value, both given the in-
put.

tities which are related to them, e. g., gradients, or the integrand at
various input locations. This can be seen as inferring an unknown
(hidden) quantity from related known (observed) ones. In contrast
to classic inference tasks, observation or data is of computational na-
ture, in contrast to physical, mined by a CPU, by investing resources
that might be measured in CPU-time or energy consumption. The
general discussion is related to the field of probabilistic numerics [58], [58] Hennig, Osborne, and Girolami,

“Probabilistic numerics and uncertainty
in computations,” 2015

which phrases non-trivial numerical tasks, i. e., where the error of
an estimator to the true solution can not be known easily, as proba-
bilistic inference problems. In probabilistic numerics, the probability
distributions which are used to describe the gradual commitment to
the solution of a numerical problem, also provide a way to capture
the lack of knowledge about the latter; and thus, if scaled well, also
provide an error estimate.

Often, general mathematical properties of the object of interest are
accessible by definition or by proof and can be incorporated into prior
distributions, such es symmetry of the Hessian matrix, or smoothness
of an integrand. A concrete algorithm then needs to trade off the

58 | QUADRATIC PROBLEMS & PROBABILISTIC LINEAR SOLVERS

following points: i) encoding both, the mathematically true or known
properties of the hidden quantities, and also the mathematical relation
to the observables, and ii) keeping the computation tractable and
cheap. This means that the designer of a numerical method needs to
weigh i) and ii), such that the resulting algorithm performs best for
finite computational budgets.

The next section will introduce works about solving linear systems
with symmetric positive definite (spd) matrices from a probabilistic
perspective. The quantity of interest here is (the inverse of) this spd
matrix, and the data are path segments and gradient differences of the
corresponding quadratic objective.

3.1 Gaussian Inference on Positive DefiniteMatrices
We restate the results of Hennig [56] about the solution of linear sys- [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015tems of the form ∆Lw = b (solve for w ∈ RN for given b ∈ RN and
∆L ∈ RN×N spd). In the context of second-order optimization, this im-
plies a constant Hessian, i.e. ∆LD(wt) = ∆L = const and a quadratic
objective L(w) = w⊺∆Lw − w⊺b with gradient ∇L(w) = ∆Lw − b.
Let Bt be the current Dennis-estimator for the Hessian, then the Den-
nis family of quasi-Newton methods is defined by the update rule
(repeated from Eq. 62):

Bt+1 = Bt +
(∆yt − Btst)c

⊺
t + ct(∆yt − Btst)⊺

c⊺t st
− cts

⊺
t (∆yt − Btst)c

⊺
t

(c⊺t st)2 , (70)

where st := wt+1 − wt, ∆yt := yt+1 − yt = ∇L(wt+1)−∇L(wt) and
ct = Wtst as in Section 2.3.4.2 The identical estimator for ∆L for 2 Short reminder: W ∈ RN×N spd was

used to define the minimization prob-
lem Bt+1 = arg minB∥B− Bt∥2

W,F s.t.
Bst = ∆yt ∧ B = B⊺. This also means,
that a constant ∆L, and not just its esti-
mator, always fulfills the secant equation
∆Lst = ∆yt, too.

one step t→ t + 1 can be derived by phrasing the minimization prob-
lem of Eq. 61 as a multi-dimensional Gaussian inference problem
on the matrix ∆L with prior p(∆L) = N (Bt, Wt⊗⊖Wt) and likelihood
p(∆yt|∆L) = limβ→ 0N (∆Lst, βΛ) = δ(∆yt − ∆Lst). The posterior is
p(∆L|∆yt) = N (Bt+1, Wt+1⊗⊖Wt+1) with mean and covariance

Bt+1 = Bt +
(∆yt − Btst)(Wtst)⊺ + ct(∆yt − Btst)⊺

s⊺t Wtst
− (Wtst)s

⊺
t (∆yt − Btst)(Wtst)⊺

(s⊺t Wtst)2

Wt+1 = Wt −
(Wtst)(Wtst)⊺

s⊺t Wtst
.

(71)

Thus, the different sub-algorithms of the Dennis family differ in their
choice of ct (or Wt) according to:

KRONECKER ALGEBRA | 59

sr1 ct = ζ(∆yt − Btst) Wt = ζ(∆L− Bt) (72a)

psb ct = ζst Wt = ζ I (72b)

greenstadt ct = ζBtst Wt = ζBt (72c)

dfp ct = ζ∆yt Wt = ζ∆L (72d)

bfgs ct = ζ

(
∆yt +

√
s⊺t ∆yt

s⊺t Btst
Btst

)
Wt = ζ

(
∆L +

√
s⊺t ∆yt

s⊺t Btst
Bt

)
(72e)

for some arbitrary positive scalar ζ. The relation ct ↔ Wt is not
uniquely defined for a single st, but for all possibly occurring st ∈ RN .
The equivalence holds in general for one-step Gaussian regression on
symmetric matrices (Theorem 2.3, Corollary 2.4 and Corollary 3.1 in
[56]), and in particular for bfgs and dfp also for multi-step Gaussian
regression, when exact line searches are available (Lemma 3.2 and
Lemma 3.3 in [56]).

Similarly Broyden’s methods can be phrased as the non-symmetric
update:

Bt+1 = Bt +
(∆yt − Btst)s

⊺
t

s⊺t st
, (73)

which is equivalent to the posterior mean after one-step of multi-
dimensional Gaussian regression on a ∆L with prior p(∆L) = N (Bt, Wt⊗
Wt) that does not encode the symmetry of ∆L (Kronecker instead of
symmetric Kronecker covariance, see § 3.2), and likelihood as above.
Eq. 73 results for the parameter choice Wt = ζ I (Lemma 2.1 and there-
after in [56]). [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015The general update for multiple observations ∆Y = [∆y1, . . . ∆yT] ∈
RN×T and S = [s1, . . . , sT] ∈ RN×T , with likelihood p(∆Y|∆L) =

δ(∆Y− ∆LS) is given by:

BT = B0 + (∆Y− B0S)[S⊺W0S]−1(W0S)⊺ + (W0S)[S⊺W0S]−1(∆Y− B0S)⊺

− (W0S)[S⊺W0S]−1(S⊺(∆Y− B0S))[S⊺W0S]−1(W0S)⊺

WT = W0 − (W0S)[S⊺W0S]−1(W0S)⊺
(74)

for the symmetric update (Theorem 2.3 in [56]). Eq. 71 is recovered
for diagonal S⊺W0S (W0-conjugate search directions S), and Wt = W0

for all t.

3.2 Kronecker Algebra
This section recaps the most important algebraic properties of the
Kronecker product for better reference, since we will heavily use it, es-
pecially throughout Chapter 9 (see e. g., [85] for an overview). Details [85] Loan, “The ubiquitous Kronecker

product,” 2000and most proofs can be found in Appendix A. The Kronecker product,

60 | QUADRATIC PROBLEMS & PROBABILISTIC LINEAR SOLVERS

denoted by ‘⊗’, between two matrices A ∈ RN1×N2 and B ∈ RK1×K2 is
defined as:

(A⊗ B)(ij),(kl) = AikBjl , i = 1 . . . N1, k = 1 . . . N2,

j = 1 . . . K1, l = 1 . . . K2.
(75)

The resulting matrix is of size N1K1 × N2K2 and its elements are de-
noted by two double-indices (ij), (kl). A consequence of Eq. 75 is that,
a Kronecker product applied to a vectorized matrix #»

X ∈ RN2K2 , is the
vectorized version of two lower-dimensional, cheaper matrix-matrix
multiplications:3 3 The operation #» stacks the rows of a

matrix X ∈ RN2×K2 into a column vector
#»
X ∈ RN2K2×1.

(A⊗ B)
#»

X =
»

AXB⊺. (76)

The Kronecker product is a generalization of the outer products of two
vectors, and it also exhibits similar algebraic structures: For matrices
A and B of appropriate size and properties, it is

transpose (A⊗ B)⊺ = A⊺ ⊗ B⊺ (77a)

inverse (A⊗ B)−1 = A−1 ⊗ B−1 (77b)

factorizing (A⊗ B)(C⊗ D) = AC⊗ BD (77c)

distributive left (A⊗ B) + (A⊗ C) = A⊗ (B + C) (77d)

distributive right (A⊗ B) + (C⊗ B) = (A + C)⊗ B (77e)

associative (A⊗ B)⊗ C = A⊗ (B⊗ C) (77f)

trace tr [(A⊗ B)] = tr [A] tr [B] . (77g)

Eqs. 77 especially hold if one or both, A and B, are scalars or vec-
tors (where applicable). All formulas of Eq. 77 exploit the factorizing
structure of Eq. 75, such that often one side of the equalities is much
cheaper to compute in practice than the other. For example the left
hand side of Eq. 77b, i. e., the inverse of A ⊗ B (for square and in-
vertible A and B) naively is of cost O(N3K3), but the right hand side
only of cost O(N3 + K3). Importantly, the Kronecker product of two
full rank matrices A and B is also of full rank, or more precisely
rk[A⊗ B] = rk[A] rk[B]. Thus the assumption of Kronecker structure
on a large matrix does not restrict the space it is operating on when
applied to a vector (A⊗ B is still bĳective if A and B are). It merely
restricts the type of full-rank matrices to ones whose elements factor
as in Eq. 75.4 For a better understanding, we take a look at the clos- 4 This property will become important

later again, where Kronecker structure
is imposed on the covariance matrix of
a multi-dimensional Gaussian distribu-
tion. Restricting the rank would restrict
the hypothesis class; restricting its struc-
ture only shifts mass in the space.

est Kronecker approximation to an arbitrary matrix C ∈ RN1K1×N2K2

under the Frobenius norm:

A∗, B∗ = arg min
A,B

∥C− A⊗ B∥2
F. (78)

KRONECKER ALGEBRA | 61

There exists a fixed, known permutation R such that the Kronecker
product can be written as an outer product of the vectorized matrices A
and B: R(A⊗ B) =

#»

A
#»

B⊺ (details in Appendix A) and thus Eq. 78 can
be re-phrased as a rank-one approximation problem in a N1N2 × K1K2

dimensional space

»

A∗,
»

B∗ = arg min
A,B

R(C)− #»

A
#»

B⊺
2

F
. (79)

So, the Kronecker product is a rank-one matrix in a permuted space,
and—under the Frobenius norm—is the closest rank-one approxima-
tion to an arbitrary matrix in this space. With this, also the weighted

Frobenius norm can be re-written as an outer product

∥A∥2
W,F =

#»

A⊺(W ⊗W)
#»

A, (80)

for W symmetric positive definite.

3.2.1 Symmetric Kronecker Product
The symmetric Kronecker product (overview in Appendix A.2), de-
noted by ‘⊗⊖’ is the symmetrized version of the Kronecker product,
defined by (A⊗⊖B) := Γ(A⊗ B)Γ⊺ where Γ is the symmetrization op-
erator ΓC = 1

2 (C + C⊺) for some square matrix C. Thus with A and B
square and of same size:

(A⊗⊖B)(i,j),(k,l) =
1
4
(AikBjl + Ail Bjk + AjkBil + Ajl Bik)

(A⊗⊖B)
#»

X =
1
4
(

»

AXB⊺ + AX⊺B⊺ + BX⊺A⊺ + BXA⊺).
(81)

If A = B then Eq. 81 simplifies to

(A⊗⊖A)(i,j),(k,l) =
1
2
(Aik Ajl + Ajk Ail)

(A⊗⊖A)
#»

X =
1
2
(

»

AXA⊺ + AX⊺A⊺).
(82)

Similar to the Kronecker product, the symmetric version has some
nice algebraic properties, although not all of them are carried over:

transpose (A⊗⊖B)⊺ = A⊺⊗⊖B⊺ (83a)

factorizing (A⊗⊖A)(C⊗⊖C) = AC⊗⊖AC but (A⊗⊖B)(C⊗⊖D) ̸= (AC⊗⊖BD) (83b)

(A⊗⊖B)(C⊗⊖D) =
1
2
[AC⊗⊖BD + AD⊗⊖BC] (83c)

inverse (A⊗⊖A)−1 = (A−1⊗⊖A−1) but (A⊗⊖B)−1 ̸= (A−1⊗⊖B−1) (83d)

commutative A⊗⊖B = B⊗⊖A but A⊗ B ̸= B⊗ A (83e)

trace tr [A⊗⊖B] =
1
2
(tr [A] tr [B] + tr [AB]). (83f)

62 | QUADRATIC PROBLEMS & PROBABILISTIC LINEAR SOLVERS

Also, A⊗⊖B does not have the distributive property anymore. If A and
B are both of full rank N, then A⊗⊖B is only of rank 1

2 N(N + 1), as can
be also seen from the definition via Γ.

4Miscellaneous

This chapter introduces frameworks and notation of topics that do
not fit well into the previous chapters but are still important for

the subsequent chapters. Section 4.1 introduces Bayesian optimiza-
tion, a fully probabilistic concept for global optimization. Section 4.2
recaps the central limit theorem, which provides an argument that the
distribution of sums of i. i. d. random variables can be approximated
by a Gaussian.

4.1 Bayesian Optimization
The task of Bayesian optimization [79] [93] is to find the global mini- [79] Kushner, “A New Method of Lo-

cating the Maximum Point of an Arbi-
trary Multipeak Curve in the Presence
of Noise,” 1964

[93] Močkus, “On Bayesian Methods for
Seeking the Extremum,” 1975

mizer x∗ of a function f (x), that is:

x∗ = arg min
x

f (x) (84)

with x∗, x ∈ Ω ⊂ RD and f : Ω→R. The only access to f is a re-
stricted number of possibly noisy function evaluations y, as well as
sometimes the corresponding gradients. Often, there is not even an
analytic description of f and its evaluation is time-consuming and/or
expensive. Besides modeling f adequately, the main challenge is to
choose the locations of these evaluations such that good estimators for
the minimizer x∗ and its function value f (x∗) are obtained. Bayesian
optimization has three main ingredients: i) A surrogate for the un-
known objective f , ii) an acquisition function that depends on the
surrogate and ys, which encodes a strategy for finding good evalu-
ation points. Maximizing the acquisition function defines an ‘inner’
non-convex optimization problem after each evaluation of f that can
be solved with standard greedy optimization procedures, and iii) pos-
sibly a stopping criterion. A pseudocode is shown in Algorithm 3.

Gaussian Process Surrogate

[121] Shah, Wilson, and Ghahramani,
“Student-t Processes as Alternatives to
Gaussian Processes,” 2014

The function f is usually modeled with a Gaussian process (gp) with
kernel k(x, x′) and mean function µ(x), such that f ∼ GP(µ, k).1

1 A Gaussian process is arguably the
most widely used surrogate in bo, but
there are also other ones e. g., Student-t
processes [121].

The kernel encodes general assumptions about f such as smoothness,
length-scales of variability or even periodicity. It is usually dependent
on its own kernel-parameters, called hyper-parameters, that need to
be set, learned, or marginalized out.

64 | MISCELLANEOUS

Acquisition Function

f

x

ac
qu

is
iti

on
f

x

ac
qu

is
iti

on

Figure 22: Bayesian optimization acqui-
sition functions. Row 1: Gram matri-
ces of the posterior gps of rows 2 and 4
(squared exponential and periodic plus
Wiener respectively). Rows 3 and 5: The
acquisition functions ei, ucb, and poi.

The acquisition function u(x) characterizes the active part of the op-
timizer. It is based on a utility that encodes a desired strategy for
finding x∗. Examples are the probability of improvement (poi) [79], the
upper/lower-confidence bound (ucb) [4] [130], the expected improvement

[4] Auer, “Using confidence bounds
for exploitation-exploration trade-offs,”
2003

[130] Srinivas et al., “Gaussian Process
Optimization in the Bandit Setting: No
Regret and Experimental Design,” 2010

(ei) [71] or entropy search (es) [59] [61]:

[71] Jones, Schonlau, and Welch, “Effi-
cient global optimization of expensive
black-box functions,” 1998

[59] Hennig and Schuler, “Entropy
Search for Information-Efficient Global
Optimization,” 2012

[61] Hernández-Lobato, Hoffman, and
Ghahramani, “Predictive Entropy
Search for Efficient Global Optimization
of Black-box Functions,” 2014

upoi(x) = p(f (x) < η) = cdfN (0,1)(γ(x)) (85a)

uucb(x) = −µ f |y(x) + β
1
2 s f |y(x), β ∈ R+ (85b)

uei(x) = E f (x)[min{0, η − f (x)}] (85c)

= s f |y(x)
[
γ(x)cdfN (0,1)(γ(x)) + pdfN (0,1)(γ(x))

]
ues(x) = E f (x)[H[p(x∗| f (x), x)]], (85d)

where s f |y(x) = k1/2
f |y(x, x), γ(x) = (η−µ f |y(x))/s f |y(x), and η is a cur-

rent best guess for f (x∗). All of them are heuristics which trade off
the exploration of the domain of possible minimizers, and further ex-
ploitation of promising regions of low values of f . Figure 22 shows
two toy examples of the same gps as in Section 1.3, Figure 9, but this
time conditioned on two noise-free observations y (). The top row
shows the corresponding posterior Gram-matrices. Left: squared ex-
ponential kernel, right: periodic plus Wiener kernel; the second and
fourth row show the posterior gps. Rows three and five show three
different acquisition functions: ei, ucb, and poi (/ /). The
vertical bars (/ /) indicate the location of the maximum
of each acquisition function, which is the point that is chosen for the
next evaluation. Note that both gps are conditioned on identical ob-
servations. It is apparent that the strategy of the optimizer depends
crucially on the choice of the gp (the surrogate for f) as well as on the
search heuristic (acquisition function).

Variants

The literature on bo is vast; an overview can be found e. g., in Shahriari
et al. [122]. Bayesian optimization as described in Algorithm 3 is se-

[122] Shahriari et al., “Taking the Human
Out of the Loop: A Review of Bayesian
Optimization,” 2016

rial in the function evaluations, meaning that the acquisition function
is optimal for one subsequent observation. There are also acquisi-
tion functions which are less myopic and encode optimality for multi-
step look-ahead [47]. Related to this, there are variants of bo, called

[47] González, Osborne, and Lawrence,
“GLASSES: Relieving The Myopia Of
Bayesian Optimisation,” 2015

‘parallel-bo’ or ‘batch-bo’, where the acquisition functions is modified
to return more than one point of interest, such that speedups from
parallel evaluations of f at multiple locations are accessible [46]. Ad-

[46] González et al., “Batch Bayesian Op-
timization via Local Penalization,” 2015

ditionally, recent research also tries to include gradient information of
f into the gp, as well as into the acquisition function [142]. Although

[142] Wu et al., “Bayesian Optimization
with Gradients,” 2017

this increases the cost, both of updating the gp and optimizing the

CENTRAL LIMIT THEOREM | 65

acquisition function, the sample efficiency can possibly be increased.
Finally, there are variants of bo which use a different class of surro-
gates for f , such as Student-t processes [121] or even neural networks [121] Shah, Wilson, and Ghahramani,

“Student-t Processes as Alternatives to
Gaussian Processes,” 2014

[128].

Algorithm 3: Sketch of the Bayesian opti-
mization algorithm. The basic structure
is a loop which alternates between find-
ing a location for evaluation by optimiz-
ing the acquisition function, evaluating
the point, and updating the surrogate on
f .

1: function BayesOptSketch(f ,GP)
2: while budget not used do
3: u(x)←defineAcquisitionFunction(GP)
4: xt←optimizeAcquisitionFunction(u(x))
5: yt← f (xt) � evaluate function
6: GP ← updateGP(GP , xt, yt)
7: end while
8: return xt with minimal value yt

9: end function

[128] Snoek et al., “Scalable Bayesian
Optimization Using Deep Neural Net-
works,” 20154.2 Central Limit Theorem

The central limit theorem (clt) probably goes back to Abraham De
Moivre in 1738, the ‘Doctrine of Chances’ [27, p. 243] who considered [27] DeMoivre, The Doctrine of Chances,

1738the special case of coin tosses, 39 years before Carl Friedrich Gauss
was born. The name was popularized by Pólya in 1920 [104] who [104] Pólya, “Über den zentralen Gren-

zwertsatz der Wahrscheinlichkeitsrech-
nung und das Momentenproblem,” 1922

called it ‘central’ because it plays such a ‘central role’ in probability
calculus, and names Laplace as the proper inventor. The definition
below closely follows Feller [39] § 8.4. [39] Feller, An Introduction to Probability

Theory and Its Applications, 1971Let S = {x1, . . . , x|S|} be a set of i. i. d. random variables with finite
mean µ and invertible covariance Σ. As the set size |S|→∞, the
distribution of the sum X̄|S| := |S|− 1

2 ∑
|S|
i=1 xi, which itself is a random

variable, tends to a normal distribution N (µ, Σ). [12] Berry, “The accuracy of the Gaus-
sian approximation to the sum of inde-
pendent variates,” 1941

[37] Esseen, “On the Liapounoff limit of
error in the theory of probability,” 1942

This means that under mild assumptions, normalized sums of i. i. d.
random variables will eventually follow a Gaussian distribution. Nev-
ertheless the clt is a limit-statement, meaning that for finite sums
of random variables |S| < ∞ it is generally not clear if a Gaussian
approximation to the probability distribution of X̄|S| is sensible. In
practice though finite-|S| approximations are already quite accurate
for a variety of base-distributions (the distributions that the xi follow).2 2 Quantitative convergence results exist

(with known upper bounds on the con-
stant) for slightly more restrictive as-
sumptions on the distribution of the xi ,
e. g., the Berry-Esseen Theorem [12] [37]
assumes that E[|x|3] < ∞ and shows
convergence in Kolmogorov–Smirnov-
distance.

Figure 23 illustrates Gaussian approximations to the distributions
of X̄|S| for finite sums. Different rows show different (quite small) set
sizes |S| = 2, 10, and 100 which are roughly on the lower end of mini-
batch sizes used in stochastic optimization routines. The columns
from left to right show different base-distribution (): uniform,
Gamma, and a mixture of three Gaussians. They showcase different
properties of distributions of random variables that occur in optimiza-
tion, e. g., strictly positive (individual losses), multi-modal (individual
gradients and losses), and clipped (individual gradients). The his-

66 | MISCELLANEOUS

togram () in each plot is composed of 104 draws of X̄|S| for each
combination of base-distribution and mini-batch size |S| (a total of
104 · |S| draws of xi from the base-distribution). The Gaussian curve
() is defined by the sample mean and variance of the 104 samples
X̄|S|; if it is indistinguishable from the histogram, then the Gaussian
fit is very good. Already a set size of |S| = 10 (second row) pro-
duces very good Gaussian approximations, and even the one for the
smallest set size possible (|S| = 2) is passable at least for the uniform
and Gamma base-distributions. Additionally the |S|− 1

2 -dependence
of the standard deviation of the fitted Gaussians to the mini-batch size
can be observed since the Gaussian fits each get more narrow/ more
certain (from top row to bottom row) with increasing |S|.

|S
|=

2

Uniform Gamma Gauss Mix

|S
|=

10
|S
|=

10
0

Figure 23: Illustration of Gauss approxi-
mation for finite set sizes. All plots: Base
distribution (). Histogram of sam-
ples X̄|S| () each for 104 samples.
Gaussian fit using the sample mean and
sample variance of the mini-batch sam-
ples X̄|S| (). Columns from left to
right: Uniform, Gamma, Gaussian mix-
ture as base distribution. Rows from top
to bottom: increasing set size |S| = 2, 10
and 100 respectively. Scale of ordinate
of the Gauss-fit and the normalized his-
togram are identical but arbitrary for the
base-distribution.

We will use the central-limit-argument later in this thesis, especially
in Chapter 5, to justify Gaussian approximations to mini-batch gradi-
ents as well as, to a lesser degree, to mini-batch losses. Heuristics in
a similar style to Figure 23 on a real world problem will back-up the
claim.

Part II
Overfitting, Generalization & Early-Stopping

5Local Distributions of Losses and Gradients

In stochastic empirical risk minimization as introduced in Chapter 2,
the mini-batch size |B| trades off computational speed with the

precision of gradient and loss estimators. We will see that this re-
lation locally can be described approximately with the variances of
these quantities which drop linearly with |B|. This chapter lays the
foundations for the empirical, local variance estimator of stochastic
gradients and losses, which will be used by all following chapters.
The text is partly based on the publication [90]. [90] Mahsereci and Hennig, “Probabilis-

tic Line Searches for Stochastic Optimiza-
tion,” 2017

5.1 Likelihood for Losses and Gradients
The estimators ∇LD(w) and ∇LB(w) of Eq. 29 and 30 are both sums
of independent random variables drawn from a common distribution.
More precisely the datapoints d in D or B are drawn i. i. d. from the
data-distribution Q and are then transformed by the deterministic
network and loss function ℓ(fw(x), y) with d = (x, y).1 Thus the cen- 1 For ease of notation, and since the

map f is not important for the argument
below, we will write ℓ(w, d) instead of
ℓ(fw(x), y).

tral limit theorem (clt, Chapter 4 § 4.2) applies and the estimators
∇LD(w), and ∇LB(w) locally (i. e., for given parameters w) are Gaus-
sian distributed around the gradient of the risk ∇L(w) in the limit
|B|, |D|→∞. Strictly speaking, the clt does not make a statement
about the distribution for finite |B|, |D|, but often Gaussian approx-
imations are already sufficiently accurate even for low values of |B|
(some tens or hundreds). The same holds for the estimators LD(w) and
LB(w), although the Gaussian approximation might be a bit poorer
for w close to a minimizer of the empirical risk, since LD(w), LB(w),
as well as L(w) are bounded below. For a general dataset S of size |S|
with elements drawn independently from the data-distribution Q, we
thus approximately get:

LS (w) ∼ N
(
L(w),

Λ(w)

|S|

)
(86a)

∇LS (w) ∼ N
(
∇L(w),

Σ(w)

|S|

)
(86b)

with population (co-)variances Λ(w) and Σ(w) of function value and
gradients respectively:

Λ(w) = vard∼Q[ℓ(w, d)] ∈ R+ (87a)

Σ(w) = covd∼Q [∇ℓ(w, d)] ∈ RN×N . (87b)

70 | LOCAL DISTRIBUTIONS OF LOSSES AND GRADIENTS

The (co-)variances of LS and ∇LS scale inversely proportional to the
set size |S|. Efficient ways of locally estimating the diagonal of Σ(w)

(the variances only) and Λ(w) are discussed in Section 5.2.
The statements in Eq. 86 and 87 especially hold for each isolated

mini-batch B = S or the full dataset D = S . Estimators of different
iterates (e. g., from wt to wt+1) are dependent, since, in practice, there
is only one finite dataset available with which either consecutive∇LD
are computed (each time using the sameDwith d ∼ Q), or consecutive
∇LB where B ⊂ D is sub-sampled from a fixed set D. The objective
that can be optimized is thus always limited to the empirical risk LD
defined by the whole dataset. When B ⊂ D is locally sampled with
replacement, a similar statement as in Eq. 86 and 87 can be made which
regards the finite empirical distribution Q̂ as ground truth. Then:

LB(w) ∼ N
(

LD(w),
ΛD(w)

|B|

)
(88a)

∇LB(w) ∼ N
(
∇LD(w),

ΣD(w)

|B|

)
(88b)

with the (co-)variances:

ΛD(w) = vard∼Q̂ [ℓ(w, d)] =
1
|D|

|D|
∑
i=1

(ℓ(w, di)− LD(w))2 (89a)

ΣD(w) = covd∼Q̂ [∇ℓ(w, d)] =
1
|D|

|D|
∑
i=1

(∇ℓ(w, di)−∇LD(w))(∇ℓ(w, di)−∇LD(w))⊺. (89b)

If B ⊂ D is sampled without replacement, the factor in front the
population (co-)variances becomes (|D|−|B|)/(|D||B|−|B|) instead of 1/|B|;
both factors are very similar when |B| ≪ |D|.

5.2 Variance-Estimation fromMini-Batches
An unbiased estimator for the population variances (diagonal of matrix
Σ(w)) are the sample variances Σ̂(w) ∈ RN of the individual gradient
elements.2 Again for an arbitrary i. i. d. dataset S we get: 2 Note that Σ is a covariance matrix, and

Σ̂ just a vector of the variances. This
might cause confusion, but is also con-
venient as not to introduce yet another
symbol.

Σ̂(w) =
1

|S| − 1

|S|
∑
i=1
∇ℓ(w, di)

⊙2 − |S|
|S| − 1

∇LS (w)⊙2

≈ 1
|S|

|S|
∑
i=1
∇ℓ(w, di)

⊙2 −∇LS (w)⊙2,

(90)

where ⊙2 denotes the elementwise square. The estimator in the last
row is not unbiased anymore, but for large |S| both estimators are

VARIANCE-ESTIMATION FROM MINI-BATCHES | 71

nearly identical. Similarly, an unbiased estimator for Λ(w) is the
sample variance Λ̂(w):

Λ̂(w) =
1

|S| − 1

|S|
∑
i=1

ℓ(w, di)
2 − |S|
|S| − 1

LS (w)2

≈ 1
|S|

|S|
∑
i=1

ℓ(w, di)
2 − LS (w)2.

(91)

Both estimators Σ̂(w) and Λ̂(w) require the sample means (first mo-
ments) LS (w) and∇LS (w), as well as the statistics ∑i∇ℓ(w, di)

⊙2 and
∑i ℓ(w, di)

2.

Implementation

Parts of this subsection are taken from [6] where the author is second- [6] Balles, Mahsereci, and Hennig, “Au-
tomating Stochastic Optimization with
Gradient Variance Estimates,” 2017

author (of three). The derivations of Λ̂ and Σ̂ for multi-layer percep-
trons were originally done by the author, the ones for convolution
filter of cnns by L. Balles.

The sample means LS (w) and∇LS (w) are readily available during
the optimization run. In common auto-differentiation frameworks, as
the ones mentioned in Chapter 2, usually individual losses ℓ(w, di)

are accessible, such that Λ̂(w) is straightforward to compute. An
efficient implementation (in terms of speed and memory) of the sum
of elementwise squares of the individual gradients ∑i∇ℓ(w, di)

⊙2 is
a bit more tricky. The reason is that individual ∇ℓ(w, di) are usually
not accessible in auto-differentiation frameworks because the sum
over the mini-batch is performed implicitly via some matrix-matrix
computations. Even if individual ∇ℓ(w, di) were accessible, summing
them explicitly would not be a desirable approach since holding them
all in memory is usually too expensive.

Consider a fully connected multi-layer perceptron (mlp) with weight
matrices Wl of layer l and activations al of the preceding layer as in
Section 2.2.3 The gradients of the weights ∇ℓl can be computed re- 3 Reminder of sizes: Wl ∈ Rnl−1×nl , and

bl , zl , al ∈ Rnl×|B|.cursively by backpropagation (Chapter 2, Eq. 33) as ∇ℓl = al−1δ⊺l
(with δl = (Wl+1δl+1) ⊙ ∂al(zl)/∂zl). The matrix-matrix multiplica-
tion al−1δ⊺l implicitly performs the sum over the mini-batch. The
elementwise squares of the gradients can thus be computed as∇ℓ⊙2

l =

(al−1)
⊙2(δ⊺l)

⊙2, where again the summation over the mini-batch is
performed implicitly by the matrix-matrix product. To see this, let us
decompose the sum as:

[∇ℓ⊙2
l]αβ = [(al−1δ⊺l)

⊙2]αβ = ∑
i

aαi
l−1aαi

l−1δ
βi
l δ

βi
l

= ∑
i
(aαi

l−1)
2(δ

βi
l)2 = [(al−1)

⊙2(δ⊺l)
⊙2]αβ

(92)

72 | LOCAL DISTRIBUTIONS OF LOSSES AND GRADIENTS

Backpropagation would thus include only one more line:

δl = (Wl+1δl+1)⊙
∂al(zl)

∂zl
residual (93a)

∇ℓl = al−1δ⊺l gradient (93b)

∇ℓ⊙2
l = (al−1)

⊙2(δ⊺l)
⊙2. squared gradient (93c)

For biases, the squared gradient is ∇ℓ⊙2
l = 11×|B|(δ

⊺
l)
⊙2. The objects

al−1 and δl can be re-used from the gradient computation. Roughly
speaking, computing Σ̂(w) during backpropagation adds one more
matrix-matrix computation per layer of complexity nl−1nl |B| to ex-
isting three of same cost (one from the forward pass, two from the
backwards pass); a factor of 1.3. The actual cost is lower because
of non-linearities or auxiliary actions like fetching data or updating
the variables. An efficient way of implicitly computing the second
moments for convolution filters of a cnn can be found in [6]. [6] Balles, Mahsereci, and Hennig, “Au-

tomating Stochastic Optimization with
Gradient Variance Estimates,” 2017

Connections

The non-central second moments Ed∼Q[∇ℓ(w, d)⊙2] = ∇L(w)⊙2 +

diag[Σ(w)] are quantities that appear in diagonal preconditioners like
adam or rmsprop (Chapter 2 § 2.4). There, the elements of the search
direction are scaled inversely proportional to v⊙1/2

t (Eq. 65), where
vt is an exponential running average over the squared stochastic gra-
dients ∇ℓ(wt, d)⊙2. Neglecting the bias which occurs from moving
the optimizer in w-space, one can say that vt ≈ Ed∼Q[∇ℓ(wt, d)⊙2]

for |S| = 1.4 In principle vt could thus be used to estimate diag[Σ] 4 For |S| > 1 the same holds, but for the
expectation of mini-batch gradients over
the distribution of mini-batches.and incorporate it in gradient likelihoods as in Eq. 86. For general

|S| ≥ 1, this would amount to a variance estimator of the form
|S|−1 diag[Σ(wt)] ≈ vt−m⊙2

t , where mt, as in Eq. 65, is a running aver-
age over mini-batch gradients∇LS (wt). The major difference between
vt and Σ̂ of Eq. 90 is the local versus non-local computation. Averaging
over different locations wt introduces a ‘memory’ of roughly a few
hundred to thousand previous locations depending on the smoothing
factor (γ ≈ 0.999 for adam decays to ≈ 5% after 3000 steps). This
has two considerable effects: i) Averaging in w-space introduces a
non-trivial bias, and ii) locally large variances get reduced and locally
small variances get enlarged.

This has minor or major implications, depending on the task, and
the benefits of either of the estimation methods, i. e., running averages
or local estimators, or perhaps a combination of the two, can for sure
be exploited. For instance, rough damping of sgd-steps might require
less accurate variance estimates, but if decisions depend crucially on
the gradient likelihood as in Eq. 86, locally unbiased estimators of
Σ(w) might be inevitable.

VARIANCE-ESTIMATION FROM MINI-BATCHES | 73

The following chapters (especially 6 and 7) show examples of algo-
rithms which heavily rely on the local estimators Λ̂ and Σ̂ and do not
perform well with running averages like vt, possibly for the mentioned
reasons.

Empirical Study

Similar to Chapter 4 § 4.2 we conduct experiments on the empirical
distribution of elements of mini-batch gradients and losses, and com-
pare them to Gaussian fits. Figure 24 shows empirical distributions

−2 0 2

·10−2

w
ei

gh
t

t =1e+00

0 2 4

·10−2

bi
as

−2 0 2

·10−3

t =1e+01

−5 0 5

·10−3

−2 0 2

·10−3

t =1e+02

−5 0 5

·10−3

−1 0 1

·10−2

t =1e+03

−4 −2 0 2 4

·10−3

−1 0 1

·10−3

t =1e+04

−2 0 2

·10−3

−2 −1 0 1

·10−2

w
ei

gh
t

−0.14−0.12−0.1−8 · 10−2

bi
as

−0.5 0 0.5 1

·10−2

−5 0 5

·10−3

−5 0 5

·10−3

−1 0 1

·10−2

−1 0 1

·10−2

−5 0 5

·10−3

−2 0 2

·10−3

−5 0 5

·10−3

−4 −2 0 2

·10−2

w
ei

gh
t

−5 0

·10−2

bi
as

−1 0 1

·10−2

−1 0 1 2

·10−2

−2 0 2

·10−2

−1 0 1

·10−2

−1 0 1

·10−2

−0.5 0 0.5 1

·10−2

−1 0 1

·10−2

−4 −2 0 2 4

·10−3

−0.2 0 0.2

w
ei

gh
t

0.6 0.8
∇LB

bi
as

−5 0 5

·10−2

−0.1 0 0.1
∇LB

−5 0 5

·10−2

−0.1 0 0.1
∇LB

−5 0 5

·10−2

−5 0 5

·10−2∇LB

−1 0 1

·10−2

−2 0 2

·10−2∇LB

Figure 24: Empirical distribution of
mini-batch gradients for |B| = 100.
All plots: empirical distribution ().
Gaussian fit using the sample mean and
sample variance of all mini-batch gradi-
ents (); same for the variance esti-
mation Σ̂ of a single mini-batch ()
(further details in text).

() of gradient weights and biases (one per layer, layers from top
to bottom) for mini-batch size |B| = 100, in different stages of the
optimization process. Columns from left to right: iteration number
t = 1 (initialization), 101, 102, 103, and 104 (converged). In each box,
two Gaussian fits are plotted: one using the sample mean and sample
variance of all mini-batch gradients (); and the other using the
variance estimation Σ̂ of a single mini-batch (), as it would be used
by an algorithm. The network has 4-layers, is fully connected and
trained to convergence with sgd on MNIST5 and a well performing

5 MNIST is a dataset for handwritten
digit classification containing 60k train-
ing datapoints. It is introduced in more
detail in Chapter 7 § 7.5.

step size. Rows 1-2 show the input layer (random weights in row 1

74 | LOCAL DISTRIBUTIONS OF LOSSES AND GRADIENTS

and random biases in row 2); and the same for rows 3-4, 5-6, 7-8 but for
hidden layers 1 and 2 and the output layer respectively. The Gaussian
form holds astonishingly well over the whole optimization process,
even for this (rather small) mini-batch size; and there are only minor
differences in the variance estimate computed by all mini-batches and
the one using only a single mini-batch.6 6 The variance of the variance estimator

Σ̂ also grows with decreasing mini-batch
size.Figure 25 is structured like Figure 24 but shows histograms and

Gauss fits for a very small mini-batch size |B| = 10. The distribution
of the initial gradients (leftmost column, t = 1) is still well approxi-
mated by a Gaussian, but the fits get poorer the more the optimizer
progresses. Additionally, the sample-variances Σ̂ often underestimate
the true variances diag[Σ]. This is because gradients of the tail of the
base-distribution (not the plotted histogram, but the distribution of
individual gradients) are less likely represented in small mini-batches
of only size 10. The effects can also be observed empirically (Chapter 7
§ 7.5) where an algorithm (the probabilistic line search) that relies on
the Gaussian assumption of Eq. 88 as well as on Λ̂ and Σ̂, performs less
well for |B| = 10 but performs well and reliably for larger |B| > 10.

−0.1−5 · 10−2 0 5 · 10−2

w
ei

gh
t

t =1e+00

−5 0 5

·10−2

bi
as

−5 0 5

·10−3

t =1e+01

−1 0 1

·10−2

−1 −0.5 0 0.5 1

·10−2

t =1e+02

−2 −1 0 1 2

·10−2

−2 0 2

·10−2

t =1e+03

−1 0 1

·10−2

−4 −2 0 2 4

·10−3

t =1e+04

−5 0 5

·10−3

−5 0 5

·10−2

w
ei

gh
t

−0.2 −0.1 0

bi
as

−2 0 2

·10−2

−2 0 2

·10−2

−2 −1 0 1 2

·10−2

−4 −2 0 2 4

·10−2

−4 −2 0 2 4

·10−2

−1 0 1

·10−2

−1 0 1

·10−2

−1 0 1

·10−2

−0.1 0 0.1

w
ei

gh
t

−0.1 0 0.1

bi
as

−5 0 5

·10−2

−5 0 5

·10−2

−5 0 5

·10−2

−4 −2 0 2 4

·10−2

−4 −2 0 2 4

·10−2

−2 0 2

·10−2

−4 −2 0 2 4

·10−2

−1 0 1

·10−2

−0.5 0 0.5

w
ei

gh
t

0 0.5 1 1.5
∇LB

bi
as

−0.2 −0.1 0 0.1 0.2

−0.4−0.2 0 0.2 0.4
∇LB

−0.2 0 0.2

−0.4 −0.2 0 0.2 0.4
∇LB

−0.1 0 0.1

−0.1 0 0.1
∇LB

−4 −2 0 2 4

·10−2

−5 · 10−2 0 5 · 10−2 0.1

∇LB

Figure 25: Same as Figure 24 but for a
smaller mini-batch size |B| = 10. The
histograms are less well approximated,
especially towards the end of the opti-
mization process.

VARIANCE-ESTIMATION FROM MINI-BATCHES | 75

For completeness, Figure 26 shows the same histograms and plots
for the losses LB instead of gradients. The main difference is that
the base-distribution (not shown), and thus the histogram, is lower
bounded by zero, such that the Gauss distribution (which has sup-
port on the whole real line) tends to be a poorer fit if much mass is
accumulated close to this boundary. Again, for a ‘large enough’ mini-
batch size |B| = 100 (top row) the Gauss fits are satisfactory and the
variance estimate Λ̂ () approximates the true variance () well
enough; histograms for the smaller |B| = 10 (bottom row) are less
Gaussian-like and Λ̂ (similar to Σ̂) has a higher variance itself, as well
the tendency to underestimate Λ.

8 8.5 9

|B
|=

10
0

t =1e+00

1.2 1.4 1.6 1.8

t =1e+01

0.2 0.4 0.6 0.8

t =1e+02

0 0.2 0.4

t =1e+03

0 0.1

t =1e+04

6 8 10
LB

|B
|=

10

1 2
LB

−0.5 0 0.5 1 1.5
LB

−0.5 0 0.5 1
LB

−0.2 0 0.2 0.4
LB

Figure 26: Same as Figure 24 but for
losses LB . Top row: mini-batch size
|B| = 100; bottom row: mini-batch size
|B| = 10. Again the Gaussian fits are
better for the larger mini-batch size.

All following sections will make use of the Gaussian assumption of
Eq. 88 as well as the statistical estimators Σ̂ and (to a lesser degree) Λ̂
(Eqs. 90 and 91). It will be assumed that they are ‘good enough’ for our
purposes, in the sense outlined above. In the future it will be helpful to
incorporate additional checks, for example in the form of lightweight
occasional statistical tests during or prior to the optimization run, if
the Gaussian assumptions, as well as the quality of the estimators are
indeed still fulfilled to a well enough degree (which depends on the
given task). If this should not be the case, the mini-batch size could
be increased, the noise estimation could be altered, the optimization
method could be switched, or the optimizer could at least return a
flag. This thesis will not feature these future works.

6Early-StoppingWithout a Validation Set

Early stopping is a widely used technique to prevent poor gener-
alization performance when training an over-expressive model

by means of gradient-based optimization. To find a good point to halt
the optimizer, a common practice is to split the dataset into a training
and a smaller validation set to obtain an ongoing estimate of the gen-
eralization performance. This chapter introduces an early-stopping
criterion based on fast-to-compute local statistics of the computed
gradients and removes the need for a held-out validation set. The
experiments in Section 6.3 show that this is a viable approach, espe-
cially for smaller to mid-sized datasets, in the setting of least-squares
and logistic regression, as well as neural networks. The text is mostly
based on the article [88]. Section 6.1 motivates the problem, Section 6.2 [88] Mahsereci et al., Early Stopping with-

out a Validation Set, 2017introduces notation, model assumptions, and motivate the idea of the
stopping criterion. Section 6.2.1 covers the more intuitive case of gra-
dient descent and Section 6.2.2 extends to stochastic settings. Finally
Section 6.3 shows experimental result on convex problems (quadratic,
least-squares, binary logistic regression) as well as non-convex prob-
lems (multi-layer perceptrons, multinomial logistic regression).

6.1 Overfitting, Regularization and Early-Stopping
Since the risk L(w) i. e., the expectation of the loss over the unknown
data distribution as defined in Eq. 27, is virtually always unknown, a
key question arising when minimizing the empirical risk LD(w) (Eq. 28),
is how the performance of a model trained on a finite datasetD gener-
alizes to unseen data. Performance can be measured by the loss itself
or other quantities, e.g., the mean accuracy in classification problems.
Typically, to measure the generalization performance a finite test set is
entirely withheld from the training procedure and the performance
of the final model is evaluated on it. This test loss, however, is also
only an estimator for L with a finite stochastic error whose variance
drops linearly with the test set size. If the used model is overly ex-
pressive, minimizing the empirical risk LD(w) exactly—or close to
exactly—will usually result in poor test performance, since the model
overfits to the training data. There is a range of measures that can be [48] Goodfellow, Bengio, and Courville,

Deep Learning, 2016taken to mitigate this effect, some of which were already discussed in
Chapter 2 § 2.2.2; textbooks like [13] give an overview over general [13] Bishop, Pattern Recognition and Ma-

chine Learning, 2006concepts, chapter 7 of [48] gives a comprehensive summary targeted

78 | EARLY-STOPPING WITHOUT A VALIDATION SET

at deep learning. Some widely used concepts are briefly repeated in
the following paragraphs.

Model selection techniques choose a model among a hypothesis class
which, under some measure, has the closest level of complexity to the
given dataset. They alter the form of the loss function ℓ f (Eq. 28) or
the mapping fw over an outer optimization loop (first find a good
ℓ f , fw, then optimize LD), such that the final optimization on LD is
conducted on an adequately expressive model. This can—but does
not need to—constrain the number of parameters of the model. In
the case of deep neural networks the number of parameters can even
significantly exceed the number of training examples [77] [125] [133] [77] Krizhevsky, Sutskever, and Hinton,

“Imagenet classification with deep con-
volutional neural networks,” 2012

[125] Simonyan and Zisserman, “Very
Deep Convolutional Networks for Large-
Scale Image Recognition",” 2014

[133] Szegedy et al., “Going deeper with
convolutions,” 2015

[55].

[55] He et al., “Deep residual learning for
image recognition,” 2016

If the dataset is not sufficiently representative of the data distribu-
tion, an opposite, although not incompatible, approach is to artificially
enrich it to match a complex model. Data augmentation artificially en-
larges the training set by adding transformations/perturbations of
the training data. This can range from injecting noise [124] [137] to

[124] Sietsma and Dow, “Creating arti-
ficial neural networks that generalize,”
1991

[137] Vincent et al., “Extracting and com-
posing robust features with denoising
autoencoders,” 2008

carefully tuned contrast and colorspace augmentation [77].
Finally, a widely-used provision against overfitting is to add regu-

larization terms to the objective function that penalize the parameter
vector w, typically measured by the l1 or l2 norm [78]. These terms

[78] Krogh and Hertz, “A simple weight
decay can improve generalization,” 1991

constrain the magnitude of w. They tend to drive individual parame-
ters toward zero or, in the l1 case, enforce sparsity [13] [48]. In linear

[13] Bishop, Pattern Recognition and Ma-

chine Learning, 2006

[48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016

regression, these concepts are known as least-squares and lasso reg-
ularization [134], respectively.

[134] Tibshirani, “Regression shrinkage
and selection via the lasso,” 1996

Despite these countermeasures, high-capacity models will often
overfit in the course of the optimization process. While the loss on
the training set decreases throughout the optimization procedure, the
test loss saturates at some point and starts to increase again. This un-
desirable effect is usually countered by early-stopping the optimization
process, meaning that for a given model, the optimizer is halted if a
user-designed early-stopping criterion is met. This is complementary
to the model and data design techniques mentioned above and does
not undo eventual poor design choices of ℓ. It merely ensures that
the empirical risk LD of a given model is not minimized beyond the
point of best generalization. In practice it is often even more accessi-
ble to ‘early-stop’ a high-capacity model for algorithmic purposes or
because of restrictions to a specific model class, and thus preferred or
even enforced by the model designer. [107] Prechelt, “Early Stopping — But

When?” 2012Arguably the gold-standard of early-stopping is to monitor the loss
of a validation set [94] [111] [107]. For this, a portion of the training [94] Morgan and Bourlard, “Generaliza-

tion and parameter estimation in feed-
forward nets: Some experiments,” 1989

[111] Reed, “Pruning algorithms-a sur-
vey,” 1993

data is split off and its loss is used as an estimate of the generalization
loss L, leaving less effective training data to define the training loss
LD . An ongoing estimate of this generalization performance is then
tracked and the optimizer is halted when the generalization perfor-

WHEN TO STOP?—A CRITERION BASED ON GRADIENT STATISTICS | 79

mance drops again. This procedure has many advantages, especially
for very large datasets where splitting off a part has minor or no effect
on the generalization performance of the learned model. Neverthe-
less, there are a few obvious drawbacks. Evaluating the model on
the validation set in regular intervals can lead to computational over-
head. More importantly, the choice of the size of the validation set
poses a trade-off: A small validation set produces an estimator of L
with a large stochastic error, which can lead to a misguided stopping
decision. Enlarging the validation set yields a more reliable estimate
of generalization, but reduces the remaining amount of training data,
depriving the model of potentially valuable information. This trade-
off is not easily resolved, since it is influenced by properties of the
data distribution (the variance Λ of Eq. 86a) and subject to practical
considerations, e.g., redundancy in the dataset. [86] Maclaurin, Duvenaud, and Adams,

Early Stopping is Nonparametric Varia-

tional Inference, 2015
Recently [86] introduced an interpretation of (stochastic) gradient

descent in the framework of variational inference. As a side effect, this
motivated an early-stopping criterion based on the estimation of the
marginal likelihood, which is done by tracking the change in entropy
of the posterior distribution of w, induced by each optimization step.
Since the method requires estimation of the Hessian diagonals, it
comes with computational overhead comparable to the cost of a few
additional gradient evaluations per step.

The following section motivates and derives a cheap and scalable
early-stopping criterion which is solely based on local statistics of
the computed gradients. In particular, it does not require a held-out
validation set, thus enabling the optimizer to use all available training
data.

6.2 When to Stop?—ACriterion Based on Gradient Statistics

L,
L D

0

∇
L,
∇

L D

0

w

∇
L,
∇

L D

Figure 27: Sketch of early-stopping crite-
rion. Top: marginal distribution of func-
tion values defined by Eq. 86a. Mean L
() ±1 Λ

1
2 (), pdf shaded. The

full dataset defines one realization of this
distribution (LD of Eq. 28/). Mid-
dle: same as top plot but for correspond-
ing gradients defined by Eq. 86b. Mean
∇L () ±1 Σ

1
2 (), realization

∇LD (). Bottom: Same as middle
plot; desired stopping regions ().

The perhaps obvious but crucial observation at the heart of the crite-
rion proposed below is that even the full, but finite, data-set is just a
finite-variance sample from a population: As argued in Chapter 5 and
by Eq. 86, the estimators LD and ∇LD are approximately Gaussian
samples around their expectations L and ∇L, respectively. Figure 27
provides an illustrative, one-dimensional sketch. The top plot shows
the marginal distribution of function values (Eq. 86a). The true, but
usually unknown, optimization objective L, is the mean of this distri-
bution (). The objective LD , which is optimized in practice and is
fixed by the training set D, defines one realization out of this distribu-
tion ().

In general, the minimizers of L and LD need not be the same. Of-
ten, for a finite but large number of parameters w ∈ RN , the loss
LD can be optimized to be very small. When this is the case the

80 | EARLY-STOPPING WITHOUT A VALIDATION SET

model tends to overfit to the training data and thus performs poorly
on newly generated (test) data T ∼ Q with T ∩ D = ∅. To prevent
this overfitting-effect, the optimization process is stopped early. The
idea behind this is that variations between training examples of the
same class are mostly learned at the very end of the optimization
process where the weights w are fine-tuned. In practice, the true
minimum of L is unknown, however, the approximate errors of the
estimators LD and ∇LD are accessible at every position w. Local es-
timators for the diagonal of Σ(w) can be computed efficiently even
for very high dimensional optimization problems (Chapter 5, § 5.2).
The variance estimator of the gradient distribution will be again, con-
sistent with Chapter 5, denoted as Σ̂(w) ≈ vard∼Q [∇ℓ(w, d)] with
Σ̂(w) = 1/(|S|−1) ∑d∈S (∇ℓ(w, d)−∇LS (w))⊙2, where ⊙2 denotes the
element-wise square and S is either the full datasetD or a mini-batch
B.

Since the minimizers of L and LD are not generally identical, also
their gradients will cross zero at different locations w. The middle plot
of Figure 27 illustrates this behavior. Similar to the left plot, it shows a
marginal distribution, but this time over gradients (Eq. 86b). The true
gradient∇L is the mean of this distribution (). The one realization
∇LD () defined by the dataset D corresponds to LD . Ideally, the
optimizer should stop in an area in w-space where possible minima
are likely to occur if different datasets of same size were samples from
Q. In the sketch, this is encoded as the vertical red shaded area in the
bottom plot (). It is the area around the minimizer of L where
∇L± 1 standard deviation encloses zero.

Since ∇L is unknown, however, this criterion is hard to use in
practice, and must be turned into a statement about ∇LD . A simi-
lar criterion that captures this desiderata in essence is to stop when
the collected gradients ∇LD are becoming consistently very small in
comparison to the error Σ/|D|. This is shown as horizontal red shaded
area . Close enough to the minima of LD and L, the two criteria
roughly coincide (intersection of red vertical and horizontal shaded
areas). A measure for this is the probability:

p(∇LD(w)|∇L(w) = 0) = N
(
∇LD(w); 0,

Σ(w)

|D|

)
, (94)

of observing ∇LD(w) with covariance Σ(w), were it generated by a
true zero gradient ∇L(w) = 0.1 If gradients ∇LD are becoming too

1 This can be seen as the evi-
dence of a model for ∇L(w) and
∇LD(w), described by, both, a prior
p(∇L(w)) = δ(∇L(w)), and likeli-
hood as in Eq. 94. Then p(∇LD(w)) =∫

p (∇LD(w)|∇L(w)) p (∇L(w))d∇L(w).
We will thus also use the term ‘evidence-
based’ stopping. In principal more
general models can be formulated,
which lead to a richer class of stopping
criteria.

small (stepping into the horizontal red shaded area), the magnitude
of the gradients can mostly be attributed to noise that represents the
finiteness of the dataset, and not an informative gradient direction;
then the optimizer should stop. Using these assumptions, the next
section derives a stopping criterion for the gradient decent algorithm
which then can be extended to stochastic gradient descent as well.

WHEN TO STOP?—A CRITERION BASED ON GRADIENT STATISTICS | 81

6.2.1 Early-Stopping Criterion for Gradient Descent
When using gradient descent, the whole dataset is used to compute
the gradient∇LD in each iteration. Still this gradient estimator has an
error in comparison to the true gradient ∇L, which is encoded in the
covariance matrix Σ. In practice Σ is unknown, the variance estimator
Σ̂ described in Chapter 5 however is always accessible. Thus, at every
position w an approximation to p(∇LD(w)|∇L(w) = 0) of Eq. 94 is
(using the ‘evidence’-notation p(∇LD(w)) for notational convenience):

p(∇LD(w)) ≈
N

∏
n=1
N
(
∇Ln
D(w); 0,

Σ̂n(w)

|D|

)
. (95)

Though being a simplification, this allows for fast and scalable com-
putations since dimensions are treated independent of each other. To
derive an early-stopping criterion based only on ∇LD we borrow the
idea of the previous section that the optimizer should halt when gra-
dients relatively become so small that they are indistinguishable from
noise. Specifically: stop when

log p (∇LD(w))− E∇LD(w)∼p [log p (∇LD(w))] > 0. (96)

Here E[·] is the expectation operator. According to Eq. 96, the opti-
mizer stops when the logarithmic evidence is larger than its expected
value, roughly meaning that more/enough gradient samples∇LD lie
inside of the expected range.2 In particular, combining Eq. 95 with

2 Besides the model-evidence interpre-
tation, Eq. 96 can also be found in
Hotelling’s one-sample t-square test,
with the hypothesis that the mean of the
Gaussian is zero and the covariance is
given. In practice we do not have ac-
cess to the covariance thus we estimate
it. Also note that correspondences to hy-
pothesis tests remain rather vague here
in the same sense as monitoring a valida-
tion loss is not a fully fletched hypothesis
test either.Eq. 96 and normalizing with the dimension N of the objective, yields

2
N

[
log p (∇LD(w))− E∇LD(w)∼p [log p (∇LD(w))]

]
= 1− |D|

N

N

∑
n=1

[
(∇Ln

D(w))2

Σ̂n(w)

]
> 0. (97)

This criterion, hereafter called eb-criterion, for ‘evidence-based’, is
intuitive: If all gradient elements lay at exactly one standard deviation
distance to zero, then ∑n (∇Ln

D)
2/Σ̂n = ∑n Σ̂n/|D|·Σ̂n = N/|D|; thus the

left-hand side of Eq. 97 would become zero and the optimizer would
stop.

We note on the side that Eq. 97 defines a mean criterion over all
elements of the parameter vector w. This is sensible if all dimen-
sions converge in roughly the same time scale such that weighing
the fractions fn := |D|·(∇Ln

D)
2/Σ̂n equally is justified. In other words,

overfitting is a global phenomenon on the weights, not a local one. If
optimization problems deal with parameters that converge at different
speeds, like for example different layers of neural networks, or biases
and weights inside one layer, it might be appropriate to compute one
stopping criterion per subset of parameters which are roughly having
similar timescales. In Section 6.3.4 we will use this slight variation

82 | EARLY-STOPPING WITHOUT A VALIDATION SET

of Eq. 97 for experiments on logistic regressors as well as multi-layer
perceptron.

6.2.2 Stochastic Gradients andMini-batching
It is straightforward to extend the stopping criterion of Eq. 97 to
stochastic gradient descent (sgd), where the estimator for ∇LD is re-
placed with an even more uncertain∇LB by sub-sampling the training
dataset at each iteration. The local gradient generation is

∇LB(w) = ∇LD(w) + η = ∇L(w) + ν with η ∼ N (0, Σobs(w)) , ν ∼ N
(

0,
Σ(w)

|D| + Σobs(w)

)
. (98)

Combining this with Eq. 86b yields Σ/|D|+ Σobs = Σ/|B|. Thus Σobs =
|D|−|B|
|B||D| Σ. Equivalently to Eq. 94, 95 and 97, this results in an early-

stopping criterion for stochastic gradient descent:

2
N

[
log p (∇LB(w))− E∇LB(w)∼p [log p (∇LB(w))]

]
= 1− |B|

N

N

∑
n=1

[
(∇Ln

B(w))2

Σ̂n(w)

]
> 0. (99)

Implementation

Computing the stopping criterion is straight-forward, given that the
variance estimate Σ̂(w) introduced in Chapter 5 is available . In this
case, it amounts to an element-wise division of the squared gradient
by the variance, followed by an aggregation over all dimensions, i. e.,
sum

[
∇LS (w)⊙2 ⊘ Σ̂(w)

]
.

Smoothing the Criterion

Each iteration t has access to only one gradient sample (from dataset
or mini-batch) to compute the eb-criterion locally, i. e., for a given
wt. Additionally the estimator Σ̂(wt) for the gradient variances is
inexact, since it, too, is computed from a finite amount of examples
only. Hence this local eb-criterion itself is noise corrupted as well.
An efficient and practical way to reduce this noise is to average the
criterion over many iterations. Hence, many successive iterations
need to ‘agree’ on a meaningful stopping point. Note that there is a
difference in between averaging the gradient squares and variances
separately before computing their fraction, or to average their fraction.
Apart from reducing the variance on the criterion, this is also beneficial
if the optimizer is passing regions of low gradient/ unstable fix-points
like stationary points of possibly non-convex loss function. With this
in mind, the smoothing factor for and exponential running average
should be as large as possible but still small enough not to bias the
stopping point all too much. All real-world experiment below used
a smoothing factor of γ = 0.999 which is fully decayed between 1-3k

EXPERIMENTS | 83

steps. This number is very small in comparison to the total number
of optimization steps in the conducted experiments, and does not
move the stopping decision visibly to the eye. Only the artificial toy
problems (Section 6.3.1 and 6.3.2) perform a very small number of
steps (∼ 100-1000) and consequently used no smoothing.

6.3 Experiments
Strictly speaking, the eb-criterion tests for stationary points only and
not just on minimizers of L. Thus, for proof of concept experiments,
we test the eb-criterion first on convex problems where the only sta-
tionary point is also the minimizer (quadratics, linear least squares,
logistic regression), and later on non-convex problems (multi-layer per-
ceptrons, multinomial logistic regression) where saddle points might
occur [26], on a number of standard classification and regression [26] Dauphin et al., “Identifying and

Attacking the Saddle Point Problem
in High-dimensional Non-convex Opti-
mization,” 2014

datasets. For illustration and controlled environments, Sections 6.3.1
and 6.3.2 show a least-squares toy problem and ill-conditioned large
synthetic quadratic problems. Sections 6.3.3 and 6.3.4 deal with the
more realistic setting of logistic regression on the Wisconsin Breast
Cancer Dataset (WDBC) [140] and a multi-layer perceptron on the [140] Wolberg, Street, and Mangasarian,

UCI Machine Learning Repository: Breast

Cancer Wisconsin (Diagnostic) Data Set,
2011

handwritten digits dataset MNIST [82]. Section 6.3.5 contains exper-

[82] LeCun et al., “Gradient-based learn-
ing applied to document recognition,”
1998

iments for multinomial logistic regression, as well as for a shallow
neural network on the SECTOR dataset [22]; the SECTOR dataset

[22] Chang and Lin, LIBSVM: A library

for support vector machines, 2011

complements MNIST and WDBC, in the sense that it has a much less
favorable feature-to-datapoint ratio (∼ 9); increasing the gains on the
generalization performance, when all available training data can be
used. In general, we did not use overly large datasets where overfit-
ting is a less prominent issue and also splitting off of a validation set
has minor effects on the absolute value of the best test loss. We will
also see that models trained on mid-sized but redundant datasets like
MNIST do gain little when folding the validation set into the training,
while models trained on datasets that represent the data distribution
Q to a lesser degree, like e.g. WDBC, benefit a lot.

6.3.1 Linear Least-Squares as Toy Problem
An illustrative example is a toy regression problem on artificial data,
generated from a one-dimensional linear function f̃ (x), x ∈ R with
additive uniform Gaussian noise, i. e., datapoints y are random ac-
cording to yi = f̃ (xi) + ϵ, with ϵ ∼ N . This simple setup allows
illustration of the model fitted at various stages of the optimiza-
tion process and also provides the true generalization performance,
since we can generate large amounts of test data. We use a largely
over-parametrized 50-dimensional linear regression model fw(x) =

84 | EARLY-STOPPING WITHOUT A VALIDATION SET

w⊺ϕ(x) which contain the features of the ground truth (bias and lin-
ear) and additional periodic features with varying frequency: The
features ϕ(x) = [1, x, sin(a1x), cos(a1x), . . . , sin(apx), cos(apx)]⊺ with
p = 24, and ap positive integers, by construction define a massively
over-parametrized model for the true function and is thus prone to
overfitting. The model is fit by minimizing the squared error, i.e.
ℓ(fw(x), y) = 1

2 (y − fw(x))2. 20 samples are used for training with
full batch gradient descent (no subsampling of datapoints) and about
10 samples for validation. The results are shown in Figure 28; both,
validation loss, and the eb-criterion find an acceptable point to stop
the optimization procedure, thus preventing overfitting.3

3 In this illustrative example, the eb-
criterion was also evaluated on the train-
ing set which does not include the vali-
dation set. This has two diagnostic ad-
vantages: i) both criteria, validation loss
and eb-criterion, are evaluated on the
same optimization path and ergo on the
same fits fw, which would not be the case
if the validation set was folded in, and
ii) the top left plot is less cluttered since
we would need two more lines (a second
train and test loss curve) the former with
shaded areas. Of course a main advan-
tage of the eb-criterion is that one can
fold in the validation set which will also
be done with the real world datasets.

−3

−2

−1

lo
ga

rit
hm

ic
lo

ss

0 20 40 60 80 100 120
−2

−1

0

1

number of steps

st
op

pi
ng

cr
ite

rio
n

Figure 28: Linear least-squares toy
problem. Top left: logarithmic losses
vs. number of optimization steps: test/-
train/validation (/ /);
shaded areas indicate two standard de-
viations ±2

√
Λ̂/|S| of the loss estimates

computed during the optimization
(Eq. 91). Bottom left: evolution of the
eb-criterion (). Induced stopping
point vertical (). For the steps
marked with color-coded vertical bars,
the model fit fw () is illustrated on
the right column: training/validation
data (/). Sub-optimal fit (), to the
training data; fit, when the eb-criterion
indicates stopping (); fw has
already overfitted to the training data
().

6.3.2 Synthetic Large-Scale Quadratic Problem
Synthetic quadratic optimization problems offer a controlled envi-
ronment to test on functions with ill-conditioned Hessians (ravines,
long valleys, gradient elements spanning magnitudes et cetera) as
they occur in real world applications [24]. Construct L(w) = 1

2 (w− [24] Chaudhari et al., “Entropy-SGD: Bi-
asing Gradient Descent Into Wide Val-
leys,” 2016

w∗)⊺B(w − w∗), where B ∈ RN×N is a positive definite matrix and
w∗ ∈ RN is the global minimizer of L(w); the gradient is ∇L =

B(w− w∗). In this controlled environment it is possible to design the
curvature ofL explicitly and the eb-criterion can be tested on different
configurations of eigen-spectra, for example uniform, exponential, or
structured (a few large, many small eigenvalues). The matrix B is [32] Diaconis and Shahshahani, “The

subgroup algorithm for generating uni-
form random variables,” 1987

build by defining a diagonal matrix Γ ∈ RN×N which contains the
eigenvalues on its diagonal, and a random rotation R ∈ RN×N that is
drawn from the Haar-measure on the N-dimensional uni-sphere [32];
then B := RΓR⊺. The ‘empirical’ loss LD(w) can be artificially defined

EXPERIMENTS | 85

by moving the true minimizer w∗ by a Gaussian random variable ζD ,
such that LD(w) = 1

2 (w − w∗ + ζD)⊺B(w − w∗ + ζD) with ζD ∼
N (0, Λ). Thus ∇LD = ∇L+ BζD is distributed according to BζD ∼
N (0, BΛB⊺), and we define Σ̂/|D| := diag(BΛB⊺). For experiments
we chose N = 103 as input dimension and zero (w∗ = 0) as the true
minimizer of L. Figure 29 shows results for three different types
of eigen-spectra. The eb-criterion performs well across the different

200 400 600 800 1,000
0

0.5

1

ei
ge

n-
sp

ec
tr

um

uniform

3

4

5

lo
g

lo
ss

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 1e+03

cr
ite

ro
n

200 400 600 800 1,000
0

40

80

exponential

5

6

7

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 1e+03

200 400 600 800 1,000
0

5

10

structured

5

5.4

5.8

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 1e+03

Figure 29: Synthetic quadratic problem
for three different structures of eigen-
spectra. Columns from left to right: uni-
form, exponential, structured. Middle
row: logarithmic (exact) test loss ()
and train loss (). Bottom row: evo-
lution of the eb-criterion, inducing a
stopping decision indicated by the ver-
tical bar ().

types of partially ill-conditioned problems and induces meaningful
stopping decisions; this worked well for different noise levels Λ (Fig-
ure 29 shows Λ = 10 · I as well as random seeds; note that the noise
covariance BΛB⊺ of the gradient is dense, but the algorithm just has
access to its diagonal as it is the case in real world applications).

The eb-criterion as Buffer-Region

The experiments give additional insight on a geometrical interpreta-
tion of the eb-criterion, which might also explain the slightly conserva-
tive stopping decision for the logistic regressor on WDBC (Figure 32 in
subsequent section) and full batch gd on MNIST (Figure 34, column 1).
Eq. 96 has no directional information to where the true minimizer w∗

of the risk lies as seen from the current position of the optimizer. This
is of course fundamentally hard to know, and early-stopping would be
obsolete in these cases anyway. Thus Eq. 96 is based on variances only
(in the form of Σ̂), defining a buffer-region/ a ‘no-go’-area around the
minimizer w∗D of the empirical risk, where statistics of gradients tell us
we should be careful to trust them. Usually, early-stopping is based
on the assumption that a continuation of training that continuously
decreases the training loss, will lead away again from weights that

86 | EARLY-STOPPING WITHOUT A VALIDATION SET

generalize well. For the eb-criterion this means that the optimizer,
with a deterministic path, for a given mini-batch-sequence and start-
ing point, will enter the buffer-region at a point which is generalizing
better than subsequent locations of the optimizer (and in particular of
w∗D) inside this buffer-region. This is usually well justified, primarily
because otherwise early-stopping would not be a viable concept in the
first place; and second because overfitting is usually associated with
‘too large’ weights (weights are initialized small; and regularizers that
pull weights to zero are often a good idea). On the way from small
weights (underfitting) to too large weights (overfitting), optimizers
usually pass a better point with weights of intermediate size.

w1

w
2

Figure 30: Illustration of buffer-region
induced by the eb-criterion. Contours of
the optimizer’s objective LD(w) ().
Contours of the true loss L(w) not
shown. Their minimizers w∗ and w∗D
are marked as crosses (). Buffer-region
of the eb-criterion (). Path of opti-
mizer i) () and ii) ().

If the point where the optimizer enters the buffer region has a
worse generalization performance than subsequent iterates inside the
buffer-region, again especially as w∗D , the eb-criterion will still stop and
potentially underfit slightly. We can artificially construct this setup
by initializing the optimizer with weights that lead to an optimization
path that does not lead to any overfitting; this is depicted in Figure 31.
The setup is identical to the one in Figure 29 (B, w∗ as well as ζD and
w∗D are identical); the only difference is the initialization of the weights
w0 for the optimization process. Since—with this initialization—the
lowest point of L that can be reached by minimizing LD is w∗D , any

early-stopping decision will lead to underfitting. In Figure 31 the
exact test loss flattens out and does not increase again for all three con-
figurations. Figure 30 illustrates these two scenarios in a 2D-sketch:
Contours of the optimizer’s objective LD(w) (); contours of the
true lossL(w) not shown. Their minimizers w∗ and w∗D are marked as
crosses (). Also shown are two optimization paths: i) An optimizer
that passes by weights of better generalization performance than w∗D
(), and ii) an optimizer that than can not overfit (), since weights
were initialized such that, out of all weights wt produced by the op-
timizer, w∗D yields best generalization performance. Both optimizers
are stopped by the eb-criterion when they enter the buffer-region ()
around the minimizer w∗D of the empirical loss LD , resulting in a good
and a too conservative stopping decision respectively for i) and ii).

6.3.3 Logistic Regression onWDBC
Next, we apply the eb-criterion to logistic regression on the Wisconsin
Breast Cancer dataset. The task is to classify cell nuclei, described by
features such as radius, area, symmetry, et cetera, as either malignant
or benign. We conduct a second-order polynomial expansion of the
original 30 features, i. e., features of the form xixj, resulting in 496
effective features. Of the 569 instances in the dataset, we withhold
369, a relatively large share, for testing purposes in order to get a

EXPERIMENTS | 87

200 400 600 800 1,000
0

0.5

1

ei
ge

n-
sp

ec
tr

um
uniform

3

4

5

6

lo
g

lo
ss

test
train

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 1e+03

cr
ite

ro
n

200 400 600 800 1,000
0

40

80

exponential

3

4

5

6
test
train

0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 1e+03

200 400 600 800 1,000
0

5

10

structured

2

3

4

5
test
train

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

number of steps in 5e+03

Figure 31: Synthetic quadratic problem
for three different structures of eigen-
spectra. Plot and experimental setup
as in Figure 29 Weights are initialized
such that the path of the optimizer can
not yield parameters wt which lead to a
model fw that overfits. The exact test
loss () flattens out, but does not
increase again; the eb-criterion still in-
duces a (in this case conservative) stop-
ping decision.

reliable estimate of the generalization performance. The remaining
200 instances are available for training the classifier. We perform two
training runs: one with early-stopping based on a validation set of 60
instances (reducing the training set to 140 instances) and one using
the full training set and early-stopping with the eb-criterion derived
in Section 6.2.1.

−1

−0.8

−0.6

lo
g

va
lid

at
io

n
lo

ss

−0.6

−0.5
lo

g
te

st
lo

ss

0 1 2 3
−1

−0.5

0

0.5

1

number of steps in 1e+05

cr
ite

rio
n

Figure 32: Logistic regression on the
Wisconsin Breast Cancer dataset. Re-
sults for the two variants are color-
coded: Validation set-based early-
stopping (), eb-criterion ().
Middle: test loss versus the number
of optimization steps for both methods.
Top: Validation loss. Bottom: Evolution
of the eb-criterion; induced stopping de-
cision as vertical bar.

If parameters converge at different speeds during the optimization,
as indicated in Section 6.2.1, we compute the criterion separately for
different subgroups of parameters. Generally, if we split the parame-
ters into K disjoint subgroups Sk ⊂ {1, . . . , N}, and denote Nk = |Sk|,
the criterion reads

1
K

K

∑
k=1

(
1− |D|

Nk
∑

n∈Sk

[
(∇Ln

D)
2

Σ̂n

])
> 0. (100)

This means that every subgroup has one weighted ‘vote’ for stopping.
For logistic regression, we treat the weight vector and the bias param-
eter of the logistic regressor as separate subgroups, since they tend to
have different magnitudes. Figure 32 shows results. The effect of the
additional training data is clearly visible, resulting in lower test losses
throughout the optimization process. In this scarce data setting, the
validation loss (top plot,), computed on a set of only 60 instances, is
clearly misleading. It decreases throughout the optimization process
and thus fails to find a suitable stopping point. The bottom plot shows
the evolution of the eb-criterion () which does induce a (possibly
slightly conservative) stopping decision with a lower or equal test loss
than any test loss attainable when withholding a validation set.

88 | EARLY-STOPPING WITHOUT A VALIDATION SET

6.3.4 Multi-Layer Perceptron onMNIST
For a non-convex optimization problem, where also saddle points
might occur, we train a multi-layer perceptron (mlp) on the well-
studied problem of hand-written digit classification with the MNIST
dataset (28× 28 gray-scale images). We use an mlp with five hidden
layers with 2500, 2000, 1500, 1000 and 500 units, respectively, ReLU
activation, and a standard cross-entropy loss for the 10 outputs with
soft-max activation (∼ 12 million trainable parameters). Analogously
to Section 6.3.3, each weight matrix and each bias vector of the net-
work is treated as a separate subgroup. The MNIST dataset contains
60k training images, which we split into 40k-10k-10k for train, test and
validation set.

−1.1

−0.9

−0.7

lo
g

va
lid

at
io

n
lo

ss

−1.2

−0.6

0

lo
g

te
st

lo
ss

0 1 2
−1

−0.5

0

0.5

1

number of steps in 1e+04

cr
ite

rio
n

Figure 33: Multi-layer perceptron on
MNIST trained with full batch gradient
descent. Plot and colors as in Figure 32.

The results for full-batch gradient descent are shown in Figure 33,
and sgd runs with mini-batch size 128 and three different learning
rates in Figure 34. The loss of the relatively large validation set (10k
images) in combination with a quite homogeneous dataset yields ac-
curate estimates of the generalization performance. Consequently, the
stopping points are very close to the points of minimal test loss. The
folded training set and validation set leads to only slightly lower test
losses since the data of the validation set does not contain much ad-
ditional information which is not already present in the training set.
Since the strength of the eb-criterion is to use the additional training
data as well as the fact that also validation losses are only inexact
guesses of the generalization loss, both of these points thus favor the
validation set based stopping criterion. Still, for all three sgd-runs
in Figure 34, the eb-criterion performs as good as or better than the
validation set induced method. For gradient descent (full training
set in each iteration, Figure 33), the eb-criterion performs reasonably
well, however, and very similarly to the gradient descent runs on the
logistic regression on WDBC in Figure 32, chooses to stop a bit too
early. The difference in loss is not very much (test loss red: 10−1.04,
blue 10−0.92), but it again shows that validation loss induces stopping
can be preferred in settings where data count is not the main concern.

6.3.5 Logistic Regression and Shallow-Net on SECTOR
Finally, we train a multinomial logistic regressor and a shallow fully-
connected neural network on the SECTOR dataset [22]. It contains [22] Chang and Lin, LIBSVM: A library

for support vector machines, 20116412 training and 3207 test datapoints with 55 197 features each, thus
having a less favorable feature-to-datapoint ratio than for example
MNIST (784 features vs. 60 000 datapoints). The features are extracted
from web-pages of companies and the classes describe 105 different
industry sectors. The shallow network has one hidden layer with 200

EXPERIMENTS | 89

−1.1

−0.9

−0.7

lo
g

va
lid

at
io

n
lo

ss

−1.2

−0.6

0

lo
g

te
st

lo
ss

0 2 4 6 8

0

number of steps in 1e+04

cr
ite

rio
n

0 2 4
number of steps in 1e+04

0 1 2 3
number of steps in 1e+04

Figure 34: Multi-layer perceptron on
MNIST trained with sgd and a mini-
batch size of 128. Columns from left
to right: learning rates 0.003, 0.005 and
0.01, respectively. Plot and colors as in
Figure 33.

hidden units; the logistic regressor thus contains ∼ 5.8 million, and
the shallow net ∼ 11.1 million trainable parameters. Experiments are
set up in the same style as the ones in Section 3.3 and 3.4. We use 20%
of the training data for the validation set which yields 1282 validation
examples and a reduced number of 5130 training examples. Figure 35
shows results: Columns 1-2 for the logistic regressor and columns 3-4
for the shallow net. Since the dataset is quite small for this task, the
gap between test losses is quite large (middle row). Both architectures
do not overfit properly, the test loss rather flattens out, although we
trained both architectures for very long (2.5 · 105 steps) and initialized
weights close to zero. The eb-criterion is again a bit too cautious and
induces stopping when the test loss starts to flatten out; but since it
has access to an enlarged training set, it beats the validation set on
both architectures.

6.3.6 Greedy Element-wise Stopping
The eb-criterion computes the quantities fn := |B|(∇Ln

B)
2/Σ̂n ∈ R for

each gradient element n at each iteration. This quantity can be un-
derstood as a ‘signal-to-noise ratio’, and the eb-criterion is the average
over the individual fn. As a side experiment, we employ the same idea
in an element-wise fashion: we stop the training for an individual pa-
rameter wn ∈ R (not to be confused with the full parameter vector
wt ∈ RN at iteration t) as soon as the scalar fn falls below one. Simi-
larly to the eb-criterion before, we smooth each element-wise criterion
with an exponential running average for noise reduction. Importantly,
this is not a sparsification of the parameter vector w (since wn is not
set to zero when being switched off but merely fixed at its current

90 | EARLY-STOPPING WITHOUT A VALIDATION SET

−0.4

−0.2

lo
g

va
lid

at
io

n
lo

ss

−0.4

−0.2

lo
g

te
st

lo
ss

0 1 2
−1

−0.5

0

0.5

1

number of steps in 1e+05

cr
ite

rio
n

0 1 2

0

0.1

−0.2

−0.1

0

0.1

0 1 2
−1

−0.5

0

0.5

1

number of steps in 1e+05
0 1 2

Figure 35: Shallow net and logis-
tic regressor on SECTOR trained with
sgd and mini-batch size 128. Colums 1-
2: Logistic regression with learning rates
0.03 and 0.003 respectively. Colums 3-4:
Shallow net with learning rates 0.03 and
0.003 respectively. Rows and colors as in
Figure 33.

value), but rather a sparsification of the update. The smoothed av-
erages are initialized at high values, resulting in a warm-up phase
where all weights are ‘active’. Figure 36 presents results. Intriguingly,
immediately after the warm-up phase the training of a considerable
fraction of all weights (10 percent or more, depending on the train-
ing configuration) is being stopped. This fraction increases further as
training progresses. Especially towards the end where overfitting sets
in, a clear signal can be seen: the fraction of weights where learning
has been stopped suddenly increases at a higher rate. Despite this re-
duction in effective model complexity, the network reaches test losses
comparable to our training runs without greedy element-wise stop-
ping (test losses in Figure 34). The fraction of switched-off parameters
towards the end of the optimization process reaches up to 80 percent
in a single layer and around 50 percent for the whole net.

6.4 Comparison to RMSPROP

This section explores the differences and similarities of sgd+eb-criterion
and rmsprop. This is rather meant as a means for gaining a better intu-
ition, and not for comparing them as competitors since both methods
were derived for different purposes and could be combined in princi-
ple.

COMPARISON TO RMSPROP | 91

0 2 4 6 8

−1

−0.8

−0.6

lo
ga

rit
hm

ic
lo

ss

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

number of steps in 1e+04

sw
itc

he
d

off
pa

ra
m

et
er

s

0 2 4

0 2 4
number of steps in 1e+04

0 1 2 3

0 1 2 3
number of steps in 1e+04

Figure 36: Greedy element-wise stop-
ping for a multi-layer perceptron on
MNIST trained with sgd and batch size
128. Columns: learning rates 0.003,
0.005 and 0.01, respectively. Top row:
logarithmic training () and test loss
(). Bottom row: fraction of weights
where learning has been shut off by the
greedy element-wise stopping for each
weight matrix (), each bias vector
() and the full net ().

6.4.1 Non-Greedy Element-wise EB-Criterion
The non-greedy element-wise eb-criterion can be formulated as

ct = βct−1 + (1− β)
(
1− f eb-crit

t
)

wt+1 = wt − α · I [ct ≤ 0]⊙∇LB(wt)
(101)

for some conservative smoothing constant β ∈ (0, 1), usually β ≈
0.999, or 0.99, learning rate α, and the fraction f eb-crit

t := |B|[∇LB(wt)⊙2⊘
Σ̂(wt)]. The symbol ‘⊘’ denotes element-wise division and I[·] is the
element-wise indicator function. In contrast to the greedy implementa-
tion of Section 6.3.6, where switched-off learning rates stayed switches
off, Eq. 101 allows learning to be switched on again.

6.4.2 Learning Rate Damping in RMSPROP

rmsprop [135] is a well known optimization algorithm that scales [135] Tieleman and Hinton, RMSprop

Gradient Optimization, 2015learning rates element-wise by an exponential running average of
gradient magnitudes (Chapter 2 § 2.4); specifically:

vt = γvt−1 + (1− γ)∇LB(wt)
⊙2

wt+1 = wt − α∇LB(wt)⊘ v⊙1/2
t ,

(102)

again for some smoothing constant γ ∈ (0, 1), usually γ ≈ 0.95, and
learning rate α. Let amax

t be the largest element of the vector at :=
v⊙−1/2

t , then the second line of Eq. 102 can be rewritten as

wt+1 = wt − αamax
t

(
at

amax
t

)
⊙∇LB(wt). (103)

92 | EARLY-STOPPING WITHOUT A VALIDATION SET

The fraction f rmsprop
t := (at/amax

t) ∈ (0, 1] describes the scaling of
learning rates relative to the largest one: if the ith element of f rmsprop

t
is very small, the learning of the corresponding parameter is damped
heavily relative to a full step of size αamax

t . This can be interpreted
as ‘switching-off’ the learning of these parameters, similarly to the
element-wise eb-criterion.

6.4.3 Connections and Differences
The following table gives a rough overview over the possible set of
learning rates for each method.

method domain maximal αt minimal αt

sgd {α} α α

sgd+eb-crit {0, α} α 0 (when converged)

rmsprop (0, αamax
t] αamax

t > 0

The table shows that sgd+eb-criterion is a very minor variation of sgd,
in the sense that it can also set the learning rate to zero, but only for
converged parameters. It does not change sgd during effective training;
specifically, it does not explicitly encode curvature, or other geometric
properties of the loss.

∇L

|B
|−

1
Σ

|B|−1Σ

(∇
L2

+
|B
|−

1
Σ
)−

1/
2

Figure 37: Sketch of rmsprop-damping
relative to an sgd-step. Top: con-
tour lines of the damping term (∇L2 +

|B|−1Σ)−
1
2 Bottom: color-coded slices

through the top plot for constant ∇L,
and one () for the diagonal slice
where ∇L2 = |B|−1Σ.

In contrast to this, rmsprop also adapts the absolute value of
the largest possible step at every iteration by a varying factor amax

t ,
and scales the other steps relative to it. Heuristically, gradient el-
ements with a larger running average vt ≈ Ed∼Q[∇LB(wt)⊙2] =

∇L(wt)⊙2 + |B|−1 diag[Σ(wt)] get down-scaled relative to the ones
with a smaller vt-element [5]. Figure 37 sketches this behavior. The

[5] Balles and Hennig, “Follow the
Signs for Robust Stochastic Optimiza-
tion,” 2017

top plot shows contour lines (gray) of one element of the damping
term (∇L⊙2 + |B|−1 diag[Σ])−

1
2 for a single dimension. The bot-

tom plot shows color-coded slices through the top plot for different
constant ∇L, and one for the diagonal slice () where ∇L⊙2 =

|B|−1 diag[Σ]. Elements with large true gradients ∇L and/or noise
variances |B|−1 diag[Σ] get damped relative to ones with low ∇L and
low |B|−1 diag[Σ]. This does not mean, though, that the absolute step
size of rmsprop drops as the noise level Σ increases, since the expected
absolute value of the enumerator is non-trivially dependent on Σ as
well.So, roughly speaking, the eb-criterion defines a strict threshold
when learning should be terminated. rmsprop defines a vaguer ver-
sion, in the sense that the optimizer should move somewhat ‘less’ into
directions of uncertain gradients. For example in situations where
the eb-criterion triggers (∇L = 0, Σ > 0), rmsprop just weighs the
step proportional to

√
|B|−1Σ which depends on the absolute value

of Σ, and not on a signal-to-noise ratio. Of course, the argumentation
above that vt ≈ Ed∼Q[∇LB(wt)⊙2] also ignores the smoothing over

COMPARISON TO RMSPROP | 93

iterations. In contrast to this, the fractions f eb-crit
t are computed lo-

cally, and only the local criteria are smoothed. This is essential for a
stopping (not damping) decision if the magnitude of the gradient as
well as its variance are dependent on w.4 4 We, in fact tried to use a running av-

erage for variance estimates instead of
Σ̂, since they are usually easier to access,
but this corrupted the stopping decision
heavily.6.4.4 Empirical Comparison

For an empirical comparison, we run rmsprop, sgd with element-wise
eb-criterion (as in Eq. 101), and an instance of vanilla sgd on a multi-
layer-perception on MNIST similar to the setup in Section 6.3.4. For
the sgd instance that uses the eb-criterion, the fraction of switched-off
parameters is defined as

Peb-crit
t :=

1
N

N

∑
n=1

I [cn,t > 0] (104)

where cn,t is the nth element of ct as in Eq. 101. The percentage
of ‘switched-off’ parameters for rmsprop can be roughly described
as the fraction Prmsprop

t of parameters, whose f rmsprop
t (defined in

Section 6.4.2) lie below a threshold fcut ∈ (0, 1)

Prmsprop
t :=

1
N

N

∑
n=1

I
[

f rmsprop
n,t < fcut

]
. (105)

The same smoothing factor γ = β = 0.99 was used for both meth-
ods, for a meaningful comparison. Figure 38 depicts results: The first
row shows training losses (light colors) and test losses (corresponding
dark colors) of all three methods (sgd, sgd+eb-criterion and rmsprop).
Row 2 shows the evolution of Peb-crit

t , and rows 3-7 of Prmsprop
t for

five choices of fcut = [10−1, 10−2, 10−3, 10−4, 10−5] respectively. As
mentioned above, in contrast to the ‘greedy’ implementation of Sec-
tion 6.3.6 (switched-off learning rates, stayed switched-off), and for a
more natural comparison to rmsprop, learning rates are allowed to
be switched on again as well. The results for Prmsprop

t and Peb-crit
t are

color-coded: full net (), weight matrices () and biases (),
the latter two each per layer.

The test losses of vanilla sgd and sgd+eb-criterion are almost iden-
tical, while the training loss of sgd+eb-criterion is a bit more conserva-
tive than the one of vanilla sgd. This is expected, since the eb-criterion
ideally should not impair generalization performance, but might lead
to larger training losses at convergence, due to the overfitting pre-
vention. Already at the beginning of the training, sgd+eb-criterion
switches off about 10-20% of all learning rates, after that, the fraction
increases to about 50% (green line, second row). The curve is quite
monotonic, exhibiting not significant jumps.

94 | EARLY-STOPPING WITHOUT A VALIDATION SET

rmsprop converges a bit faster, as it is expected. Also the plots for
Prmsprop

t are richer in structure. Especially one layer seems to have
significantly smaller learning rates for both, biases and weights, than
the other layers. Overall the difference between the largest learning
rate and all others tends to roughly increase over the optimization
process (especially for fcut = 10−1, green line, last row). There are also
significant jumps in all the curves in contrast to the rather monotonic
increasing line of sgd+eb-criterion. This indicates nontrivial scaling
of the absolute, as well as relative sizes of learning rates throughout
the optimization process; also, no learning rate is smaller than 10−5

times the largest one at each iteration (third row, green line at exactly
zero).

6.5 Conclusion andOutlook
This chapter presented the eb-criterion, a novel approach to the prob-
lem of determining a good point for early-stopping in gradient-based
optimization. In contrast to existing methods it does not rely on a
held-out validation set and enables the optimizer to make use of all
available training data. We exploit fast-to-compute statistics of the
observed gradient to assess when it represents noise originating from
the finiteness of the training set, instead of an informative gradient di-
rection. The presented method so far is applicable in gradient descent
as well as stochastic gradient descent settings and adds little overhead
in computation, time, and memory consumption. Experimental re-
sults were presented for linear least-squares fitting, logistic regression
and a multi-layer perceptron, proving the general concept to be viable.
Furthermore, preliminary findings on greedy as well as non-greedy
element-wise early-stopping open up the possibility to monitor and
control model fitting with a higher level of detail.

Desirable future research directions are:

• Theoretical analysis of the criterion for convex functions. Under
which assumptions can we be certain to stop in a ‘desirable region’?

• Thorough experimental tests: This chapter provided promising
proof-of concept experiments. The method needs to be tested fur-
ther, especially on non-convex functions which are in a sense ‘out-of
model’, and theoretical guarantees are less accessible .

• Combining of the (element-wise or global) eb-criterion with further
search directions like e. g., rmsprop. This would be a powerful
tool to encode both—learning rate scaling as well as overfitting
prevention—in one solver.

• Clarification of the vague relation to hypothesis testing. Related to
this: possible informative limits which arise due to the uncertainty

CONCLUSION AND OUTLOOK | 95

−1

0

lo
g

lo
ss

SGD vanilla
SGD eb-crit
RMSprop

0

0.2

0.4

0.6

0.8

1

P
eb

-c
rit

t

0

0.2

0.4

0.6

0.8

1

P
rm

sp
ro

p
t

fcut=1e-05

0

0.2

0.4

0.6

0.8

1

P
rm

sp
ro

p
t

fcut=1e-04

0

0.2

0.4

0.6

0.8

1

P
rm

sp
ro

p
t

fcut=1e-03

0

0.2

0.4

0.6

0.8

1

P
rm

sp
ro

p
t

fcut=1e-02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

number of steps in 104

P
rm

sp
ro

p
t

fcut=1e-01

Figure 38: Comparison of rmsprop and
sgd+eb-criterion on a multi-layer per-
ceptron on MNIST, both trained with
batch size is 120. Top row: logarithmic
training loss (light colors) and test loss
(corresponding dark colors) for vanilla
sgd, sgd+eb-criterion and rmsprop (col-
ors in legend). Row 2: fraction of
weights Peb-crit

t where learning has been
shut off by the element-wise stopping:
each weight matrix (), each bias vec-
tor () and full net (). Row 3-7:
same as row 2, but for Prmsprop

t for differ-
ent choices of threshold fcut which are
indicated in the legends.

96 | EARLY-STOPPING WITHOUT A VALIDATION SET

of the eb-criterion itself i. e., constrains on the mini-batch size |B|
which controls the gradient noise as well as the goodness of the
variances estimator. Also, when is a validation loss too uncertain
or reliable enough to induce a stopping decision, and when the
eb-criterion? This might help to decide which stopping criterion to
use for which datasets and experimental setups.

Part III
Automated Step Size Adaptation

7Probabilistic Line Searches

In deterministic optimization, line searches are a standard tool en-
suring stability and efficiency. Where only stochastic gradients are

available, no direct equivalent has so far been formulated, because
uncertain gradients do not allow for a strict sequence of decisions
collapsing the search space. This chapter constructs a probabilistic
line search by combining the structure of existing deterministic meth-
ods with notions from Bayesian optimization. The method retains a
Gaussian process surrogate of the univariate optimization objective,
and uses a probabilistic belief over the Wolfe conditions to monitor
the descent. The algorithm has low computational cost, and no user-
controlled parameters. Experiments show that it effectively removes
the need to define a learning rate for stochastic gradient descent. The
chapter is mostly based on the publications [89] and [90]. [89] Mahsereci and Hennig, “Probabilis-

tic Line Searches for Stochastic Optimiza-
tion,” 2015

[90] Mahsereci and Hennig, “Probabilis-
tic Line Searches for Stochastic Optimiza-
tion,” 2017

7.1 Motivation
Stochastic gradient descent (Chapter 2 § 2.3) is widely used in ma-
chine learning for the optimization of highly multivariate functions
if their gradient is corrupted by noise. This includes the online or
mini-batch training of neural networks, logistic regression [144] [14] [144] Zhang, “Solving Large Scale Lin-

ear Prediction Problems Using Stochas-
tic Gradient Descent Algorithms,” 2004

[14] Bottou, “Large-scale machine learn-
ing with stochastic gradient descent,”
2010

and variational models e. g., [67] [60] [17]. In all these cases, noisy

[67] Hoffman et al., “Stochastic varia-
tional inference,” 2013

[60] Hensman, Rattray, and Lawrence,
“Fast variational inference in the conju-
gate exponential family,” 2012

[17] Broderick et al., “Streaming Varia-
tional Bayes,” 2013

gradients arise because an empirical risk LD(w) of the optimization
parameters w ∈ RN , across a large dataset D of size |D| is evaluated
only on an i. i. d. sub-sampled setB ⊂ D (notation as in Chapter 2). As
argued in Chapter 5, we ill use here that the error LB(w)− LD(w) as
well as the error∇LB(w)−∇LD(w) are unbiased and approximately
normal distributed with (co-)variances |B|−1ΛD(w) and |B|−1ΣD(w)

respectively. Despite its popularity and its low cost per step, sgd has
well-known deficiencies that can make it inefficient, or at least tedious
to use in practice. Two main issues are that, first, the gradient itself,
even without noise, is not the optimal search direction; and second,
sgd requires a step size (learning rate) that has a large effect on the
algorithm’s efficiency, is often difficult to choose well, and virtually
never optimal for each individual descent step. The former issue,
adapting the search direction, has been addressed by many authors
(e. g., [43] for an overview). Existing approaches were discussed in [43] George and Powell, “Adaptive step-

sizes for recursive estimation with ap-
plications in approximate dynamic pro-
gramming,” 2006

Chapter 2 § 2.3; they range from lightweight diagonal precondition-
ing approaches like adam and adagrad, to empirical estimates for the

100 | PROBABILISTIC LINE SEARCHES

natural gradient or the Newton direction [115], to problem-specific al- [115] Roux and Fitzgibbon, “A fast natu-
ral Newton method,” 2010gorithms [108]. Most of these algorithms also include an auxiliary
[108] Rajesh et al., “An Adaptive Learn-
ing Rate for Stochastic Variational Infer-
ence,” 2013

adaptive effect on the learning rate. Schaul, Zhang, and LeCun [119]

[119] Schaul, Zhang, and LeCun, “No
more pesky learning rates,” 2013

provided an estimation method to adapt the learning rate from one
gradient descent step to another using statistics over iterates. Re-
inforcement learning and ‘learning-to-learn’ approaches yield more
specialized solvers that are supposed to work well on the same or sim-
ilar problems they were trained on, but they also come with higher
training cost and lower generality.

None of the mentioned algorithms change the size of the current de-
scent step. Accumulating statistics across steps in this fashion requires
some conservatism: If the step size is initially too large, or grows too
fast, sgd can become unstable and ‘explode’, because individual steps
are not checked for robustness at the time they are taken.

As discussed in Chapter 2 § 2.5, essentially the same problem exists
in deterministic (noise-free) optimization problems. There, providing
stability is one of several tasks of the line search subroutine. It is a
standard constituent of algorithms like the classic nonlinear conjugate
gradient [42] and quasi-Newton methods like bfgs [100, § 3].1 In the [42] Fletcher and Reeves, “Function min-

imization by conjugate gradients,” 1964

[100] Nocedal and Wright, Numerical Op-

timization, 1999
1 As mentioned in § 2.5, in these algo-
rithms, another task of the line search
is to guarantee certain properties of the
surrounding estimation rule. In bfgs,
e. g., it ensures positive definiteness of
the Hessian estimate. This aspect will
not feature here.

noise-free case, line searches are considered a solved problem [100,
§ 3]. But the methods used in deterministic optimization are not

[100] Nocedal and Wright, Numerical Op-

timization, 1999

stable to noise. They are easily fooled by even small disturbances,
either becoming overly conservative or failing altogether. The reason
for this brittleness is that existing line searches take a sequence of hard
decisions to shrink or shift the search space. This yields efficiency,
but breaks hard in the presence of noise. Section 7.2 constructs a
probabilistic line search for noisy objectives, stabilizing the stochastic
gradient decent algorithm.

7.2 FromClassic to Probabilistic Line Searches
Chapter 2.5 introduced the concept of a classic lines search and the
Wolfe terminations conditions (§ 2.5.1). This chapter will construct
a probabilistic line search which operates in a similar scheme as its
classic sibling, but reacts robustly to noise corrputed observations of
the univariate function f (α) and its gradient f ′(α) (same notation as
in § 2.5). The exposition in § 7.4 will initially focus on the weak Wolfe
conditions, which can be precisely modeled probabilistically. Section
7.4 then adds an approximate treatment of the strong form.

Consider minimizing f (α) = LD(w(α)) where w(α) = wt + αpt

and α ∈ R+. That is, the algorithm can access only noisy function
values and gradients y(α), y′(α) at location α, with Gaussian likelihood

FROM CLASSIC TO PROBABILISTIC LINE SEARCHES | 101

p(y(α), y(α)′ | f (α)) = N
⎛⎝⎡⎣ y(α)

y′(α)

⎤⎦ ;

⎡⎣ f (α)

f ′(α)

⎤⎦ ,

⎡⎣σ2
f (α) 0

0 σ2
f ′(α)

⎤⎦⎞⎠ . (106)

The Gaussian form is supported by the Central Limit argument of
Chapter 5. The function value y(α) and the gradient y′(α) are assumed
independent for simplicity.2 Each evaluation of f (α) uses a newly 2 See § 7.4.1 and Appendix C.3 regarding

estimation of the variances σ2
f , σ2

f ′ .drawn mini-batch. We will also use the notation t := α/α0 which
expresses the input domain of f in units of α0, for convenience. With
this: w(t) = wt + tα0 pt, t ∈ R+ and f (t) := f (α(t)) et cetera.3 3 The notation for the scaled step size t

is now also overloaded with the index
of the tth iteration, usually denoted as
subscript rather than input to a function,
e. g., as in wt.

The probabilistic line search is modeled after the classic line search
routine minimize.m4 and translates each of its ingredients one-by-one

4 minimize.m was introduces in § 2.5.
At the time of writing, it can be
found here: http://learning.eng.cam.ac.
uk/carl/code/minimize/minimize.m.

to the language of probability. The three main ingredients are: A
robust yet lightweight Gaussian process surrogate on f (t) facilitating
analytic optimization (§ 7.2.1); a simple Bayesian optimization objec-
tive for exploration (§ 7.3); and a probabilistic formulation of the Wolfe
conditions as a termination criterion (§ 7.4). Appendix D contains a
detailed pseudocode while Algorithm 4 sketches the structure of the
probabilistic line search and highlights its essential ingredients.

Algorithm 4: Sketch of probabilistic
line search. Like Algorithm 2 (classic
line search), the main algorithm con-
sists of a loop which alternates between
evaluating LB and ∇LB , then checking
all evaluated points for acceptance (by
probabilistic Wolfe conditions), and find-
ing new candidates for evaluation by
lightweight Bayesian optimization. The
latter is done by the subroutine com-
puteNextCandidates which uses the
univariate gp as model and returns up
to |T| locations (at most one per cell
and one extrapolation point). Then a
promising point is selected among the
candidates which maximizes the prod-
uct of the expected improvement and the
Wolfe probability, and the loop repeats.
Note that again all relevant quantities (y,
y′, t, etc.) are scalar, which means that
besides evaluating f , the probabilistic
line search virtually adds no overhead to
the optimization routine. Also the abil-
ity of ‘immediately-accept’ after the very
first function evaluation (lines 12,13) ex-
hibited by classic line searches is re-
tained , such that well scaled initial trials
α0 (t = 1) add no overhead.

1: function probLineSearchSketch(f , y0, y′0, σf0 , σf ′0
)

2: GP ←initGP(y0, y′0, σf0 , σf ′0
)

3: T, Y, Y′←initStorage(0, y0, y′0) � for observed points
4: t← 1 � location of initial candidate
5:

6: while budget not used and no Wolfe-point found do
7: [y, y′]← f (t) � evaluate objective
8: T, Y, Y′←updateStorage(t, y, y′)
9: GP ←updateGP(t, y, y′)

10: PWolfe←probWolfe(T, GP) � Wolfe probabilities at T
11:

12: if any PWolfe above Wolfe threshold cW then
13: return Wolfe-point
14: else
15: Tcand←computeCandidates(GP)
16: EI←expectedImprovement(Tcand, GP)
17: PW←probWolfe(Tcand, GP)
18: t← where (PW ⊙ EI) is maximal � best candidate
19: end if
20: end while
21:

22: �no Wolfe point found during budget
23: return observed location in T with lowest gp mean
24: end function

http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m

102 | PROBABILISTIC LINE SEARCHES

7.2.1 IntegratedWiener Process Surrogate
We model information about the objective in a probability measure
p(f). There are two requirements on such a measure: First, it must
be robust to irregularity (low and high variability) of the objective.
And second, it must allow analytic computation of discrete candidate
points for evaluation, because a line search should not call yet another
optimization subroutine itself. Both requirements are fulfilled by a
once-integrated Wiener process, i. e., a zero-mean Gaussian process
prior p(f) = GP(f ; 0, k) with covariance function

k(t, t′) = θ2
[

1
3

min3(t̃, t̃′) +
1
2
|t− t′|min2(t̃, t̃′)

]
. (107)

Here t̃ := t + τ and t̃′ := t′ + τ denote a shift by a constant τ > 0. [109] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006This ensures this kernel is positive semi-definite, the precise value τ

is irrelevant as the algorithm only considers positive values of t (the
implementation uses τ = 10). See § 7.4.1 regarding the scale θ2. With
the likelihood of Eq. 106, this prior gives rise to a gp posterior whose
mean function is a cubic spline [138].5,6 [138] Wahba, Spline models for observa-

tional data, 1990
5 Eq. 107 can be generalized to the ‘nat-
ural spline’, removing the need for the
constant τ [109, § 6.3.1]. However, this
notion is ill-defined in the case of a single
observation, as in the line search.

6 As stated in Chapter 1.4, regression on
f and f ′ from M observations of pairs
(y, y′) can be formulated as a filter and
thus performed inO(M) time. However,
since a line search typically collects < 10
data points, generic gp inference, using
a Gram matrix, has virtually the same,
low cost.

Because Gaussian distributions are closed under linear maps, Eq. 107
implies a Wiener process (linear spline) model on f ′:

p(f ; f ′) = GP
⎛⎝⎡⎣ f

f ′

⎤⎦ ;

⎡⎣0

0

⎤⎦ ,

⎡⎣ k k∂

k∂ k∂ ∂

⎤⎦⎞⎠ , (108)

with (using the indicator function I(x) = 1 if x, else 0)

k∂
tt′ :=

∂k(t, t′)
∂t′

= θ2
[

I(t < t′)
t̃2

2
+ I(t ≥ t′)

(
t̃t̃′ − t̃′2

2

)]
k∂

tt′ :=
∂k(t, t′)

∂t
= θ2

[
I(t′ < t)

t̃′2

2
+ I(t′ ≥ t)

(
t̃t̃′ − t̃2

2

)]
(109)

k∂ ∂
tt′ :=

∂2k(t, t′)
∂t′∂t

= θ2 min(t̃, t̃′).

Given a set of evaluations (T, Y, Y′) (vectors, with elements ti, yti , y′ti
,

i = 1, . . . , M) with independent likelihood 106, the posterior p(f |Y, Y′)
is a gp with posterior mean function µ and covariance function k̃ as
follows:⎡⎣µ(t)

µ′(t)

⎤⎦ =

⎡⎣ ktT k∂
tT

k∂
Tt k∂ ∂

tT

⎤⎦⎡⎣kTT + σ2
f I k∂

TT

k∂
TT k∂ ∂

TT + σ2
f ′ I

⎤⎦−1

  
=:g⊺(t)

⎡⎣Y

Y′

⎤⎦ ,

⎡⎣ k̃(t, t′) k̃∂(t, t′)

k̃∂ (t′, t) k̃∂ ∂(t, t′)

⎤⎦ =

⎡⎣ ktt′ k∂
tt′

k∂
t′t k∂ ∂

tt′

⎤⎦− g⊺(t)

⎡⎣ kTt′ k∂
Tt′

k∂
t′T k∂ ∂

Tt′

⎤⎦ .

(110)

FROM CLASSIC TO PROBABILISTIC LINE SEARCHES | 103

The posterior marginal variance will be denoted by V(t) = k̃(t, t). To
see that µ is indeed piecewise cubic (i. e., a cubic spline), we note that
it has at most three non-vanishing derivatives7, because

7 There is no well-defined probabilistic
belief over f ′′ and higher derivatives—
sample paths of the Wiener process are
almost surely non-differentiable almost
everywhere [1, § 2.2]. But µ(t) is al-
ways a member of the reproducing ker-
nel Hilbert space induced by k, thus
piecewise cubic [109, § 6.1].

k∂2
tt′ :=

∂2k(t, t′)
∂t2 = θ2I(t ≤ t′) k∂3

tt′ :=
∂3k(t, t′)

∂t3 = θ2I(t ≤ t′)(t′ − t)

k∂2 ∂
tt′ :=

∂4k(t, t′)
∂t2∂t′

= −θ2I(t ≤ t′) k∂3 ∂
tt′ :=

∂4k(t, t′)
∂t3∂t′

= 0. (111)

This piecewise cubic form of µ is beneficial for our purposes: having
collected M values of f and f ′, respectively, all local minima of µ can
be found analytically in O(M) time in a single sweep through the
‘cells’ ti−1 < t < ti, i = 1, . . . , M (here t0 = 0 denotes the start loca-
tion, where (y0, y′0) are ‘inherited’ from the preceding line search. For
typical line searches M < 10, c.f. § 7.5. In each cell, µ(t) is a cubic poly-
nomial with at most one minimum in the cell, found by an inexpen-
sive quadratic computation from the three scalars µ′(ti), µ′′(ti), µ′′′(ti).
This is in contrast to other gp regression models—for example the one
arising from a squared exponential kernel—which give more involved
posterior means whose local minima can be found only approximately.

f

t

f

Figure 39: Integrated Wiener process.
gp marginal posterior of function values.
posterior mean µ (), and ±2

√
V

(), local pdf marginal shaded; func-
tion value observations () (corre-
sponding gradients not shown). Classic
interpolation by piecewise cubic spline
(). Top: Exact observations (σf =

0); the mean of the gp and the cubic
spline interpolator of a classic line search
coincide. Bottom: Same observations
with additive Gaussian noise (error-bars
indicate ±σf); noise-free interpolator of
top plot () for comparison. The clas-
sic interpolator (), which exactly
matches the observations, becomes un-
reliable, the gp reacts robustly to noisy
observations while the gp-mean still con-
sists of piecewise cubic splines.

Another advantage of the cubic spline interpolant is that it does not
encode the existence of higher derivatives (in contrast to the Gaussian
kernel, for example), and thus reacts robustly to irregularities in the
objective. In our algorithm, after each evaluation of (yM, y′M), we
use this property to compute a short list of candidates for the next
evaluation, consisting of the < M local minimizers of µ(t) and one
additional extrapolation node at tmax + text, where tmax is the currently
largest evaluated t, and text is an extrapolation step size starting at
text = 1 and doubled after each extrapolation step.

[1] Adler, The Geometry of Random Fields,
1981

[109] Rasmussen and Williams, Gaussian

Processes for Machine Learning, 2006

A conceptual rather than algorithmic motivation for using the
iwp as surrogate, are classic line searches. There, the 1D-objective
is modeled by piecewise cubic interpolations between neighboring
datapoints. In a sense, this is a non-parametric approach, since a new
spline is defined, when a datapoint is added. Classic line searches
though always only deal with one spline at a time, since they are able
to collapse/rule out all other parts of the search space. Indeed, for
noise-free observations, the mean of the posterior iwp is identical to
the classic cubic interpolations, and thus candidate locations are iden-
tical as well (Figure 39 for illustration). The non-parametric approach
also prevents issues of over-constrained surrogates for more than two
datapoints. For example, unless the objective is a perfect cubic func-
tion, it is impossible to fit a parametric third order polynomial to it,
for more than two noise-free observations. All other variability in the
objective would need to be explained away by artificially introducing
noise on the observations. An integrated Wiener process very natu-
rally extends its complexity with each newly added datapoint without

104 | PROBABILISTIC LINE SEARCHES

being overly assertive – the encoded assumption is, that the objective
has at least one derivative which is also observed in this case.
remark: The current design of the probabilistic line search considers the

gp-mean but not the variance for candidate selection. For the integrated

Wiener process (iwp) and heteroscedastic noise, the variance V(t) always
attains its maximum exactly at the mid-point between two evaluations. In-

cluding the variance into the candidate proposal biases the existing candidates

towards the center. Additional candidates might occur between evaluations

without local minimizer, even for noise-free observations/classic line searches.

We did not explore this further since the algorithm showed very good sample

efficiency already with the adopted scheme, and has the possibly desirable

property of reverting to the classic candidate proposal for noise-free observa-

tions.

7.3 Lightweight BayesOpt for Candidate Selection
The previous section described the construction of≤ M discrete candi-
date points for the next evaluation. To decide at which of the candidate
points to actually call f and f ′, we make use of a popular acquisition
function from Bayesian optimization. Expected improvement ([71], in- [71] Jones, Schonlau, and Welch, “Effi-

cient global optimization of expensive
black-box functions,” 1998

troduced in Chapter 4 § 4.1 Eq. 85) is the expected amount, under
the gp surrogate, by which the function f (t) might be smaller than
a ‘current best’ value η (we set η = mini=0,...,M{µ(ti)}, where ti are
observed locations),

uei(t) =
η − µ(t)

2

(
1 + erf

η − µ(t)√
2V(t)

)
+

√
V(t)
2π

exp
(
− (η − µ(t))2

2V(t)

)
. (112)

The next evaluation point is chosen as the candidate maximizing the
product of Eq. 112 and Wolfe probability pWolfe, which is derived in
the following section. The intuition is that pWolfe precisely encodes
properties of desired points, but has poor exploration properties; uei

has better exploration properties, but lacks the information that we are
seeking a point with low curvature; uei thus puts weight on, by W-II,
clearly ruled out points. An illustration of the candidate proposal and
selection is shown in Figure 40.
remark: In principle other acquisition functions, e. g., the upper-confidence

bound, gp-ucb [130], Eq. 85, are possible, which might have a stronger ex- [130] Srinivas et al., “Gaussian Process
Optimization in the Bandit Setting: No
Regret and Experimental Design,” 2010

plorative behavior; we opted for uei since exploration is less crucial for line

searches than for general bo and some, e. g., gp-ucb, had one additional

parameter to tune. We tracked the sample efficiency of uei instead and it was

very good (low), and comparable to the one of classic line searches. The exper-

imental Subsection 7.5.3 contains further comments and experiments on the

alternative choices of uei and pWolfe
as standalone acquisition functions; they

PROBABILISTIC WOLFE CONDITIONS FOR TERMINATION | 105

performed equally well in terms of loss and sample efficiency to their product

on the tested setups.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

← uEI · pWolfe
uEI

↓
pWolfe

↓

step size t

u E
I
·p

W
ol

fe

← local minimum extrapolation→−1

0

1

f′

−2

−1

0

f

Figure 40: Candidate selection by
Bayesian optimization. Top and bottom:
gp marginal posterior of function values
and gradients respectively (colors as in
Figure 39); newly collected evaluations
(/). Locations of the two candidates
as vertical lines (). The left one at
about tcand

1 ≈ 1.54 is a local minimum
of the mean µ (the gradient mean µ′

crosses through zero here); the right one
at tcand

2 = 4 is a candidate for extrap-
olation. Bottom: Decision criterion in
arbitrary scale: Expected improvement
uei (, Eq. 112), the Wolfe probabil-
ity pWolfe (, Eqs. 115, 117), their de-
cisive product (). For illustrative
purposes all criteria are plotted for the
whole t-space. In practice solely the val-
ues at tcand

1 and tcand
2 are computed, com-

pared, and the candidate with the higher
value of uei · pWolfe is chosen for evalua-
tion. In this example this would be the
candidate at tcand

1 .

0 1 2
−1

0

1

pWolfe =0.68
0 1 2

−1

0

1

pWolfe =0.08
0 1 2

−1

0

1

pWolfe =0.00

W
-II

W-I

← accepted−1

0

1

f′

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

f

Figure 41: Acceptance procedure. Top
and middle: plot and colors as in Fig-
ure 40 with an additional observation
(). Bottom: Implied bivariate Gaussian
belief over the validity of the Wolfe con-
ditions (Eq. 114a) as contours at the red,
blue and green point respectively. Points
are considered acceptable if their Wolfe
probability pWolfe

t is above a threshold
cW = 0.3; this means that at least 30% of
the orange 2D Gauss density must cover
the shaded area (). Only the point

fulfills this condition and is therefore
accepted.

7.4 ProbabilisticWolfe Conditions for Termination
The key observation for a probabilistic extension of the Wolfe con-
ditions W-I and W-II is that they are positivity constraints on two

106 | PROBABILISTIC LINE SEARCHES

0 0.5 1 1.5
0

1

t-constraining

pW
ol

fe
(t
)

−0.2

0

0.2

f(
t)

σf = 0.0028

σf ′ = 0.0049

0 2 4
0

1

t-extrapolation

−2

0

2

σf = 0.28

σf ′ = 0.0049

0 0.5 1 1.5
0

1

t-interpolation

−0.2

0

0.2

σf = 0.082

σf ′ = 0.014

0 0.5 1 1.5
0

1

t-immediate accept

−0.5

0

0.5

σf = 0.17

σf ′ = 0.012

0 0.5 1 1.5
0

1

t-high noise interpolation

−0.2

0

0.2

σf = 0.24

σf ′ = 0.011

Figure 42: Curated snapshots of line
searches (from N-I on MNIST), show-
ing variability of the objective’s shape
and the decision process. Top row:
gp marginal posterior of function values
and evaluations, bottom row: approxi-
mate pWolfe over strong Wolfe conditions.
Accepted point marked red.

variables at, bt that are both linear projections of the jointly Gaussian
variables f and f ′:

⎡⎣at

bt

⎤⎦ =

⎡⎣1 c1t −1 0

0 −c2 0 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎣

f (0)

f ′(0)

f (t)

f ′(t)

⎤⎥⎥⎥⎥⎥⎦ ≥ 0. (113)

The gp of Eq. 108 on f thus implies, at each value of t, a bivariate
Gaussian distribution

p(a(t), b(t)) = N
⎛⎝⎡⎣a(t)

b(t)

⎤⎦ ;

⎡⎣ma(t)

mb(t)

⎤⎦ ,

⎡⎣Caa(t) Cab(t)

Cba(t) Cbb(t)

⎤⎦⎞⎠ , (114a)

ma(t) = µ(0)− µ(t) + c1tµ′(0)

mb(t) = µ′(t)− c2µ′(0) (114b)

Caa(t) = k̃00 + (c1t)2 k̃∂ ∂
00 + k̃tt + 2[c1t(k̃∂

00 − k̃∂
0t)− k̃0t]

Cbb(t) = c2
2 k̃∂ ∂

00 − 2c2 k̃∂ ∂
0t + k̃∂ ∂

tt (114c)

Cab(t) = Cba(t) = −c2(k̃∂
00 + c1t k̃∂ ∂

00) + c2 k̃∂
0t + k̃∂

t0 + c1t k̃∂ ∂
0t − k̃∂

tt.

The quadrant probability pWolfe(t) = p(a(t) > 0 ∧ b(t) > 0) for the
Wolfe conditions to hold, is an integral over a bivariate normal proba-
bility,

pWolfe(t) =
∫ ∞

− ma(t)√
Caa(t)

∫ ∞

− mb(t)√
Cbb(t)

N
⎛⎝⎡⎣a(t)

b(t)

⎤⎦ ;

⎡⎣0

0

⎤⎦ ,

⎡⎣ 1 ρ(t)

ρ(t) 1

⎤⎦⎞⎠da(t)db(t), (115)

with correlation coefficient ρ(t) = Cab(t)/
√

Caa(t)Cbb(t). It can be
computed efficiently [33], using readily available code.8 The line [33] Drezner and Wesolowsky, “On the

computation of the bivariate normal in-
tegral,” 1990

8 e. g., http://www.math.wsu.edu/faculty/
genz/software/matlab/bvn.m

search computes this probability for all evaluation nodes, after each
evaluation. If any of the nodes fulfills the Wolfe conditions with

http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m
http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m

PROBABILISTIC WOLFE CONDITIONS FOR TERMINATION | 107

pWolfe(t) > cW , greater than some threshold 0 < cW < 1, it is accepted
and returned. If several nodes simultaneously fulfill this requirement,
the most recently evaluated node is returned.9 Section 7.4.1 below 9 There are additional safeguards for

cases where e.g. no Wolfe-point can be
found, which can be deduced from the
pseudo-code in Appendix D; they are
similar to standard safeguards of classic
line search routines, e. g., returning the
node of lowest mean.

motivates fixing cW = 0.3. The acceptance procedure is illustrated in
Figure 41.

Approximation for Strong Conditions:

As noted in Chapter 2 § 2.5.1, deterministic optimizers tend to use the
strong Wolfe conditions, which use | f ′(0)| and | f ′(t)|. A precise exten-
sion of these conditions to the probabilistic setting is numerically tax-
ing, because the distribution over | f ′| is a non-central χ-distribution,
requiring customized computations. However, a straightforward vari-
ation to Eq. 115 captures the spirit of the strong Wolfe conditions, that
large positive derivatives should not be accepted: Assuming f ′(0) < 0,
i. e., that the search direction is a descent direction, the strong second
Wolfe condition can be written exactly as

0 ≤ b(t) = f ′(t)− c2 f ′(0) ≤ −2c2 f ′(0). (116)

The value −2c2 f ′(0) is bounded to 95% confidence by

−2c2 f ′(0) ≲ 2c2

(
|µ′(0)|+ 2

√
V′(0)

)
=: b̄. (117)

Hence, an approximation to the strong Wolfe conditions can be reached
by replacing the infinite upper integration limit on b in Eq. 115 with
(b̄ − mb(t))/

√
Cbb(t). The effect of this adaptation, which adds no

overhead to the computation, is shown in Figure 43 as a dashed line.

−1
0
1

ρ
(t
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

distance t in line search direction

pW
ol

fe
(t
)

weak
strong

0

1

p b
(t
)

0

1

p a
(t
)

➀➁ ➂ ➃➄ ➏

5.5

6

6.5

f(
t)

Figure 43: Sketch of a probabilistic line
search. As in Figure 21, the algorithm
performs extrapolation (➁,➂,➃) and in-
terpolation (➄,➏), but receives unreli-
able, noisy function and gradient values.
These are used to construct a gp poste-
rior (top: colors as in Figure 40, three
dashed sample paths). This implies a bi-
variate Gaussian belief (§ 7.4) over the
validity of the weak Wolfe conditions
(middle three plots. pa(t) is the marginal
for W-I, pb(t) for W-II, ρ(t) their correla-
tion). Points are considered acceptable if
their joint probability pWolfe(t) (bottom)
is above a threshold (gray horizontal).
An approximation to the strong Wolfe
conditions is shown dashed.

7.4.1 Eliminating Hyper-parameters
As a black-box inner loop, the line search should not require any tun-
ing by the user. The preceding section introduced six so-far undefined
parameters: c1, c2, cW , θ, σf , σf ′ . We will now show that c1, c2, cW , can
be fixed by hard design decisions: θ can be eliminated by standard-
izing the optimization objective within the line search; and the noise
levels can be estimated at runtime with low overhead for finite-sum
objectives of the form in Eq. 28. The result is a parameter-free al-
gorithm that effectively removes the one most problematic parameter
from sgd—the learning rate.

Design Parameters c1, c2, cW

The algorithm inherits the Wolfe thresholds c1 and c2 from its deter-
ministic ancestors. We set c1 = 0.05 and c2 = 0.5. This is a standard
setting that yields a ‘lenient’ line search, i. e., one that accepts most

108 | PROBABILISTIC LINE SEARCHES

descent points. The rational is that line searches shall not waste ex-
pensive evaluations, since more precise, or strict line searches usually
do not yield a better performance of the outer optimizer.

The acceptance threshold cW is a new design parameter arising only
in the probabilistic setting. We fix it to cW = 0.3. To motivate this
value, first note that in the noise-free limit, all values 0 < cW < 1 are
equivalent, because pWolfe then switches discretely between 0 and 1
upon observation of the function. A back-of-the-envelope computa-
tion, assuming only two evaluations at t = 0 and t = t1 and the same
fixed noise level on f and f ′ (which then cancels out), shows that
function values barely fulfilling the conditions, i. e., a(t1) = b(t1) = 0,
can have pWolfe ∼ 0.2 while function values at a(t1) = b(t1) = −ϵ for
ϵ→ 0 with ‘unlucky’ evaluations (both function and gradient values
one standard-deviation from true value) can achieve pWolfe ∼ 0.4. The
choice cW = 0.3 balances the two competing desiderata for precision
and recall. Additionally, for a fixed mean [ma, mb]⊺ and large covari-
ance (roughly det [cov[a, b]]→∞), it is that pWolfe→ 0.25. Since the
line search should not accept completely uninformative points, the
threshold cW should lie above this value. Empirically (Figure 42), we
rarely observed values of pWolfe close to this threshold. Even at high
evaluation noise, a function evaluation typically either clearly rules
out the Wolfe conditions, or lifts pWolfe well above the threshold.

Scale θ

The parameter θ of Eq. 107 simply scales the prior covariance. It can
be eliminated by scaling the optimization objective: We set θ = 1
and scale yi← (yi−y0)/|y′0|, y′i← y′i/|y′0|within the code of the line search.
This gives y(0) = 0 and y′(0) = −1, and typically ensures the objective
ranges in the single digits across 0 < t < 10, where most line searches
take place. The division by |y′0| causes a non-Gaussian disturbance,
but this does not seem to have notable empirical effect.
remark: The assumption behind this scaling is that the initial step size

provides a rough estimate of where we expect to see a Wolfe point. This is

especially true if the learning rate is well scaled from previous line searches.

For the Wiener kernel, scaling f ′ with θ2
is equivalent to scaling the input t

with θ2
. We would like µ(t) +

√
V′(t) to cross zero at about t = α/α0 = 1,

i. e., θ ≈
⏐⏐y′0⏐⏐; this is approximated by scaling y0 and y′0 as mentioned above.

Noise Scales σf , σf ′

The likelihood 106 requires standard deviations for the noise on both
function values (σf) and gradients (σf ′). One could attempt to learn
these across several line searches. However, in empirical risk models,
as captured by Eq. 28, the variance of the loss and its gradient can be
estimated directly for the mini-batch, at low computational overhead

PROBABILISTIC WOLFE CONDITIONS FOR TERMINATION | 109

As described in Chapter 5, we collect the empirical statistics Σ̂(w) and
Λ̂(w) (Eqs. 90 and 91 respectively) during each evaluation of LB and
∇LB and set

σ2
f = Λ̂(w(0)) and σ2

f ′ = (p⊙2
t)

⊺
Σ̂(w(0)) (118)

at the beginning of a line search. This amounts to the assumption that
noise on the gradient is independent. We finally scale the two empiri-
cal estimates: σf ← σf /|y′(0)|, and ditto for σf ′ , in the same style as y
and y′. The overhead of this estimation is rather small if the computa-
tion of ℓ(x, yj) itself is more expensive than the summation over j. For
neural networks the factor is upper bounded by 1.3 (Chapter 5.2).

Propagating Step Sizes Between Line Searches

As will be demonstrated in §7.5, the line search can find good step
sizes even if the length of the direction si is mis-scaled. Since such
scale issues typically persist over time, it would be wasteful to have the
algorithm re-fit a good scale in each line search. Instead, we propagate
step lengths from one iteration of the search to another: We set the
initial search direction to p0 = −α0∇LB(w0)with some initial learning
rate α0. Then, after each line search ending at wt+1 = wt + t∗t pt,
the next search direction is set to pt = −αext · t∗t α0∇LB(wt) (with
αext = 1.3). Thus, the next line search starts its extrapolation at 1.3
times the step size of its predecessor (Section 7.5.2 discusses details).

7.4.2 Relation to Bayesian Optimization and Noise-Free Limit
The probabilistic line search algorithm is closely related to Bayesian
optimization (bo) discussed in Chapter 4 § 4.1 since it approximately
minimizes a (1D-)objective under potentially noisy function evalua-
tions. Similarities to bo mostly lie in the model structure, e. g., a
gp-surrogate for the objective, and an acquisition function to discrim-
inate locations for the next evaluation of the loss; but there are some
differences to bo concerning the aim, requirements on computational
efficiency, and termination condition, which are shortly discussed
here: (i) Performance measure: The final performance in bo is usu-
ally measured by the lowest found value of the objective function.
Line searches are subroutines inside of a greedy, iterative optimiza-
tion machine, which often performs several thousand steps (and line
searches); many, very approximate steps often performs better overall
than taking less, but preciser steps. (ii) Termination: The line search, in
contrast to bo, has access to a clear measure when an evaluated point
is ‘good enough’. This stopping decision is encoded in the Wolfe ter-
mination conditions and is imposed from the outside. Stricter Wolfe
conditions do not usually improve the performance of the outer op-

110 | PROBABILISTIC LINE SEARCHES

timizer, thus, no matter if a better (lower) minimum could be found,
any Wolfe-point is acceptable at all times. This especially enables the
line search to ‘immediately-accept’ the first evaluated node, a key fea-
ture to an efficient line search routine. (iii) Sample efficiency: Since the
last evaluation from the previous line search can be re-used in the
current line search, only one additional value and gradient evaluation
is enough to terminate the procedure. This ‘immediate-accept’ is, in
contrast to bo, the desired behavior if the learning rate is currently well
calibrated. (iv) Locations for evaluation: bo, usually calls an optimizer
to maximize the acquisition function, and the preciseness of this opti-
mization is crucial for performance. Line searches just need to find a
Wolfe-acceptable point. Classic line searches suggest, that it is enough
to look at plausible locations, like minimizer of a local interpolator, or
some rough extrapolation point; this inexpensive heuristic usually
works rather well. (v) Exploration: bo needs to solve an intricate trade-
off problem in between exploring enough of the parameters space for
possible locations of minima, and exploiting locations around them
further. Since line searches are only concerned with finding a Wolfe-
point, they do not need to explore the parameter space of possible
step sizes to that extend; crucial features are rather the possibility
to explore somewhat larger steps than previous ones (which is done
by extrapolation-candidates), and likewise to shorted steps (which is
done by interpolation-candidates).

Noise-Free Limit

In the limit of noise-free observed gradients and function values
(σf = σf ′ = 0) the probabilistic line search reverts to its classic parent:
The gp-mean is identical to the classic interpolator, all candidate lo-
cations are thus identical, too. The Wolfe probability becomes binary
and is identical to the classic Wolfe conditions (1 for fulfilled, and
0 otherwise). The only slight difference is that the probabilistic line
search always also proposes one extrapolation candidate/ a second
option, since it does not collapse the search space strictly. Thus, in
rare cases, another candidate might be chosen for evaluation (which
is subject to the same Wolfe conditions).

7.4.3 Implementation
The line search routine itself has little memory and time overhead,
comparable to a classic line search; most importantly it is independent
of the dimensionality N of the optimization problem.

EXPERIMENTS | 111

Computational Time Overhead

After every call of the objective function, the gp needs to be updated,
which at most is at the cost of inverting a 2M× 2M-matrix, where M
usually is equal to 1, 2, or 3 but never > 10. In addition, the bivariate
normal integral pWolfe of Eq. 115 needs to be computed at most M times.
On a laptop, one evaluation of pWolfe costs about 100 microseconds.
For the choice among proposed candidates (§ 7.3), again at most M,
for each, we need to evaluate pWolfe and uei (Eq. 112) where the latter
comes at the expense of evaluating two error functions. Since all of
these computations have a fixed cost (in total some milliseconds on
a laptop), the relative overhead becomes less the more expensive the
evaluation of ∇LB(w).

The largest overhead is due to the estimation of σf ′ and lies out-
side of the actual line search routine. The computation of the sample
variance Σ̂, increase the cost of evaluating ∇LB of a constant factor
that, for neural networks, can be upper bounded by < 1.3, but is
usually smaller in practice (Chapter 5). At the same time though, all

exploratory experiments which very considerably increase the time
spend when using sgd with a hand tuned learning rate schedule need
not be performed anymore. In Section 7.5.1 we will also see that
sgd using the probabilistic line search often needs less function eval-
uations to converge, which might lead to overall faster convergence
than classic sgd in a single run.

Memory Requirement

Vanilla sgd, at all times, keeps around the current optimization param-
eters w ∈ RN and the gradient vector ∇LB(w) ∈ RN . In addition to
this, the probabilistic line search needs to store the estimated gradient
variances Σ̂(w) (Eq. 118) of same size. The memory requirement of
sgd+probLS is thus comparable to adagrad or adam. If combined
with a search direction other than sgd, always one additional vector
of size N needs to be stored.

7.5 Experiments
This section reports on an extensive set of experiments to characterise
and test the line search. The overall evidence from these tests is that
the line search performs well and is relatively insensitive to the choice
of its internal hyper-parameters as well as the mini-batch size. We
performed experiments on two multi-layer perceptrons N-I and N-II;
both were trained on two well known datasets MNIST and CIFAR-10.

• N-I: fully connected net with 1 hidden layer and 800 hidden units
+ biases, and 10 output units, sigmoidal activation functions and

112 | PROBABILISTIC LINE SEARCHES

a cross entropy loss. Structure without biases: 784-800-10. Many
authors used similar nets and reported performances.10 10 http://yann.lecun.com/exdb/

mnist/

• N-II: fully connected net with 3 hidden layers and 10 output units,
tanh-activation functions and a squared loss. Structure without bi-
ases: 784-1000-500-250-10. Similar nets were also used for example
in [91] and [132]. [91] Martens, “Deep learning via

Hessian-free optimization,” 2010

[132] Sutskever et al., “On the impor-
tance of initialization and momentum in
deep learning,” 2013

• MNIST [82]: multi-class classification task with 10 classes: hand-

[82] LeCun et al., “Gradient-based learn-
ing applied to document recognition,”
1998

written digits in gray-scale of size 28× 28 (numbers ‘0’ to ’9’); train-
ing set size 60 000, test set size 10 000.

• CIFAR-10 [76]: multi-class classification task with 10 classes: color

[76] Krizhevsky and Hinton, “Learning
multiple layers of features from tiny im-
ages,” 2009

images of natural objects (horse, dog, frog,. . .) of size 32 × 32;
training set size 50 000, test set size 10 000; like other authors,
we only used the “batch 1” sub-set of CIFAR-10 containing 10 000
training examples.

In addition, we train logistic regressors with sigmoidal output (N-III)
on the following binary classification tasks:

• Wisconsin Breast Cancer Dataset (WDBC) [140]: binary classifica- [140] Wolberg, Street, and Mangasarian,
UCI Machine Learning Repository: Breast

Cancer Wisconsin (Diagnostic) Data Set,
2011

tion of tumors as either ‘malignant’ or ‘benign’. The set consist of
569 examples of which we used 169 to monitor generalization per-
forming; thus 400 remain for the training set; 30 features describe
for example radius, area, symmetry, et cetera. In comparison to the
other datasets and networks, this yields a very low dimensional
optimization problem with only 30 (+1 bias) input parameters as
well as just a small number of datapoints.

• GISETTE [52]: binary classification of the handwritten digits ‘4’ [52] Guyon et al., “Result Analysis of the
NIPS 2003 Feature Selection Challenge,”
2005

and ‘9’. The original 28× 28 images are taken from the MNIST dat-
set; then the feature set was expanded and consists of the original
normalized pixels, plus a randomly selected subset of products of
pairs of features, which are slightly biased towards the upper part
of the image; in total there are 5000 features, instead of 784 as in the
original MNIST. The size of the training set and test set is 6000 and
1000 respectively.

• EPSILON: synthetic dataset from the PASCAL Challenge 2008 for
binary classification. It consists of 400 000 training set datapoint
and 100 000 test set datapoints, each having 2000 features.

In the text and figures, sgd using the probabilistic line search will
occasionally be denoted as sgd+probLS. Section 7.5.1 contains exper-
iments on the sensitivity to varying gradient noise levels (mini-batch
sizes |B|) performed on both multi-layer perceptrons N-I and N-II,
as well as on the logistic regressor N-III. Section 7.5.2 discusses sen-
sitivity to the hyper-parameters choices introduced in Section 7.4.1

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

EXPERIMENTS | 113

and Section 7.5.3 contains additional diagnostics on step size statistics.
Each single experiment was performed 10 times with different ran-
dom seeds that determined the starting weights and the mini-batch
selection and seeds were shared across all experiments. We report all
results of the 10 instances as well as means and standard deviations.

7.5.1 VaryingMini-batch Sizes
The noise level of the gradient estimate ∇LB(w) and the loss LB(w)

is determined by the mini-batch size |B| and ultimately there should
exist an optimal |B| that maximizes the optimizer’s performance in
CPU-time. In practice of course the performance is not necessarily
linear in |B| since it is upper bounded by the memory capacity of the
hardware used. We suppose here, that the mini-batch size is chosen by
the user; thus we test the line search with the default hyper-parameter
setting (c1 = 0.05, c2 = 0.5, cW = 0.3, αext = 1.3) on four different
mini-batch sizes:

• |B| = 10, 100, 200 and 1000 (MNIST, CIFAR-10, and EPSILON)

• |B| = 10, 50, 100, and 400 (WDBC and GISETTE)

which correspond to increasing signal-to-noise ratios. Since the train-
ing set of WDBC only consists of 400 datapoints, the run with the
largest mini-batch size of 400 in fact runs full-batch gradient descent
on WDBC; this is not a problem, since—as discussed above—the prob-
abilistic line search can also handle noise-free observations.11 We com- 11 Since the dataset size |D| of WDBC

is very small, we used the factor
(|D|−|B|)/(|B||D|) instead of 1/|B| to scale
the variances of Eq. 5.1. The former
encodes sampling mini-batches B with
replacement, the latter without replace-
ment; for |B| ≪ |D| both factors are
nearly identical.

pare to sgd-runs using a fixed step size which is typical for these archi-
tectures, and an annealed step size with annealing schedule αt = α0/t.
Because annealed step sizes performed much worse than sgd+fixed
step sizes, we will only report on the latter results in the plots.12 Since

12 An example of annealed step size per-
formance can be found in [89].

classic sgd without the line search needs a hand crafted learning rate,
we search on exhaustive logarithmic grids of

αN-I
sgd = [10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1, 5 · 10−1]

αN-II
sgd = [αN-I

sgd, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]

αN-III
sgd = [10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102].

We run 10 different initialization for each learning rate, each mini-
batch size, each net, and each dataset combination (10 · 4 · (2 · 10 + 2 ·
17 + 3 · 11) = 3480 runs in total) for a large enough budget to reach
convergence and report all numbers. Then, we perform the same [89] Mahsereci and Hennig, “Probabilis-

tic Line Searches for Stochastic Optimiza-
tion,” 2015

experiments using the same seeds and setups with sgd using the
probabilistic line search and compare the results. For sgd+probLS,
αsgd is the initial learning rate α0 which is used in the very first step.
After that, the line search automatically adapts the learning rate, and
shows no significant sensitivity to its initialization.

114 | PROBABILISTIC LINE SEARCHES

Results of N-I and N-II on both, MNIST and CIFAR-10 are shown
in Figures 44, 60, 61, and 62; results of N-III on GISETTE, WDBC
and EPSILON are shown in Figures 63, 64, and 65 respectively. All
instances (sgd and sgd+probLS) get the same computational budget
(number of mini-batch evaluations) and not the same number of opti-
mization steps. The latter would favour the probabilistic line search
since, on average, a bit more than one mini-batch is evaluated per step.
Likewise, all plots show performance measure versus the number of
mini-batch evaluations, which is proportional to the computational
cost.

All plots show similar results: While classic sgd is sensitive to the
learning rate choice, the line search-controlled sgd performs as good,
close to, or sometimes even better than the (in practice unknown) opti-
mal classic sgd instance. In Figure 44, for example, sgd+probLS con-
verges faster to a good test set error than the best classic sgd instance.
In all experiments, across a reasonable range of mini-batch sizes |B|
and of initial αsgd values, the line search quickly identified good step
sizes αt, stabilized the training, and progressed efficiently, reaching
test set errors similar to those reported in the literature for tuned ver-
sions of these kind of architectures and datasets. The probabilistic line
search thus effectively removes the need for exploratory experiments
and learning-rate tuning.
remark: The training error of sgd+probLS often plateaus earlier than

the one of vanilla sgd, especially for smaller mini-batch sizes. This does not

seem to impair the performance of the optimizer on the test set. We did not

investigate this further, since it seemed like a nice natural annealing effect,

but the exact causes are unclear for now. One explanation might be that the

line search does indeed improve overfitting, since it tries to measure descent

(by Wolfe conditions which rely on the noise-informed gp). This means that

if—close to a minimum—successive acceptance decisions can not identify a

descent direction anymore, diffusion might set in.

7.5.2 Sensitivity to Design Parameters
Most, if not all, numerical methods make implicit or explicit choices
about their hyper-parameters. Most of these are never seen by the
user since they are either estimated at run time, or set by design to
a fixed, approximately insensitive value. Well known examples are
the step size in ordinary differential equation solvers [53, § 2.4], or the [53] Hairer, Nørsett, and Wanner, Solving

Ordinary Differential Equations I – Nonstiff

Problems, 1987
Wolfe parameters c1 and c2 of classic line searches. The probabilistic
line search inherits the Wolfe parameters c1 and c2 from its classical
counterpart as well as introducing two more: The Wolfe threshold cW

and the extrapolation factor αext. cW does not appear in the classical
formulation since the objective function can be evaluated exactly and

EXPERIMENTS | 115

−4 −2

m:100

−4 −2

m:200

−4 −2

m:1000

−4 −2
−3

−2

−1

0

log learning rate

lo
g

te
st

an
d

tr
ai

n
se

te
rr

or
m:10

0 1 2 3 40 1 2 3 40 1 2 3 4
−3

−2

−1

0

lo
g

tr
ai

n
se

te
rr

or

0 1 2 3 4

0 1 2 3 4

−1

0

function evaluations in 104

lo
g

te
st

se
te

rr
or

0 1 2 3 40 1 2 3 4 0 1 2 3 4

Figure 44: Performance of N-II on
MNIST for varying mini-batch sizes.
Top: final logarithmic test set and train
set error after 40 000 function evalua-
tions of training versus a large range of
learning rates each for 10 different ini-
tializations. sgd-runs with fixed learn-
ing rates (/ , test/train); sgd+probLS-
runs (/ , test/train). Means and two
standard deviations for each of the 10
runs in gray. Columns from left to
right: different mini-batch sizes |B| =
10, 100, 200 and 1000 which correspond
to decreasing noise in the gradient ob-
servations. Not surprisingly, the perfor-
mance of sgd-runs with a fixed step size
are very sensitive to the choice of this
step size. sgd+probLS adapts initially
mis-scaled step sizes and performs well
across the whole range of initial learn-
ing rates. Middle and bottom: Evolu-
tion of the logarithmic error rates for
all sgd-runs (/ , test/train) and
sgd+probLS-runs (/ , test/-
train) versus # function evaluations. For
mini-batch sizes of m = 100, 200 and
1000 all instances of sgd using the prob-
abilistic line search reach the same best
test set error. Vanilla sgd occasionally
reaches smaller train errors but this ad-
vantage does not seem to translate to a
better test set error. For very small mini-
batch sizes (m = 10 and first column in
the plot) the line search performs poorly
on this architecture, most likely because
of the variance estimation becoming too
inaccurate (see Chapter 5.2).

the Wolfe probability is binary (either fulfilled or not). While cW is
thus a natural consequence of allowing the line search to model noise
explicitly, the extrapolation factor αext is the result of the line search
favoring shorter steps, which we will discuss below in more detail,
but most prominently because of bias in the line search’s first gradient
observation.

In the following sections we will give an intuition about the task
of the most influential design parameters c2, cW , and αext, discuss
how they affect the probabilistic line search, and validate good design
choices through exploring the parameter space and showing insen-
sitivity to most of them. All experiments on hyper-parameter sensi-
tivity were performed training N-II on MNIST with mini-batch size
|B| = 200. For a full grid-search of the parameter space cW-c2-αext we
performed 4950 runs in total with 495 different parameter combina-
tions. All results are reported.

Wolfe-II Parameter c2 and Wolfe Threshold cW

As described in Section 7.4.1, c2 encodes the strictness of the curvature
condition W-II. Pictorially speaking, a larger c2 extends the range of
acceptable gradients (-area in the lower part of Figure 41) and
leads to a lenient line search while a smaller value of c2 shrinks this
area, leading to a stricter line search. cW controls how certain we
want to be, that the Wolfe conditions are actually fulfilled, i. e., how
much of the mass of p(a, b) need to lie in . An overly strict line

116 | PROBABILISTIC LINE SEARCHES

search (e. g., cW = 0.99 and/ or c2 = 0.1), will still be able to optimize
the objective function well, but will waste evaluations at the expense
of efficiency. Figure 45 explores the c2-cW parameter space, while
keeping αext fixed at 1.3. The left column shows final test and train set
error, the right column the average number of function evaluations
per line search, both versus different choices of Wolfe parameter c2.
The left column thus shows the overall performance of the optimizer,
while the right column is representative for the efficiency of the line
search. Intuitively, a line search which is minimally invasive (only
corrects the learning rate, when it is really necessary) is preferred.
Rows in Figure 45 show the same plot for different choices of the
Wolfe threshold cW .

The effect of strict c2 can be observed clearly in Figure 45 where for
smaller values of c2 <≈ 0.2 the average number of function evalua-
tions spend in one line search goes up slightly in comparison to looser
choices of c2, while still a very good performance is reached in terms
of train and test set error. Likewise, the last row of Figure 45 for the
extreme value of cW = 0.99 (demanding 99% certainty about the va-
lidity if the Wolfe conditions), shows significant loss in computational
efficiency having an average number of 7 function evaluations per line
search. Besides loosing efficiency, it is still optimizing the objective
well. Lowering this threshold a bit to 90% increases the computa-
tional efficiency of the line search to be nearly optimal again. Ideally,
we want to trade off the desiderata of being strict enough to reject
too small and too large steps that prevent the optimizer to converge,
but being lenient enough to allow all other reasonable steps, thus in-
creasing computational efficiency. The values cW = 0.3 and c2 = 0.5,
which are adopted in our current implementation are marked as dark
red vertical lines in Figure 45.

Extrapolation Factor αext

The extrapolation parameter αext, introduced in Section 7.4.1, pushes
the line search to try a larger learning rate first, than the one which was
accepted in the previous step. Figure 46 is structured like Figure 45,
but this time explores the line search sensitivity in the c2-αext param-
eter space (abscissa and rows respectively) while keeping cW fixed at
0.3. Unless we choose αext = 1.0 (no step size increase between steps)
in combination with a lenient choice of c2 the line search performs
well. For now we adopt αext = 1.3 as default value which again is
shown as dark red vertical line in Figure 46.

The introduction of αext might seem arbitrary at first, but is a neces-
sity and well-working fix because of a few shortcomings of the current
design. First, the curvature condition W-II is the single condition that
prevents too small steps and pushes optimization progress. On the

EXPERIMENTS | 117

−2.5

−1.5

log test and train set error

cW =0.01

−2.5

−1.5
cW =0.10

−2.5

−1.5
cW =0.20

−2.5

−1.5
cW =0.30

−2.5

−1.5
cW =0.40

−2.5

−1.5
cW =0.50

−2.5

−1.5
cW =0.60

−2.5

−1.5
cW =0.70

−2.5

−1.5
cW =0.80

−2.5

−1.5
cW =0.90

0 0.2 0.4 0.6 0.8 1

−2.5

−1.5

WII parameter c2

cW =0.99

1.5

2.5

average # function evaluations per line search

cW =0.01

1.5

2.5 cW =0.10

1.5

2.5 cW =0.20

1.5

2.5 cW =0.30

1.5

2.5 cW =0.40

1.5

2.5 cW =0.50

1.5

2.5 cW =0.60

1.5

2.5 cW =0.70

1.5

2.5 cW =0.80

1.5

2.5 cW =0.90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
4
7

WII parameter c2

cW =0.99

Figure 45: Sensitivity to varying hyper-
parameters c2, and cW . Runs were per-
formed training N-II on MNIST with
mini-batch size |B| = 200. For each
parameter setting 10 runs with differ-
ent initializations were performed. Left
column: logarithmic test and train set
error (/) after 40 000 function evalu-
ations; mean and ± two standard de-
viations of the 10 runs in gray. Right
Column: average number of function
evaluations per line search (). A low
number indicates an efficient line search
procedure (perfect efficiency at 1). For
most parameter combinations this lies
around ≈ 1.3− 1.5. Only at extreme pa-
rameter values for example cW = 0.99,
which amounts to imposing nearly ab-
solute certainty about the Wolfe condi-
tions, or c2 < 0.2 which demands and
unnecessarily large decrease in gradient
magnitude, the line search becomes less
efficient. Adopted parameters as verti-
cal line () at cW = 0.3 and c2 = 0.5

118 | PROBABILISTIC LINE SEARCHES

other hand both W-I and W-II simultaneously penalize too large steps
(Figure 21 for a sketch). This is not a problem in case of deterministic
observation (σf , σf ′ → 0), where W-II undoubtedly decides if a gra-
dient is still too negative. Unless W-II is chosen very tightly (small
c2) or cW unnecessarily large (both choices, as discussed above, are
undesirable), in the presence of noise, pWolfe will thus be more reli-
able in preventing overshooting than pushing progress. The first row
of Figure 46 illustrates this behavior, where the performance drops
somewhat if no extrapolation is done (αext = 1.0) in combination with
a looser version of W-II (larger c2).

Another factor that contributes towards accepting small rather than
larger learning rates is a bias introduced in the first observation of the
line search at t = 0. Observations y′(t) that the gp gets to see are
projections of the gradient sample ∇LB(t) onto the search direction
p = −∇LB(0). Since the first observations y′(0) is computed from
the same mini-batch as the search direction (not doing this would
double the optimizer’s computational cost) a bias is introduced. Since
the scale parameter θ of the Wiener process is implicitly set by y′(0)
(§ 7.4.1), the gp becomes more uncertain at unobserved points than it
needs to be; or alternatively expects the 1D-gradient to cross zero at
smaller steps, and thus underestimates a potential learning rate. The
posterior at observed positions is little affected. The over-estimation
of θ rather pushes the posterior towards the likelihood (since there
is less model to trust) and thus still gives a reliable measure for f (t)
and f ′(t). The effect on the Wolfe conditions is similar. With y′(0)
biased towards larger values, the Wolfe conditions, which measure
the drop in projected gradient magnitude, are thus prone to accept
larger gradients combined with smaller function values, which again
is met by making small steps. Ultimately though, since candidate
points at tcand > 0 that are currently queried for acceptance, are al-
ways observed and unbiased, this can be controlled by an appropriate
design of the Wolfe factor c2 (§ 7.4.1 and § 7.5.2) and of course αext.

Full Hyper-Parameter Search: cW-c2-αext

An exhaustive performance evaluation on the whole cW-c2-αext-grid
is shown in Appendix C.2 in Figures 70-66 and Figures 71-81. As dis-
cussed above, it shows the necessity of introducing the extrapolation
parameter αext and shows slightly less efficient performance for obvi-
ously undesirable parameter combinations. In a large volume of the
parameter space, and most importantly in the vicinity of the chosen
design parameters, the performance of the line search is stable and
comparable to carefully hand tuned learning rates.

EXPERIMENTS | 119

−2.5

−1.5

log test and train set error

αext =1.0

−2.5

−1.5
αext =1.1

−2.5

−1.5
αext =1.2

−2.5

−1.5
αext =1.3

0.2 0.4 0.6 0.8

−2.5

−1.5

WII parameter c2

αext =1.4

1.5

2.5

average # function evaluations per line search

αext =1.0

1.5

2.5 αext =1.1

1.5

2.5 αext =1.2

1.5

2.5 αext =1.3

0.2 0.4 0.6 0.8

1.5

2.5

WII parameter c2

αext =1.4

Figure 46: Sensitivity to varying hyper-
parameters c2, and αext. Plot and colors
as in Figure 45 but this time for vary-
ing αext instead of cW . Right Column:
Again a low number indicates an effi-
cient line search procedure (perfect effi-
ciency at 1). For most parameter com-
binations this lies around ≈ 1.3 − 1.5.
Only at extreme parameter values, for
example αext = 1.0, which amounts to
no extrapolation at all in between suc-
cessive line searches, the line search per-
forms poorer. The hyper-parameters
adopted in the line search implementa-
tion are indicated as vertical line ()
at αext = 1.3 and c2 = 0.5.

Safeguarding against Mis-scaled gps: θreset

For completeness, we performed an additional experiment on the
threshold parameter that is denoted by θreset in the pseudo-code in
Appendix D and safeguards against gp mis-scaling. Because the line
search models observation noise, it also needs to model the expected
variability of the 1D-objective along the search direction, which is de-
scribed by the kernel scale parameter θ. Setting this hyper-parameter
is implicitly done by scaling the observation input, by assuming a
similar scale than in the previous line search (§ 7.4.1), and thus infor-
mation of a well-scaled learning rate is carried over from one iteration
to the next. If, for some reason, the previous line search accepted an
unexpectedly large or small step (what this means is encoded in θreset)
the gp scale θ for the next line search is reset to an exponential running
average of previous scales, represented by αstats in the pseudo-code.
This occurs very rarely (for the default value θreset = 100 the reset
occurred in 0.02% of all line searches), but it is necessary to safeguard
against extremely mis-scaled gp’s. θreset therefore is not part of the
probabilistic line search model as such, but prevents mis-scaled gps
due to some unlucky observation or sudden extreme change in the
learning rate. Figure 47 shows performance of the line search for
θreset = 10, 100, 1000 and 10 000 showing no significant performance
change. We adopted θreset = 100 in our implementation since this is
the expected and desired multiplicative (inverse) factor to maximally
vary the learning rate in one single step.

120 | PROBABILISTIC LINE SEARCHES

1 2 3 4

−2.5

−1.5

log reset factor θreset

log test and train set error

1 2 3 4

1.5

2.5

log reset factor θreset

average # function evaluations per line search Figure 47: Sensitivity to hyper-
parameter θreset. Plot and colors as in
Figure 46. Adopted parameter as verti-
cal line () at θreset = 100. Resetting
the gp scale occurs very rarely. For ex-
ample for θreset = 100 the reset occurred
in 0.02% of all line searches.

7.5.3 Candidate Selection and Learning Rate Traces
The probabilistic line search, chooses among candidates by comput-
ing values of the acquisition function uei(tcand

i) · pWolfe(tcand
i) at every

candidate point tcand
i ; then it selects the one with the highest value and

evaluated the objective LB , ∇LB there (§ 7.3). The Wolfe probability
pWolfe actually encodes precisely what kind of point we want to find
and incorporates both conditions (W-I and W-II) about the function
value and the gradient (§ 7.4). However, pWolfe does not have very de-
sirable exploration properties. Since the uncertainty of the gp grows to
‘the right’ of the last observation, the Wolfe probability quickly drops
to a low, approximately constant (non-zero) value there (Figure 40).
Also pWolfe is partially allowing for undesirably short steps (§ 7.5.2).
The expected improvement uei, on the other hand, is a well studied
acquisition function of Bayesian optimization trading off exploration
and exploitation. It aims to globally find a point with a function value
lower than a current best guess. Though this is a desirable property
also for the probabilistic line search, it is lacking the information that
we are seeking a point that also fulfills the W-II curvature condition.
This is evident in Figure 40 where pWolfe significantly drops at points
where the objective function is already evaluated but uei does not. In
addition, we do not need to explore the positive t space to an extend,
the expected improvement suggests, since the aim of a line search is
just to find a good, acceptable point at positive t and not the globally
best one. The product of both acquisition function uei · pWolfe is thus
a trade-off between exploring enough, but still preventing too much
exploitation in obviously undesirable regions. In practice though, we
found that all three choices ((i) uei · pWolfe, (ii) uei only, (iii) pWolfe

only) perform comparable. The following experiments were all per-
formed training N-II on MNIST; only the mini-batch size might vary
as indicated.

Figure 48 compares all three choices for mini-batch size |B| = 200
and default design parameters. The top plot shows the evolution of
the logarithmic test and train set error (for plot and color description
see Figure caption). All test and train set error curves respectively
bundle up (only lastly plotted clearly visible). The choice of acquisition

EXPERIMENTS | 121

0.5 1.0 1.5 2.0 2.5

·104

−3

−2

−1

line searches

pWolfe only

−3

−2

−1 uEI · pWolfe

−3

−2

−1

lo
g

le
ar

ni
ng

ra
te

uEI only

−3

−2

−1

0

function evaluationslo
g

te
st

/t
ra

in
er

ro
r Figure 48: Different choices of acquisi-

tion functions. Top: evolution of the
logarithmic test (/ /) and
train set error (/ /) for
uei · pWolfe/uei/pWolfe respectively (only
lastly plotted clearly visible since the
curves are very similar). Different lines
of the same color correspond to different
seeds. Rows 2-4: Learning rate traces
of a single seed (, acquisition func-
tion in legend). For plotting purposes
the curves were smoothed and thinned
out. Mean of the raw, non-smoothed
values of accepted learning rates across
the whole optimization process ();
± two standard deviations (); a
range of well performing constant learn-
ing rates ().

function thus does not change the performance here. Rows 2-4 of
Figure 48 show learning rate traces of a single seed. All three curves
show very similar global behavior. First, the learning rate grows,
then drops again, and finally settles around the best found constant
learning rate. This is intriguing since on average a larger learning rate
seems to be better at the beginning of the optimization process, which
then later drops again to a smaller one. This might also explain why
sgd+probLS in the first part of the optimization progress outperforms
vanilla sgd (Figure 44). Runs, that use just slightly larger constant
learning rates than the best performing constant one (above in
Figure 48) were failing after a few steps. This shows that there is some
non-trivial adaptation going on, not just globally, but locally at every
step.

Figure 49 shows traces of accepted learning rates for different mini-
batch sizes |B| = 100, 200, 1000. Again, the global behavior is qualita-
tively similar for all three mini-batch sizes. For the largest mini-batch
size |B| = 1000 (last row of Figure 49) the probabilistic line search ac-
cepts a larger learning rate (on average and in absolute value) than for
the smaller mini-batch sizes |B| = 100 and 200, which is in agreement
with practical experience and theoretical findings ([64, § 4 and 7], [48, [64] Hinton, “A Practical Guide to Train-

ing Restricted Boltzmann Machines,”
2012

§ 9.1.3], [7]).

[48] Goodfellow, Bengio, and Courville,
Deep Learning, 2016

[7] Balles, Romero, and Hennig, “Cou-
pling Adaptive Batch Sizes with Learn-
ing Rates,” 2016

Figure 50 shows traces of the scaled noise levels σf and σf ′ and the
average number of function evaluations per line search for different
noise levels (/ / for |B| = 1000, 200, and 100 respectively);
same colors show the same setup but different seeds. The average
number of function evaluations rises very slightly to ≈ 1.5 − 2 for
mini-batch size |B| = 1000 towards the end of the optimization pro-

122 | PROBABILISTIC LINE SEARCHES

−3

−2

−1

0
|B| = 100

−3

−2

−1

0

lo
g

le
ar

ni
ng

ra
te |B| = 200

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

0

line searches in 104

|B| = 1000

Figure 49: Traces of accepted logarith-
mic learning rates. All runs are per-
formed with default design parame-
ters. Different rows show the same plot
for different mini-batch sizes of |B| =
100, 200 and 1000. Plots and smoothing
as in rows 2-4 of Figure 48 (details in
text).

−1

0

1

2

3

lo
g

σ
f

−3.5

−3

−2.5

−2

lo
g

σ
d

f

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

line searches in 104

av
er

ag
e

#
of

ev
al

ua
tio

ns

Figure 50: Traces of logarithmic noise
levels σf (top), σf ′ (middle) and aver-
age number of function evaluations per
line search (bottom). Setup and smooth-
ing as in Figure 49. Different colors
correspond to different mini-batch sizes
(/ / for |B| = 1000, 200,
and 100 respectively). Curves of the
same color correspond to different seeds
(3 shown).

CONCLUSION AND OUTLOOK | 123

cess, in comparison to ≈ 1.5 for |B| = 100, 200. This seems counter
intuitive in a way, but since larger mini-batch sizes also observe smaller
values and gradients, especially towards the end of the optimization
process, the relative noise levels might actually be larger. (Although
the curves for varying |B| are shown versus the same abscissa, the
corresponding optimizers might be in different regions of the loss
surface, especially |B| = 1000 probably reaches regions of smaller ab-
solute gradients). At the start of the optimization the average number
of function evaluations is high, because the initial default learning rate
is small (10−4) and the line search extends each step multiple times.

7.6 Conclusion andOutlook
The line search paradigm widely accepted in deterministic optimiza-
tion can be extended to noisy settings. Our design combines existing
principles from the noise-free case with ideas from Bayesian optimiza-
tion, adapted for efficiency. We arrived at a lightweight “black-box”
algorithm that exposes no parameters to the user. Empirical evalu-
ations so far show compatibility with the sgd search direction and
viability for logistic regression and multi-layer perceptrons. The line
search effectively frees users from worries about the choice of a learn-
ing rate: Any reasonable initial choice will be quickly adapted and
lead to close to optimal performance. Our matlab implementation can
be found at http://tinyurl.com/probLineSearch.

In the future, it would be interesting to:

• Test the line search also on different neural network architectures
(ReLU-activations, cnns, deeper architectures et cetera), as well as
larger datasets (CIFAR-100[76], ImageNet[28], . . .). A main chal- [76] Krizhevsky and Hinton, “Learning

multiple layers of features from tiny im-
ages,” 2009

[28] Deng et al., “ImageNet: A Large-
Scale Hierarchical Image Database,”
2009

lenge will be the efficient implementation of the sample variances
Σ̂(w) into common auto-differentiation frameworks to make it ac-
cessible for wider use. Works towards this goal include [6] and

[6] Balles, Mahsereci, and Hennig, “Au-
tomating Stochastic Optimization with
Gradient Variance Estimates,” 2017

[5].

[5] Balles and Hennig, “Follow the
Signs for Robust Stochastic Optimiza-
tion,” 2017

• Test the line search on problems other than neural networks which
also use empirical risks as loss functions as in Eq. 28, such as those
arising in stochastic variational inference [67].

[67] Hoffman et al., “Stochastic varia-
tional inference,” 2013

• Combine the line search with search directions other than sgd.
Though in principle this should be possible, care must be taken
about potentially ill-posed Wolfe conditions in case that∇LB(0)⊺p >

0.

• Examine and analyze how the line search interacts with typical reg-
ularization strategies as discussed in Chapter 2.2.2, such as Dropout
or batchNorm.

http://tinyurl.com/probLineSearch

124 | PROBABILISTIC LINE SEARCHES

• Couple the line search to methods that adapt the mini-batch size
|B| during the optimization run, such as e. g., [7]. [7] Balles, Romero, and Hennig, “Cou-

pling Adaptive Batch Sizes with Learn-
ing Rates,” 2016• Improve the line search, possibly by defining a different set of Wolfe-

like conditions, which do not require the extrapolation parameter
αext anymore, and are more suited to the noisy setting. Additionally,
define conditions which are not ill-defined for positive initial gp-
means of the gradient.

• Extend the concept to situations where only gradients, but no losses
are robustly available.

• Combine the lines search with methods that provide a Gaussian
posterior over gradients and function values, rather than a likeli-
hood, such as those discussed in the next two chapter.

Part IV
Kalman Filtering for Stochastic Optimization

8First-Order Filter for Gradients

This Chapter develops and derives formulas for Kalman filtering
on gradients. The main goal is to design a general probabilistic

framework for first-order optimization with stochastic gradients of ar-
bitrary noise levels; and then to draw connection to existing, classic
stochastic and deterministic optimizers like gd, sgd, and momentum-
methods. This provides further interpretation of these methods, espe-
cially of the smoothing constants of the latter. We will represent the
dynamic of the true but unknown gradient function ∇LD(w) of the
empirical risk with a Gauss-Markov process, defined only on the opti-
mization path. It will turn out that transitions between Kalman states
actually precisely encode the exponential smoothing done manually in
classic methods and thus—adopting this interpretation—directly sup-
port their use. The conducted experiments include proof-of-concepts
for two instances of a novel class of first-order methods that we call
KFgrad (for ‘Kalman filtering on gradients’); they perform similar to
existing methods, but with a higher degree of automation, flexibility
and extensibility. Additionally, diagnostic results on the magnitude
of learned Kalman-gains support the hypothesis that smoothing in
momentum-sgd can entirely or to a large portion be explained to
benefit stochastic noise reduction due to mini-batching instead of ge-
ometrical smoothing, the latter being often advocated as the main
benefit of these methods.

8.1 AModel for Once-Differentiable Functions
Classic first-order optimization algorithms (e. g., gd or sgd, Sections 2.3
and 2.4) assume only one derivative of the objective function LD(w)

and locally perform linear approximations. Higher derivatives are dis-
carded and the optimizer has no knowledge about them. In reality
LD(w) might have more than one derivative but it is often more effi-
cient to conduct crude and cheap, but therefore many iterations. This
section constructs a probabilistic equivalent to classic first-order meth-
ods by modeling∇LD(w)with a stochastic process whose samples are
only once-differentiable with probability one, as well as Markov, sim-
ilar to the update rules of most iterative optimizers. We will specify
the process by a stochastic differential equation (sde) and an initial
condition. The stochastic contribution of the former serves as a vehi-
cle to express the unknown change in the gradient function ∇LD(w).

128 | FIRST-ORDER FILTER FOR GRADIENTS

We then derive formulas which describe the discretized solution of
this sde that will lead to concrete, deterministic update rules of a new
class of viable optimizers. This general but concise framework also
allows for straightforward interpretation of parameters of the process,
and consequently of the optimization routine, which eases the on-
line estimation of these parameters by established and well-known
techniques. We first start by defining the process.

Section 1.4.1 introduced the Kalman filter equations and their un-
derlying continuous, stochastic model, but did not make a statement
about the specific forms of the drift matrix F, the diffusion matrix L,
nor what the state x encodes. In the same sense as classic first-order
methods, we will assume here that LD(w) has only one derivative we
know of, thus encoding a very simple, minimally-assertive structure
on LD . The state x ∈ RN represents the unknown gradient ∇LD of
the empirical risk. The most simple sde that follows Eq. 17 is a Wiener
process on x:

dx = 0N×1 + dβ. (119)

By comparing to Eq. 17, we can read off F = 0N×N and L = IN×N .
Combining this with Eq. 19 yields the diffusion covariance Q ∈ RN×N

and the transition matrix A ∈ RN×N :

At =
∞

∑
k=0

(0N×N)
k

k!
= IN×N

Qt =
∫ τt+1

τt
exp(0N×N(τt+1 − κ))IN×NqIN×N exp⊺(0N×N(τt+1 − κ))dκ =

∫ τt+1

τt
qdκ = q∆τ,

(120)

where q ∈ RN×N is the positive definite intensity matrix introduced
in Section 1.4.1. The predictive Kalman equations simplify to:

mt+1− = mt

Pt+1− = q∆τ + Pt.
(121)

Eq. 121 is intuitive: Since the drift on the state is zero (F = 0), and
successive Gaussian increments (t→ t + 1) are independent of each
other and of same intensity q, the estimated predictive state mt+1−
is the same as the current one mt; but the covariance Pt+1− grows
according to a Wiener process proportional to the traveled distance
∆τ = ∥wt+1 − wt∥.

The predictive Kalman filter equations in 121 represent a multi-
output distribution over gradient elements ∇LD(w), only on the one-
dimensional optimization path, and not on the whole weight space of
ws. The optimization path, in this context, are all ws which lie on the
the ordered sequence of successive piece-wise linear interpolations
between wi and wi+1, for i = 0, . . . , t− 1. This means that, between

A MODEL FOR ONCE-DIFFERENTIABLE FUNCTIONS | 129

two nodes wi and wi+1, the path can be parametrized with a scalar
τ ∈ [0, ∥wi+1 − wi∥].

Model of Global Change

Importantly, Eq. 119 does not encode a globally constant derivative of
the loss LD(τ) (just the predictive estimator mt+1− of this particular
sde is), but a derivative function x that may change with location w(τ);
and we become more uncertain about its value the farther we move
away from the current location. The magnitude of this growing uncer-
tainty is encoded by Q. The ‘stochastic’ part of the sde is hence just a
vehicle to express our lack of knowledge on how the function∇LD(τ)
evolves, no pseudo-random numbers or physical random processes
need to occur. Disregarding the Gaussian form for a moment, hence,
more sloppily, and rather associative, Eq. 119 can be thought of as a
Lipschitz-type notion on gradients, not in terms of an absolute less-
or-equal statement, but rather that the relative probability of finding
gradient elements i further away from mi

t+1−± 2(∆τqii + Pii
t)

1/2 is very
low (although not impossible) given an already uncertain estimator for
the previous gradient.1 The possible change of gradients is encoded 1 In other words, the expected squared

distance between two states is:

Ep(xt+1 |xt)[∥xt+1 − xt∥2]

= tr[q]∥wt+1 − wt∥.
Compare to a Lipschitz statement of
the form ∥∇LD(wt+1)−∇LD(wt)∥ ≤
L ∥wt+1 − wt∥.

by the intensity matrix q, which, like L , is a property of the loss LD(w)

and needs to be learned, or adapted while the optimizer is running in
case it is unknown (§ 8.2.2).

Measurements

In mini-batch settings, the state x is never observed exactly (this would
only be possible by evaluating∇LD on the full dataset), but only noise
corrupted versions of it. As motivated in Chapter 5, we use Gaussian
distributions on sub-sampled gradients y = ∇LS (e. g., a mini-batch
gradient ∇LB) with noise covariance Rt = Σ(wt)/|S| ∈ RN×N ; then
the measurement model is straightforward: Since the full state x is
observed, albeit noisy, the measurement matrix H = IN×N is the
identity. The updated Kalman equations are thus:

Gt+1 = Pt+1− + Rt+1

gt+1 = Pt+1−G−1
t+1

mt+1 = [I − gt+1]mt+1− + gt+1∇LS (wt+1)

Pt+1 = [I − gt+1]Pt+1−.

(122)

Eq. 121 together with Eq. 122 provide the base-equations for filtering

on gradients where the hypothesis class models one derivative and no
drift. In principle, other processes than the one defined by Eq. 119 can
be motivated, which e. g., incorporate knowledge about the behavior
of successive gradients chosen by the optimizers’s routine.2 The algo-

2 Assuming a ‘well-working’ optimizer
with well-tuned hyper-parameters, gra-
dient elements will tends towards zero
rather than arbitrarily diffusing away
from zero. Thus a zero-mean reverting
process might be a suitable prior choice
as well. We will not explore this further
here.rithm defined by Eqs. 121 and 122 has general cost cubic in N (due to

130 | FIRST-ORDER FILTER FOR GRADIENTS

the matrix inversion of G), assuming that the hyper-parameters R and
q are given.

8.2 Diagonal Approximations
For very high dimensional optimization problems, it is often only
feasible to store objects that have memory requirements linear in the
dimensionality N. The covariance matrices R, q, P, and P− introduced
in Section 8.1, though, are of squared size N2. One way of compressing
the information contained in these matrices, is to only store their
diagonals. Though this is a very drastic simplification, it is a common
and often well working concept in stochastic optimization.3 Diagonal

3 Well known examples are the adam-
optimizer, rmsprop, or adagrad. In
general, it depends on the structure of
the loss LD , if taking the diagonal is a
meaningful way of approximation.

covariance matrices yield parallelizable prediction and update rules
for each component of the state, allowing for sped-up computations.4 4 It is not identical to assuming inde-

pendent models on elements of x, since
then ∆τ would split into a different
∆τi =

⏐⏐wi
t+1 − wi

t
⏐⏐ for each dimension

i = 1, . . . , N.

The Kalman equations for the ith component are then scalar:

mi
t+1− = mi

t

Pii
t+1− = qii∆τ + Pii

t

gii
t+1 =

Pii
t+1−

Pii
t+1− + Rii

t+1

mii
t+1 = [1− gii

t+1]m
ii
t+1− + gii

t+1∇LS (wt+1)
ii

Pii
t+1 = [1− gii

t+1]P
ii
t+1− = gii

t+1Rii
t+1.

(123)

The above equations already define a viable algorithm for filtering
on gradients for some given intensity matrix q = diag[qii] and noise
variances R = diag[Rii]. As discussed in Chapter 5, the variances
Rii can be estimated efficiently within a mini-batch; Section 8.2.2 will
introduce a way of also estimating the intensities qii with little compu-
tational overhead at runtime. The memory requirement is less than
what Eq. 123 suggests, since gt+1, Pt+1−, mt+1− are only intermediate
algebraic steps which do not need to be computed or stored explicitly.

8.2.1 Connections
Consider an optimizer which updates the weights with the filtered
gradients mt:

wt+1 = wt − αtmt. (124)

The update rule for mt for a constant gain g = gii
t = const. ∈ (0, 1) for

all i and t resembles three well known update rules, which we will
summarize in three Lemmas.

DIAGONAL APPROXIMATIONS | 131

Lemma 1 The filtered state mt of Eq. 123 is identical to the enumerator of the

not bias corrected adam-update for β = (1− g) ∈ (0, 1), same initialization

m0, and the same sequence of observations y1, . . . , yt.

Proof Can be directly seen from Eq. 67c where the enumerator of
adam is mt = βmt−1 + (1− β)∇LS (wt).

Lemma 2 The filtered state mt of Eq. 123 is identical, up to a global mul-

tiplicative constant, to the negative velocity vt of sgd+momentum (Eq. 43)

with constant learning rate, constant momentum factor γ, initialization

m0 = −v0, and the same sequence of observations y1, . . . , yt. Additionally,

the global constant is given by g, meaning that both algorithms yield the

identical sequence of locations wt if v0 = −m0, γ = (1− g), and learning

rates αmom = αkfg.

Proof Let vt be the velocity of sgd+momentum as defined in Eq. 43,
and let αmom and αkf be the constant learning rates of momentum
sgd and the filter respectively. Then, vt = γvt−1 − αmom∇LS (wt) =

−αmom ∑t
i=1 γt−i∇LS (wt), and analogously for the filter with constant

gain mt = g ∑t
i=1(1− g)t−i∇LS (wt); the formulas are equivalent for

g = 1− γ up to a constant global scale of size αmom/g, which can be
absorbed into the learning rate of Eq. 124.

Lemma 3 The filtered state mt of Eq. 123 for noise-free observed gradients

(Rt = 0 for all t) recovers gradient descent on LD for the same sequence of

observations y1, . . . , yt, regardless of the initialization m0. Additionally, for

same initialization m0 = ∇LD and same learning rates αgd = αkf, both

algorithms yield the identical sequence of locations wt.

Proof For noise-free observed gradients (Rt = 0 for all t), the gain
g is always one since gii = Pii

−/(Pii
−+R) = Pii

−/(Pii
−) = 1, and thus

mt = ∇LD(wt).

All lemmata, give insight on possible model assumptions of the men-
tioned classic algorithm. Nevertheless, although the algebraic similar-
ities are intriguing, the filtering equations purely encode smoothing
due to noisy observations (mini-batching). The momentum parame-
ter γ or the smoothing constant β of adam which yield the best overall
performance of their corresponding iterative procedure might differ
from the corresponding optimal gain of the filter, since also geometric
smoothing effects can be captured by them (smoothing of zig-zagging
in ravines, bending around curves, et cetera), which the filtering model
simply does not encode. The filtering formulation is thus a way of dis-
entangling noise effects due to mini-batching and additional desirable
smoothing due to the geometry of the loss that might even be benefi-
cial when∇LD is known precisely. In the experimental Section 8.3, we

132 | FIRST-ORDER FILTER FOR GRADIENTS

will see hints, which support the hypothesis that, in neural network
application, most, if not all, of the smoothing of sgd+momentum can
be explained by noise due to mini-batching (i. e., R).

8.2.2 Hyper-parameter Adaptation
An efficient estimator for the noise variances Rkk of the measurements
was introduced in Chapter 5, Eq. 90. Here, analogously, we can set
Rkk

t = Σ̂kk(wt)/|S|.
One way of adapting the intensity matrix q, is by maximum marginal

likelihood estimation (§ 1.4.1). In general, the (logarithmic) marginal
likelihood for parameter q, for the current noisy datapoint yt+1 with
noise covariance Rt+1 is:

p(yt+1) =
∫

p(yt+1|xt+1, y1, . . . , yt)p(xt+1|, y1, . . . , yt)dxt+1

= N (yt+1; mt+1−, Pt+1− + Rt+1)

log p(yt+1) ∝ −1
2

log |Pt+1− + Rt+1| −
1
2
(yt+1 −mt+1−)⊺(Pt+1− + Rt+1)

−1(yt+1 −mt+1−).

(125)

The following derivation uses diagonal forms for all matrices R, q,
P, et cetera as in Section 8.2 (the full derivation can be found in Ap-
pendix B.1). The gradient of log p(yt+1) with respect to qkk is, drop-
ping the index t to declutter:

∂

∂qkk
log p(yt+1) = −

1
2

∂

∂qkk
log |P− + R| − ∂

∂qkk

1
2

∆⊺(P− + R)−1∆. (126)

where ∆t+1 := yt+1 −mt+1− ∈ RN is the residual (not to be confused
with the scalar path segment ∆τ), and P− = Pt+1− = Pt + q∆τ. With
some algebra, Eq. 126 simplifies to:

∂

∂qkk
log p(yt+1) =

∆τ

2

(
∆kG−1

kk

)2
− ∆τ

2
G−1

kk , (127)

such that the root of the gradient with respect to qkk is at

q∗kk =
1

∆τ
(∆k∆k − Pkk − Rkk) . (128)

Ideally, one would like to incorporate all, or M < t past observa-
tions {yt−i+1}M

i=1 into the marginal likelihood estimator. Practically,
though, this is not ideal, since computing p(yt−M+1, . . . , yt) would re-
quire to keep a significant amount of gradients in storage. A practical
workaround to this is to compute q∗kk as in Eq. 128 in every iteration,
and then smooth q∗kk with a slowly decaying exponential running av-
erage q̄t+1 = γq̄t+1 + (1− γ)q∗t+1.5 The value of γ should be at least

5 Since the elements of the diagonal ma-
trix q∗ can also become negative, but the
theoretical q is positive definite by def-
inition, a practical algorithm will need
to use e. g., a ‘clipped’ version, i. e.,
diag[qt] = max(0, diag[q̄t]) for comput-
ing P−. A vanishing or negative q∗ just
means that the noise Rt and the state un-
certainty Pt fully explain the discrepancy
∆t+1 between the predictive estimator
and the current stochastic observation.

Additionally, one might note here that
we got rid of a smoothing parameter (γ
of sgd+momentum) just to introduce yet
a new one to smooth q̄. The difference is
that smoothing occurs one level higher
in the parameter hierarchy, and can thus
be hoped for to be much less sensitive to
choices of that smoothing factor. After
all, the gains gt still can alter per element
and per iteration, depending on a dis-
tribution which is parametrized among
others by a slower changing q̄.

as large as conservative smoothing choices of classic decay factors
(something around γ ≈ 0.95 or larger), since it in fact smoothes the
parameters of the distribution, and not the quantities of interest (such

EXPERIMENTS | 133

as the gradients). If an online-model, such as the filter, would be based
on hyper-parameters which change faster with the data than the quan-
tities they estimate, then the inference is as random as the data itself.
For the filter, this roughly means that 1− γ should be larger than an
average gain.

Instead of diagonal forms, an even coarser simplification are scalar

forms Pt = pI, Rt = rI, and qt = uI, with p, r, u > 0 for all relevant
matrices. The maximum marginal likelihood estimator then measures
the mean-discrepancy between observation and predictive state which
can not be explained by r and p already:

u∗ =
1

∆τ

(
1
N

N

∑
i=1

∆2
i − p− r

)
. (129)

Taking the average over parameters increases the amount of numbers
available for statistics, and the resulting estimator ū∗ is thus arguably
more robust, but it also reduces the flexibility of the model. The
corresponding update mt = (1− gt)mt−1 + gtyt, however, much more
resemble that of sgd+momentum since then the gain gt ∈ (0, 1) is also
scalar.6 6 Statistics can also be collected per sub-

group of parameters, e. g., per weights
in one layer or per biases and weights.
Pseudo-codes can be found in Algo-
rithms 5 and 6.8.3 Experiments

The following experiments provide a proof-of-concept for filtering
on gradients. The viability on a broader range of problems, possi-
ble benefits or shortcomings over existing (momentum) methods, as
well as extensions and fine tuning, will need further testing in the
future on a larger number of models fw, ℓ f and datasets D. For
now, Section 8.3.1 provides an in-model toy-example of a synthetic 50-
dimensional multi-output regression problem mimicking gradients
∇LD(τ), to test approximations and the maximum likelihood esti-
mator for q where ground truth is available. Section 8.3.2 tests the
diagonal filter (§ 8.2) with learned q̄ (§ 8.2.2) on an illustrative out-of-
model function with fast varying q. And, finally, Section 8.3.3 applies
the filter to a real world problem (an mlp on MNIST), and compares
gain heuristics to the smoothing factor γ of sgd+momentum. The
last experiments cautiously supports the claim that most, or all of the
smoothing in momentum-sgd benefits noise reduction only.

8.3.1 In-Model Toy Example
First, we start with an in-model toy example, where the artificially
constructed 50-dimensional gradients of the objective LD(τ) are a
draw from the generative model, i. e., a multi-output Wiener process
with positive definite dense intensity matrix q ∈ RN×N . Since the

134 | FIRST-ORDER FILTER FOR GRADIENTS

q
full filter

0

20

40

60

di
ag

[q
]

diag filter

q̄,
di

ag
[q
]

diag filter+ q-ML

8

10

12

14

16

x

4.8 4.9
8

10

12

14

16

τ

x

4.8 4.9
τ

4.8 4.9
τ

Figure 51: In-model toy example.
Columns from left to right: full fil-
ter, diagonal filter, diagonal filter with
max marginal likelihood estimator for
diag[q]. Top row: true and inferred in-
tensity q. Middle row: predictive states.
Bottom row: updated states. Means ±2
std (±2), observations ()
and ground truth ().

ground truth is known, this controlled setup allows to test the diagonal
approximations of Section 8.2 as well as the maximum likelihood
estimator for diag[q] of Section 8.2.2. If the filter (hereafter generically
called KFgrad, for ‘Kalman filter on gradients’) does perform poorly
here, we can not expect it to perform much better on out-of-model
functions.

The intensity matrix q is constructed by defining an eigen-spectrum
with exponential structure. Then, similar to Section 6.3.2, we draw a
random rotation ζ ∈ RN×N uniformly from all possible 50-dimensional
rotations, and define q := ζΓζ⊺, where Γ ∈ RN×N is a diagonal ma-
trix that contains the eigenvalues on its diagonal. The inputs space
τ is discretized in equal portions ∆τ, such that xt+1 = xt + ξ with
ξ ∼ N (0, ∆τq). Observations yt are constructed by adding isotropic
Gaussian noise on the ground truth function: yt = xt + ν with
ν ∼ N (0, R), and R = σ2

R I.
We conduct three experiments with filters that possess decreas-

ing knowledge or expressiveness about ∇LD(τ): i) A full filter as in
Eqs. 121 and 122 (inferring dense covariance matrices Pt and Pt+1−)
which has access to the true dense intensity matrix q as well as noise
covariance R. This is an in-model problem, meaning that the filter in-
fers a function which is an instance of its own exact generative model,
thus providing a ground truth comparison to the following approx-
imate filters. ii) A diagonal filter as in Eq. 123 which has access to

EXPERIMENTS | 135

the true diagonal of q (as well as R), but not its off-diagonal elements.
iii) A diagonal filter as in ii) which learns the diagonal of q by maxi-
mum marginal likelihood estimation as in Section 8.2.2, Eq. 128. This
filter, too, has access to the true measurement noise R. The latter
two filters are to separate effects of contributions from the diagonal
approximation and the estimation of q.

Figure 51 illustrates results of all three runs: columns from left to
right are i), ii) and iii) respectively. The middle and bottom row show
one (the first by random choice) of the N = 50 dimensions of the in-
ferred state x for predictive and updated marginal probabilities versus
the input τ respectively (true function values∇L1

D (), observations
y1

t ± σR (), means m1
t− and m1

t () with ±2 standard deviations
(P11

t−)
1/2 and (P11

t)1/2 ()). The top left plot shows the true dense
intensity matrix q as used by i) in arbitrary gray-scale; the top middle
plot the (constant) diagonal elements of q () versus τ as used by ii),
as well as the sorted eigen-spectrum of q versus an arbitrary abscissa
for reference (). The top right plot additionally shows the learned
diagonal of q (q̄,) versus τ as used by iii). All three filters look very
similar, and also the learned q̄ of iii) seem to match the true diag[q]
quite well. This is not too surprising, since the model indeed gets to
see the whole state x, although noise corrupted, i. e., the likelihood
covers the full state space at every discrete time step. Thus, if q̄ is
scaled right, the model can not be arbitrarily wrong.

8.3.2 Out-of-Model Toy Example
Usually, the gradients ∇LD of an objective function are not draws
from a multi-output Wiener process and the filtering model, with a
globally constant q, might only be approximately correct, or locally
around wt. In a similar sense, classic optimizers often use simple
local approximate models or a Lipschitz-constant that is allowed to
change if one moves further away from a point than a local neighbor-
hood. Corresponding estimators thus may evolve over time, which is
implicitly encoded by smoothing factors like γ. We test this concept
here on a simple two-dimensional function: the Rosenbrock polyno-
mial. The ground truth of the state x, as well as the step intervals
∆τ are obtained by running gradient descent on Rosenbrock. Then,
each obtained gradient xt is corrupted by additive isotropic Gaussian
noise R = σ2

R I; after that the diagonal filter with on-line q-adaptation
(number (iii) of the previous section) is trained on it.

Figure 52 depicts results. The top left plot shows contour lines
of Rosenbrock as well as the optimizer’s path which was used for
the ground truth collection (start location and minimum as crosses).
The path-segment in red corresponds to the interval shown in all the

136 | FIRST-ORDER FILTER FOR GRADIENTS

0 10 20 30 40 50
0

0.2

0.4

0.6

∆
τ

0

1

2

3

q̄ 1
in

1e
+0

5

−1,000

0

1,000

x 1

10 20 30 40 50
−400

−200

0

200

400

t

x 1

0

0.2

0.4

0.6

q̄ 2
in

1e
+0

5

−400

−200

0

200

400

x 2

10 20 30 40 50
−200

0

200

t

x 2

Figure 52: Out-of-model toy example.
Left and right column are first and sec-
ond dimension of state x. Rows 3-4: Pre-
dictive and updates state (colors as in
Figure 51). Row 2: estimated intensity q̄.
Row 1: non-uniform path segments ∆τ
(right), and ground truth with contours
of Rosenbrock (left).

other plots; its starts shortly before the fixed learning rate is set to
a larger, also fixed value to encourage changes in q. The top right
plot shows corresponding lengths ∆τ of path segments for reference.
All plots of rows 2-4 are plotted versus # iteration t as opposed to τ

for better illustration since ∆τ spans a few magnitudes. Rows 3 and 4
again show the predictive an updated marginal probabilities of x: Left
column for first dimension, right column for second dimension, colors
same as in Figure 51. Row 2 additionally plots the learned intensity
estimators q̄1 and q̄2. The qualitative behavior (drop and rise) of q̄
well matches the changes in observed gradients per path segment: In
areas where the change in gradient is nearly fully explained by R (low
signal-to-noise ratio around t ≈ 10 to 20), q̄ drops, and then rises again
when gradient changes become larger, as they can not be explained
by R only anymore (t ≈ 20 to 40). Also, the estimators mt for the
gradient seem to be closer to the corresponding true values than the
noisy observations are.

A First Iterative Test on Rosenbrock

So far, we only tested KFgrad as a regression type algorithm with
previously generated (gradient) data. This helped to compare to the
same ground truth as sgd and also factored out the feedback an opti-

EXPERIMENTS | 137

Algorithm 5: Sketch of the KFgrad_-
diag algorithm. The intensity q̄ is initial-
ized larger than the noise R to force an
sgd-type start (until q̄ has burned in). It
is important to compute P−t before up-
dating q̄, and updating Pt after comput-
ing q̄.

1: function KFgrad_diag(L, w0, α, γ ≈ 0.95)
2: wt←w0 � initial guess for weights
3: [yt, Σ̂t]← L(wt) � initial evaluation
4: mt←(1− γ) · yt

5: Rt← Σ̂t

6: Pt← Rt

7: q̄t← 102 · Rt

8: while budget not used do
9: wt←wt − αmt � update best guess

10: [yt, Σ̂t]← L(wt) � evaluate objective
11:

12: Rt← Σ̂t or Rt← γRt + (1− γ)Σ̂t

13: ∆τ←∥αmt∥
14: P−t ← Pt + ∆τ max(0, q̄)
15: gt← P−t ⊘ (P−t + Rt)

16: q̄t← γq̄t + (1− γ)∆τ−1[(yt −mt)⊙2 − Pt − Rt]

17: mt←(1− gt)mt + gtyt

18: Pt←(1− gt)P−t
19: end while
20: return wt

21: end function

mizer gets when it is choosing its own data through pt and αt. Thus
next, we apply KFgrad and sgd to the same function as above, noisy
Rosenbrock, but this time as an iterative scheme (Algorithm 5 for KF-
grad_diag). Both optimizers start from the same initialization w0 and
get the same best working constant learning rate α for each run. We
perform 100 restarts each for three different noise levels (σ2

R = 10, 100,
1000), and report the evolution of the mean and standard deviation
of the true logarithmic loss.7 Figure 53 shows results. Rows from top 7 Since gradients become smaller closer

to the minimum, this decreases the
signal-to-noise-ration towards the end of
the optimization process.

to bottom correspond to increasing noise levels σ2
R = 10, 100, 1000

respectively; means of logarithmic losses (/) ±1 standard de-
viation (/) for KFgrad and sgd respectively. It is evident that
KFgrad outperforms sgd both in lower mean loss as well as lower
loss variances, but more so for smaller noise levels. Also, at the start
of the optimization process (t up to≈ 50− 100) KFgrad and sgd per-
form very similarly since the noise level is low and the Kalman gains
are close to one (In essence for R→ 0, KFgrad and sgd are identical
to gradient descent, but they differ more and more for larger R). With
this motivating toy example we try KFgrad on a real world problem
next.

138 | FIRST-ORDER FILTER FOR GRADIENTS

−1.5

−1

−0.5

0

lo
g

lo
ss

−1

−0.5

0

lo
g

lo
ss

0 100 200 300 400 500 600 700 800 900 1,000

−1

−0.5

0

0.5

t

lo
g

lo
ss

Figure 53: KFgrad and sgd on Rosen-
brock. Rows from top to bottom σ2

R = 10,
100, 1000. Means of true log losses
(/)±1 std (/) for KF-
grad and sgd respectively.

Algorithm 6: Sketch of the KFgrad_-
scalar algorithm. The pseudo-code
is similar to Algorithm 5 but this
time for scalar measurement noise R
and diffusion q (consequently the vari-
ances Pt, P−t , and the gain gt are also
scalar). Thus the algorithms has very
little memory requirement; the same as
sgd+momentum.

1: function KFgrad_scalar(L, w0, α, γ ≈ 0.95)
2: wt←w0 � initial guess for weights
3: [yt, Σ̂t]← L(wt) � initial evaluation
4: mt←(1− γ) · yt

5: rt←mean[Σ̂t] � scalar
6: pt← rt � scalar
7: ūt← 102 · rt � scalar
8: while budget not used do
9: wt←wt − αmt � update best guess

10: [yt, Σ̂t]← L(wt) � evaluate objective
11: rt← γrt + (1− γ) ·mean[Σ̂t] � scalar
12:

13: ∆τ←∥αmt∥ � scalar
14: p−t ← pt + ∆τ max(0, ū) � scalar
15: gt← p−t /(p−t + rt) � scalar
16: u∗←∆τ−1(mean[(yt −mt)⊙2]− pt − rt) � scalar
17: ūt← γūt + (1− γ)u∗ � scalar
18: mt←(1− gt)mt + gtyt

19: pt←(1− gt)p−t � scalar
20: end while
21: return wt

22: end function

EXPERIMENTS | 139

8.3.3 Multi-Layer Perceptron and Comparison toMomentum
As argued in Section 8.2.1, the most obvious relation of KFgrad oc-
curs to sgd+momentum. We can thus compare the gains learned by
KFgrad to the smoothing factor (1−γmom) = 0.1 of sgd+momentum.
Let αmom denote the constant learning rate for sgd+momentum, then,
from Lemma 2, we known that we can recover the identical KFgrad-
update by setting the filtering learning rate to αkf = αmom/(1−γmom) and
the gain to g = 1−γmom. For the same network (N-II) as in Chapter 7.5
(fully connected mlp with 5 layers, 3 hidden) on MNIST and mini-
batch size |B| = 200, we ran four experiments: i) sgd+momentum with
γmom, ii) KFgrad_diag as in Algorithm 5, iii) KFgrad_scalar as in
Algorithm 6, and iv) vanilla sgd for comparison (can be seen as corner
case for 1− γ = g = 1). KFgrad_diag and KFgrad_scalar have
different strengths; for instance KFgrad_scalar can collect better
statistics for the hyperparameters Rt and qt since it can average over
all weights per iteration. Also it is very memory efficient which is
relevant in very high dimensional problems: The only vector is the
search direction mt, all other quantities are scalar. KFgrad_diag, on
the other hand, is more expressive and potentially more powerful
since it can adjust a different measurement noise, diffusion, and thus
gain in each dimension. A more direct comparison can hence be done
between KFgrad_scalar and sgd+momentum since both model a
scalar gain/smoothing, only.

In the following analysis, we will be primarily interested in the
question if we can recover similar performances than momentum
sgd with these first prototypes of KFgrad. And also, to what ex-
tend the smoothing done by sgd+momentum can be explained by
noise corrupted gradients only, in contrast to geometrical smoothing,
since the latter is often called out as the explanation for the success of
sgd+momentum.

For each experiment, we search for the best learning rate on a
logarithmic grid of α = 10−8, 10−7, . . . , 100, and then fine tune the
search in a promising region in steps of 3, 5, 7 · 10−k for some k. The
best performing learning rate for sgd+momentum was α∗mom = 7 ·
10−3. Indeed, and perhaps surprisingly, the best performing learning
rate for KFgrad (scalar as well as diagonal version) was ten times the
one of sgd+momentum α∗kf = αmom/(1−γmom) = 7 · 10−2.

Figure 54 shows the logarithmic train and test error traces for all
four setups (colors in caption), each for the best performing learning
rate and five different random seeds. KFgrad_diag, KFgrad_scalar,
and sgd+momentum perform very similarly and all three better than
vanilla sgd, especially in train error decay.

140 | FIRST-ORDER FILTER FOR GRADIENTS

0 1 2 3

·104

−3

−2.5

−2

−1.5

−1

−0.5

0

t

lo
g

tr
ai

n
er

ro
r

0 1 2 3

·104

−1.5

−1

−0.5

0

t

lo
g

te
st

er
ro

r

Figure 54: Multi-layer perceptron on
MNIST. Left and right columns show log
train and test error respectively versus
number of mini-batch evaluations. KF-
grad (diagonal/scalar /), and
sgd+momentum (); sgd for com-
parison (). Each setup is shown
for 5 random seeds (curves of same
color) which determine initial weights
and mini-batch sub-sampling.

0

2

4

6

8

no
rm

al
iz

ed
co

un
ts

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

g

no
rm

al
iz

ed
co

un
ts

Figure 55: Distribution of Kalman gains
of KFgrad collected over iterations. Bot-
tom: scalar version with single gain per
net. Top: diagonal version, shown are
gains of one randomly chosen weight.
In both plots, the mean (), mode
(), and median () are marked
with vertical lines.

Diffusion and Gains

It is not straightforward to compare the adaptive gains of the Kalman
filter to a single ‘gain’ of sgd+momentum i. e., the smoothing constant
1− γmom = 0.1, since we compare many numbers to one. Thus we
have a look at the distribution of gains over the course of all iterations.
The top and bottom plot of Figure 55 shows a histogram over all gains
gt for KFgrad_diag and KFgrad_scalar respectively (top plot for a
random weight). The mode, median, and mean of the distribution are
shown as vertical lines (/ /). The values are 0.05/0.13/0.25
for the scalar model (bottom), and 0.05/0.08/0.20 for a single weight of
the diagonal model (top) which is very close/similar to the smoothing
of sgd+momentum. Additionally, the shape of the distribution is
telling: There is a prominent peak around the mode at small gains,
and most gains arguably occur in between (0, 0.2), but there is also a
heavy tail of larger gains. It is not clear if this tail is a true gradient-
signal, i. e., gradients with a good signal-to-noise ratio, or an artifact of
the smoothing or averaging of variance estimates rt or Rt: Empirically
the noise is somewhat coupled to the gradient magnitude, thus, if
the noise estimate is smoothed or even averaged, the gains for larger
stochastic gradients or outliers would indeed be biased towards larger
gains, since Rt is estimated too small. This might but does not need
to explain the heavy tails.

So, although this analysis can not be completely conclusive, it is
a strong indicator that in shallow or deep learning problems, a lot
or all of the smoothing done in sgd+momentum is beneficial for
noise reduction on stochastic gradients, and not, as often advocated,

EXPERIMENTS | 141

0

0.2

0.5

0.8

1

g

0

1.5

·10−5

ū

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

0.5

1

1.5
·10−6

t

r

550 555 560 565 570 575 580 585 590 595 600
−4

−2

0

2

·10−3

t

x

Figure 56: Diagnostics of KFgrad_-
scalar, from one run of Figure 54.
Rows 1-3: Traces of learned scalar
gains, diffusions, and gradient noise
respectively, versus number of itera-
tions (). Mean±1std as horizon-
tal lines (±). Row 4: Poste-
rior marginals of xi

t for a single ran-
dom weight i, mean mi

t (), mi
t ±
√

Pt
(), observations yi

t ±
√

rt ().
The traces in the top three plots are
smoothed for plotting purposes but the
mean and std are computed with the raw
data. The blue areas () indicate the
plotting interval for the fourth row, cho-
sen such that it shows an interesting re-
gion in the optimization process.

due to geometrical effects. This might of course be very different in
other applications, e. g., with lower dimensionality, or where stochas-
tic noise due to mini-batching is not present or not a major concern. As
mentioned above, another fact which supports this claim, is that the
best performing learning rate of KFgrad corresponds to α∗mom/(1−γmom),
which indicates that the average norm of the search direction is similar
for all three methods. This can only occur if a similar smoothing is
done. Thus, assuming the learned gains are roughly sensible for the
given estimated gradient variances Σ̂, nearly all, or all of the smooth-
ing contribution done by sgd+momentum can be attributed to benefit
gradient noise reduction.

Figures 56 and 57, rows 1-3, show additional diagnostics of gain,
diffusion, as well as gradient-noise traces for KFgrad_scalar and
KFgrad_diag, for one of the runs of Figure 54. It shows that all three
quantities are initially larger and then decay during the optimization
process, though especially the gain seems to settle for some distribu-
tion when the optimizer converges. The last row shows the marginal
filtering distributions of xt conditioned on all yt up to that point in
time, of a randomly chosen weight. The noisy gradient evaluations
evaluations yt are shown with error bars. The mean estimator mt

() seems to be smaller in magnitude on average than gradient ob-

142 | FIRST-ORDER FILTER FOR GRADIENTS

0

0.2

0.5

0.8

1

g

0

2

4

·10−6

q̄

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
0

1

·10−7

t

R̄

400 405 410 415 420 425 430 435 440 445 450

−1

0

1

·10−3

t

x

Figure 57: Diagnostics of KFgrad_diag,
from one run of Figure 54. Plots an col-
ors as in Figure 56, but this time the
traces are also only shown for a single
random weights (identical to the one in
the last row).

servations yt (), and also less ’spiky’ which might explain that it is
possible to choose a larger learning rate for KFgrad in comparison to
vanilla sgd. Also, just by eyesight, the posterior standard deviations√

Pt () seem well calibrated. A concern might be that the learned
diffusion q̄ is quite spiky, too (partly translates to the gain), which is
an artifact of ad-hoc smoothing of one-sample maximum likelihood
estimators (§ 8.2.2). This might need improvement in the future, e. g.,
by hierarchically modeling q, and thus softening the impact of unex-
pected observations.

8.4 Conclusion andOutlook
The following bullet-points summarize the main results of this Chap-
ter:

• We presented a novel filtering framework for stochastic gradients,
based on a continuous Gauss-Markov-model on the optimization
path, and local Gaussian observations. We derived discrete Kalman
filter prediction and update equations for the special case of Brow-
nian motion.

CONCLUSION AND OUTLOOK | 143

• We showed correspondences of the mean estimator to classic first-

order methods such as sgd+momentum, or the enumerator of the
adam-optimizer. While exponential smoothing factors are ad-hoc
in these methods, they arises naturally in the filtering equations,
and thus provides an indirect justification for using them. Addi-
tionally, these smoothing factors can now, wholly or partially, be
interpreted as Kalman-gains and provide a measure of how much
stochastic gradients can be trusted.

• We presented a prototype of a probabilistic first-order optimizer
(KFgrad) that uses gradient-mean-estimates of the filtering distri-
butions as search directions, and can learn the smoothing constants.
It is expressive and has the potential to be more powerful than
hand-tuned smoothing constants since one gain can be learned and
locally adapted per dimension. This is promising towards the goal
to control, analyze and automate optimization further.

• Additionally, the new framework helps to disentangle noise- and ge-
ometric contributions of smoothing constants. Experiments showed
evidence that classic smoothing in high-dimensional mini-batch set-
tings indeed only, or mostly, benefits stochastic noise reduction in
contrast to geometrical smoothing.

Future research directions:

• Performance improvement of KFgrad might go towards a more
robust estimation of the diffusion q, which is currently done by
averaging over single-sample maximum likelihood estimators. This
might be approached by hierarchically modeling q such that outliers
have less impact.

• The posterior variances Pt of the marginal filtering distributions can
be used for methods that currently use a sample-variance estimator
(a likelihood) instead, such as updates in adam, rmsprop, or even
the probabilistic lines search of Chapter 7.

• It is possible to derive different filtering equation for other dis-
crete or continuous Gauss-Markov models of the gradient. The
continuous process presented here is the most basic one (Brownian
motion), but other ones, e. g., an Ornstein-Uhlenbeck process might
perform well, too. They might come with additional parameters,
though which also need to be learned.

• For full automation, KFgrad could be combined with the proba-
bilistic line search of Chapter 7. As mentioned above, this might
also include the line search using the mean-estimators, as well as
variances of the posterior marginal distribution over gradient el-
ements instead of the likelihood only. Other, milder adaptations

144 | FIRST-ORDER FILTER FOR GRADIENTS

might include step-size damping for uncertain search-directions,
as in diagonal preconditioners (§ 2.4.2) according to m⊙2

t
Pt

instead of
y⊙2

t
diag[Σt]

, or on a global scale.

9Second-Order Filter for Hessian Elements

Analogously to the previous one, this chapter develops and de-
rives formulas for Kalman filtering on Hessians instead of gra-

dients. Again, the main goal is to design a general probabilistic frame-
work for second-order optimization for gradient evaluations of arbi-
trary noise levels, and then to draw connections to existing classic
optimizers, like members of the Dennis family of quasi-Newton up-
dates, or Broyden’s method. This provides further interpretation of
their implicit hyper-parameters, similar to the one done by Hennig
[56] for linear solvers which was discussed in Chapter 3. The dif- [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015ference to Hennig [56] will be that the Hessian is not constant over
the weight-space of ws, but rather changing with the traveled path
distance ∆τ. Specifically, we will represent the dynamics of the true
but unknown Hessian function ∆LD(w) of the empirical risk with a
Gauss-Markov process, defined only on the optimization path. It will
turn out that we re-discover Broyden’s method, as well as Dennis class
updates for special choices of diffusion matrices Q. We will also argue
that hyperparemeters of successful classic methods are less suitable
for stochastic problems and thus should not be transferred blindly.
Instead we argue in favor of an empirical Bayes-type approach simi-
lar to the sr1-update of the Dennis class. The last section considers
approximations to the filtering equations for very high-dimensional
problems, such that the resulting quasi-Newton update can be com-
puted in linear time. In this Chapter, we will occasionally use the
Einstein summation convention [35] for better readability. This means [35] Einstein, “Die Grundlage der allge-

meinen Relativitätstheorie,” 1916that sum-symbols will be dropped if the index of the sum appears
twice per term.

9.1 AModel for Twice-Differentiable Functions
Classic quasi-Newton methods model the first two derivatives of the
loss function LD(w). So, for a filter to encode a second derivative as
well, we need to include the Hessian of the loss LD(w) into the state
x. That is, the enlarged state x will consist of two parts stacked on
top of each other: One for the gradient x∇ ∈ RN and one for the
(vectorized) Hessian xB ∈ RN2 . They are linked to each other since
one of them is the derivative of the other. Expanding the state not only
changes the Gauss-Markov process on LD(w) (twice instead of only
once-differentiable sample paths), but also makes inference on x more

146 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

challenging: The state x is significantly larger now (size N + N2), but
still only N informative numbers at each iteration, in the form of a noisy
gradient∇LS , are observed. Even for exact gradient evaluations this is
a heavily under-constraint inference problem which can only be solved
by introducing prior assumptions on ∆LD(w). This is analogous to
the classic derivation of quasi-Newton methods (§ 2.3.4) where the
secant equation Btst = ∆yt also did not identify the estimator Bt for
the Hessian fully, and thus a ‘closeness’-relation from one iterate to
the next, i. e., minimizer of the Frobenius norm ∥B − Bt−1∥W,F s.t.
Bst = ∆yt, worked as a regularizing term.

The Kalman filter equations now represent a multi-output distri-
bution jointly over the Hessian and gradient elements of LD(w) on
the one-dimensional optimization path, and not on the whole weight
space of ws, similar to before. The optimization path, was defined in
Section 8.1. This implies, for example, that the marginal covariance
between Hessian elements xB

(ij)(τ) and xB
(kl)(τ

′) depends only on two
double-index pairs (ij) and (kl) for the output correlation of the Hes-
sian elements, and the scalar path locations τ and τ′ along the search
direction pt, in contrast to arbitrary weight vectors w and w′.1 Thus, 1 The latter approach was e. g., used in

[57] who used a squared exponential ker-
nel to describe the covariance between
two locations w and w′. This approach
suffers from the usual problem, that it is
difficult to define covariance functions
in very high dimensional spaces, which
in fact live on a much lower dimensional
manifolds.

[57] Hennig and Kiefel, “Quasi-Newton
methods – a new direction,” 2012

the filtering approach can be seen as solving t successive linear sys-
tems (with one observation each) as in Chapter 3 that are connected to
each other via a dynamic probabilistic model that encodes how these
problems might change on the line defined by successive locations wi

for i = 0, . . . , t.
In the following derivations, all relevant vectors and matrices will

be split into sub-blocks for gradient-gradient, hessian-hessian and
gradient-hessian interaction. They will be denoted with the super-
script ∇ for gradient-related, and B for Hessian related quantities. For
example, as mentioned, the state x ∈ RN+N2 can be split into two
sub-vectors x∇ ∈ RN and xB ∈ RN2 with x = [x∇; xB]; the upper
part x∇ of the state represents the true gradient function ∇LD(w)

analogously to Chapter 8, whereas the lower part xB represents the
vectorized true Hessian function ∆LD(w). The Hessian function is
the derivative of the gradient which can be encoded in the integral∫ τ

0 ∆LD(τ′)s̄dτ′ = ∇LD(τ) − ∇LD(0) for an arbitrary normalized
direction s̄ ∈ RN . This directly leads to the secant equation used in
classic methods. The most simple Gauss-Markov process for x can be
expressed with the sde:

d

⎛⎝x∇

xB

⎞⎠
  

dx

=

⎛⎝ 0N×N F∇B

0N2×N 0N2×N2

⎞⎠
  

F

⎛⎝x∇

xB

⎞⎠
  

x

dτ +

⎛⎝0N×N2

IN2×N2

⎞⎠
  

L

dβN2×N2 (130)

with F∇B defined below. The Hessian elements evolve according to
a Wiener process with intensity matrix q ∈ RN2×N2 , analogously to

A MODEL FOR TWICE-DIFFERENTIABLE FUNCTIONS | 147

the gradient elements in Chapter 8. The gradient x∇ is linked to
the Hessian via the block F∇B = (I ⊗ s̄⊺t). The Kronecker product,
symbolized by ‘⊗’, naturally arises if the Hessian is vectorized in the
secant equation: For the ith component of the vector ∆LD s̄ we can

write: ∆Lij
D s̄j = (δik s̄j)∆Lkj

D = (I ⊗ s̄⊺)(i),(kj)

»

∆L(kj)
D .

The explicit forms of the transition matrix At ∈ RN+N2×N+N2 and
the diffusion covariance Qt ∈ RN+N2×N+N2 of the Kalman filter again
can be derived by inserting F and L into Eq. 19. The resulting expres-
sions are again analytic, since F is nilpotent of order two (F2 = 0) and
the sum of the matrix exponential exp (F∆τ) is finite:

At = exp Ft∆τ =
∞

∑
k=0

(Ft∆τ)k

k!
= (I + Ft∆τ) =

⎛⎝ IN×N (I ⊗ s̄⊺t)∆τ

0N2×N IN2×N2

⎞⎠
Qt =

∫ τt+1

τt

⎛⎝(I ⊗ s̄⊺t)(τt+1 − κ)

IN2×N2

⎞⎠ q
(
(I ⊗ s̄t)(τt+1 − κ) IN2×N2

)
dκ

=

⎛⎝ 1
3 (I ⊗ s̄⊺t)q(I ⊗ s̄t)∆τ3 1

2 (I ⊗ s̄⊺t)q∆τ2

1
2 q(I ⊗ s̄t)∆τ2 q∆τ

⎞⎠ .

(131)

The length of a path segment is again denoted by ∆τ = ∥wt+1 − wt∥.
The predictive Kalman equations for each block of mt+1− and Pt+1−
are thus:

m∇t+1− = m∇t + (I ⊗ s⊺t)m
B
t

mB
t+1− = mB

t

P∇∇t+1− = Q∇∇t + P∇∇t + P∇B
t (I ⊗ st) + (I ⊗ s⊺t)PB∇

t + (I ⊗ s⊺t)PBB
t (I ⊗ st)

P∇B
t+1− = Q∇B

t + P∇B
t + (I ⊗ s⊺t)PBB

t

PBB
t+1− = QBB

t + PBB
t

(132)

with s := s̄∆τ. Eq. 132 is intuitive: Since the drift matrix FBB is
zero, the expected predictive Hessian-state mB

t+1− is the same as the
current one mB

t and its block-covariance PBB
t+1− grows according to

a Wiener process proportional to the traveled distance ∆τ. This is
the same behavior as the predictive mean and covariance of first-
order filtering of the previous chapter, just this time it occurs one
derivative higher. This is, because in comparison to Chapter 8, now
we chose a Gauss-Markov process for the evolution of the Hessian
instead of the gradient. Once the Hessian xB is known, the gradient
x∇ is deterministically linked to it since no further derivatives are
encoded by Eq 130. Thus the predictive mean estimator m∇t+1− of
the gradient changes linearly with the current estimate mB

t+1− of the
Hessian, as expected for a quadratic model. Its block-covariance P∇∇t+1−
increases with the third power of the traveled path ∆τ according to an
integrated Wiener process (this was introduced in § 1.4.2).2

2 The expected distance between two
Hessian states is:

Ep(xB
t+1 |xB

t)
[∥xB

t+1 − xB
t ∥2]

= tr[q]∥wt+1 − wt∥.
Again this can sloppily be associated
with Lipschitz continuity on Hessians
where ∥∆LD(wt+1)− ∆LD(wt)∥F ≤
LB∥wt+1 − wt∥ e. g., in the Frobenius
norm.

148 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

Measurements

Analogously to Chapter 8, we will assume here that we only have
access to gradients∇LS (wt) that are Gaussian distributed with mean
∇LD(wt) and noise covariance Rt = Σ(wt)/|S| ∈ RN×N . The mea-
surement matrix H thus needs to select the observed part x∇ of the
full state x, i. e., H ∈ RN×N+N2

= [IN×N , 0N×N2]. Then, the updated
Kalman equations for each block are:3 3 In principle one could think of evaluat-

ing e. g., the diagonal of the Hessian on
a mini-batch as well, since this is some-
times feasible, e. g., in neural networks
[10]. This could be incorporated into the
filter by changing the measurement ma-
trix H accordingly. In general, any ob-
servation which is a linear map of the
state x, corrupted by additive Gaussian
noise can be included into the update
step. This includes all selector maps. We
will not explore this further here.

m∇t+1 = m∇t+1− + P∇∇t+1−G−1
t+1

[
yt+1 −m∇t+1−

]
mB

t+1 = mB
t+1− + PB∇

t+1−G−1
t+1

[
yt+1 −m∇t+1−

]
P∇∇t+1 = P∇∇t+1− − P∇∇t+1−G−1

t+1P∇∇t+1−
P∇B

t+1 = P∇B
t+1− − P∇∇t+1−G−1

t+1P∇B
t+1−

PBB
t+1 = PBB

t+1− − PB∇
t+1−G−1

t+1P∇B
t+1−,

(133)

where Gt+1 = P∇∇t+1− + Rt+1 ∈ RN×N is the innovation covariance. [10] Becker and LeCun, “Improving
the Convergence of Back-Propagation
Learning with Second-Order Methods,”
1989

Eq. 132 together with Eq. 133 provide the base-equations for filtering
on Hessian-elements where the Gauss-Markov model encodes two

derivatives and no drift. The algorithm defined by Eqs. 132 and 133
has general cost quartic in N, assuming the hyper-parameters R and
q are given. For noise free observation (Rt = 0), the gradient part of
the expected state collapses onto the observed exact gradient m∇t+1 =

∇LD(wt+1), with P∇∇t+1 = 0 and P∇B
t+1 = 0, since it is fully identified (can

be directly seen from Eq. 133 for P∇∇G−1 = P∇∇P∇∇−1 = I). The
Hessian part xB of the state is not fully identified by a single gradient
observation in the same sense as the secant equation of quasi-Newton
methods does not uniquely identify Broyden’s method or updates of
the Dennis class. Thus, the model falls back on the prior and is still
uncertain about the Hessian in most directions of the N-dimensional
space. The corresponding covariance block PBB collapses only in the
observed direction; for R > 0 it never collapses completely.

9.1.1 Non-Symmetric Hessian Estimates
Section 9.1 derived general predictive and updated Kalman equations
for filtering on the Hessian of LD(w), for the case of Gaussian gradient
measurements. Most formulas in 132 and 133 still contain matrices
which are extremely large and are thus not usable in practice (e. g.,
PBB is of size N2 × N2 and thus has memory requirement quartic in
N). As discussed in Chapter 3, classic quasi-Newton methods solve
this issue by smartly choosing the structure and values of their hyper-
parameters, in this case q and P0. In order to lower the computational
complexity of Eqs. 132 and 133, we will use Kronecker structures and

A MODEL FOR TWICE-DIFFERENTIABLE FUNCTIONS | 149

similar choices for the diffusion matrix q ∈ RN2×N2 and covariance
blocks of the current state PBB

t and P∇B
t :

P∇B
t = (I ⊗ v⊺t)(U

⊺
t ⊗U⊺

t) Ut ∈ RN×N , vt ∈ RN

PBB
t = Wt ⊗Wt Wt ∈ RN×N , Wt positive definite (134)

q = V ⊗V V ∈ RN×N , V positive definite.

The matrices q and P still have full rank, hence we did not restrict
the support of the Gaussian distribution on xt by choosing Kronecker
form. The predictive Kalman equations of 132 together with 131 and
134 turn into:

m∇t+1− = m∇t + (I ⊗ s⊺t)m
B
t

mB
t+1− = mB

t

P∇∇t+1− = P∇∇t +
∆τ

3
(I ⊗ s⊺t)(V ⊗V)(I ⊗ st) + (I ⊗ v⊺t)(U

⊺
t ⊗U⊺

t)(I ⊗ st)

+ (I ⊗ s⊺t)(Ut ⊗Ut)(I ⊗ vt) + (I ⊗ s⊺t)(Wt ⊗Wt)(I ⊗ st)

P∇B
t+1− =

∆τ

2
(I ⊗ s⊺t)(V ⊗V) + (I ⊗ v⊺t)(U

⊺
t ⊗U⊺

t) + (I ⊗ s⊺t)(Wt ⊗Wt)

PBB
t+1− = (V ⊗V)∆τ + (Wt ⊗Wt)

(135)

All predictive covariance blocks are now sums of terms which exhibit
the original structure of this block; for example PBB

t+1− is a sum of
Kronecker products, and P∇B

t+1− and P∇∇t+1− are both sums of linearly
transformed Kronecker products, where the linear map has the same
algebraic structure across terms.

Measurements

The updated Kalman equations of Eq. 135 can be simplified further.
The derivations can be found in Appendix B.2. By combining Eq. 135
with 133, the predictive covariance P∇∇t+1− ∈ RN×N can be written as:

P∇∇t+1− = P∇∇t + ∆τ/3V(s⊺t Vst) + U⊺
t (v

⊺
t U⊺

t st) + Ut(s
⊺
t Utvt) + Wt(s

⊺
t Wtst). (136)

It is thus a linear combination of the current block covariance P∇∇t ,
diffusion matrix V, and contributions from Hessian-gradient corre-
lations Ut as well as uncertainty on the Hessian Wt. With this, the
updated Kalman equations turn into:

mB
t+1 = mB

t + (VG−1
t+1∆t)(Vs̃t)

⊺ + (UtG−1
t+1∆t)(Utvt)

⊺ + (WtG−1
t+1∆t)(Wtst)

⊺

m∇t+1 = m∇t + (I ⊗ s⊺t)m
B
t + P∇∇t+1−G−1

t+1∆t

P∇∇t+1 = P∇∇t+1− − P∇∇t+1−G−1
t+1P∇∇t+1−

P∇B
t+1 = (V − Ṽ⊺

t)⊗ (Vs̃t)
⊺ + (U⊺

t − Ũ⊺
t)⊗ (Utvt)

⊺ + (Wt − W̃⊺
t)⊗ (Wtst)

⊺

(137)

150 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

PBB
t+1 = ∆τ(V ⊗V) + (Wt ⊗Wt)

−VG−1
t+1V ⊗ (Vs̃t)(Vs̃t)

⊺ −UtG−1
t+1V ⊗ (Utvt)(Vs̃t)

⊺ −WtG−1
t+1V ⊗ (Wtst)(Vs̃t)

⊺

−VG−1
t+1U⊺

t ⊗ (Vs̃t)(Utvt)
⊺ −UtG−1

t+1U⊺
t ⊗ (Utvt)(Utvt)

⊺ −WtG−1
t+1U⊺

t ⊗ (Wtst)(Utvt)
⊺

−VG−1
t+1Wt ⊗ (Vs̃t)(Wtst)

⊺ −UtG−1
t+1Wt ⊗ (Utvt)(Wtst)

⊺ −WtG−1
t+1Wt ⊗ (Wtst)(Wtst)

⊺.

Here the predictive Kalman equations of 135 are already inserted into
the updated equations, except for P∇∇t+1−. The innovation covariance
is again denoted by Gt+1 := P∇∇t+1− + Rt+1 and the residual, which
measures the discrepancy between the expected predictive state m∇t+1−
and the gradient measurement yt+1, is denoted by ∆t := yt+1−m∇t −
(I ⊗ s⊺t)m

B
t . Further notation e. g., Ṽt is a ‘gain-corrected’ version of V,

and introduced in Eq. 217, Section B.2 for notational convenience. The
estimator mB

t for the Hessian is not symmetric, since symmetry was
not encoded in the prior on xB. In other words, the correlated Wiener
process β of Eq. 130 allowed for arbitrary Gaussian increment with
covariance q of general Kronecker structure; i. e., it did not encode that
the Gauss increments should correlate such that the resulting matrix is
symmetric. Nevertheless, for a quasi-Newton optimizer, it is desirable
to encode symmetry of Hessians already in the prior assumptions on
xB. This will be the subject of Section 9.1.2 below.

Connections

From Eq. 137 it can already be seen that for noise free gradients
(R, U = 0), the Hessian estimator mB resemble Broyden’s method
(§ 2.3.4). We will make this connection more explicit in Sections 9.2.1
and 9.2.2. The previously observed behavior that the mean estimator
of Wiener processes stays unchanged unless new gradients/ new evi-
dence is collected, is apparent in Eq. 137: The only parts of mB which
are updated are spanned by a low-rank matrix that is constructed with
vectors depending on the residual ∆t, containing gradient differences
∆yt, as well as path segments st. This non-stationary behavior is ex-
hibited by virtually all classic quasi-Newton methods. Corresponding
non-stationary probabilistic models thus possibly have an advantage
over stationary probabilistic models, such as a gp with a squared ex-
ponential kernel. This was already argued in Chapter 2.4, meaning
that it is inefficient if models ‘forget’ what they have learned, when
moved in w-space, especially when this space is high-dimensional. In
contrast, we would like to overwrite old information with new one,
weighted according to its likelihood, as soon as it is available, and rely
on it less the further we travel from its observed point by growing the
uncertainty.

A MODEL FOR TWICE-DIFFERENTIABLE FUNCTIONS | 151

Back-Projection for an Iterative Procedure

Before we proceed to symmetric Hessian beliefs, let us investigate
how Eq. 137 could be used as an iterative procedure, meaning that
successive blocks of mt and Pt will need to have the same algebraic
structure. As of now this is not the case since e. g., PBB

t is a Kronecker
product and PBB

t+1 is a sum of Kronecker products. Luckily there is
structure in Eq. 137: The vector m∇ is updated with a vector ∈ RN of
same size, and mB with low-rank terms. So as long as mB

0 is of simple
form, e. g., a scalar matrix m0 = σB

0 I, mt will be, too.
The covariance contributions PBB and P∇B are sums of Kronecker

products (although of different size) and we would like to project it
onto a ‘close’ single Kronecker product of the same shape. It turns
out that this can be done rather easily under the Frobenius norm by
solving the minimization problems (Appendix A.1.2 for derivation
and pseudo-code):

Wt+1 ⊗Wt+1 := arg min
W

W ⊗W − PBB
t+1

2

F
(138a)

Ut+1 ⊗Ut+1vt+1 := arg min
U,v

U ⊗Uv− PB∇
t+1

2

F
. (138b)

This can be computed to high precision by linear algebra operations
available in standard libraries.4 The results hold for dense Wt, Ut, and 4 In short: Under the Frobenius norm

as in Eq. 138, it is possible to reshuffle
the norm-sum with a fixed, known per-
mutation, such that the minimization
problem can be rephrased as an equiv-
alent rank-one approximation problem.
This can be readily solved by singular
value decompositions of the matrices
contained in the summands, which is
of complexity O(N) if they already ex-
hibit scalar-plus-low-rank structure, and
of negligible cost if an ortho-normal low
rank basis (shared by all matrices) is
known (§ 9.3).

V, but especially also for scalar-plus-low-rank structured matrices. In
other words, as long as V, Wt, and Ut are scalar-plus-low-rank (V can
be chosen as such and we will see that Wt and Ut will have that form
if W0 and U0 have), Wt+1 and Ut+1, will be, too. This is because the
solution to Eq. 138 are matrices which are linear combinations of the
matrices contained in their corresponding Kronecker sums. This will
become relevant in Section 9.3.

9.1.2 Encoding Symmetric Hessian Beliefs
[56] Hennig, “Probabilistic Interpreta-
tion of Linear Solvers,” 2015The Gauss-Markov process on xB in Section 9.1.1 did not encode that

the Hessian is symmetric by definition, hence the derived estimator mB

in 137 was not either. This section restricts the process on xB, such that
it yields symmetric matrices only. It then derives filtering equations
in the same style as the previous section. We again use Kronecker
structure on all relevant matrices

P∇B
t = (I ⊗ v⊺t)(U

⊺
t ⊗⊖U⊺

t) Ut ∈ RN×N , vt ∈ RN

PBB
t = Wt⊗⊖Wt Wt ∈ RN×N , Wt positive definite (139)

q = V⊗⊖V V ∈ RN×N , V positive definite,

152 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

but this time using the symmetric Kronecker product, symbolized by
‘⊗⊖’. Its definition and some of its algebraic properties were already
discussed on in Section 3.2; further properties can be found in Ap-
pendix A.2. The matrices q and PBB now have reduced rank of
1
2 N(N + 1) and the support of the prior distribution on xB

t equals
the space of all symmetric matrices in contrast to arbitrary squared
ones [56, Lemma 2.2]. Intuitively Eq. 139 can be thought of as applying
the symmetrization operator Γ, defined by ΓX = 1/2(X + X⊺) onto an
N× N reshaped xB. Since Γ is linear, xB is still Gaussian distributed.5

5 For this fact, it is much harder to im-
pose positive definiteness of the Hessian
estimate, since this would involve a non-
linear transformation of xB, or a Wishart
prior. Gaussians are always more gen-
eral, since they have support on whole
RD . Section 9.3 will introduce a way of
efficiently projecting each estimator mB

t
onto the positive definite cone. The con-
nection of a Wishart prior W(xB; W, ν)
for xB reshaped to N × N to a Gaus-
sian prior on vectorized xB with sym-
metric Kronecker covariance, is that the
covariance of this Wishart is given by
ν−1(W⊗⊖W).

The Gaussian increments of the Wiener process now correlate through
q in such a way, that xB is always symmetric. The predictive Kalman
equations of 132 together with 139 and 131 turn into:

m∇t+1− = m∇t + (I ⊗ s⊺t)m
B
t

mB
t+1− = mB

t

P∇B
t+1− =

1
2
(I ⊗ s⊺t)q∆τ + (I ⊗ v⊺t)(U

⊺
t ⊗⊖U⊺

t) + (I ⊗ s⊺t)(Wt⊗⊖Wt)

PBB
t+1− = (V⊗⊖V)∆τ + (Wt⊗⊖Wt)

P∇∇t+1− = P∇∇t +
1
3
(I ⊗ s⊺t)(V⊗⊖V)(I ⊗ st)∆τ + (I ⊗ v⊺t)(U

⊺
t ⊗⊖U⊺

t)(I ⊗ st)

+ (I ⊗ s⊺t)(Ut⊗⊖Ut)(I ⊗ vt) + (I ⊗ s⊺t)(Wt⊗⊖Wt)(I ⊗ st).

(140)

All predictive covariance blocks are again sums of terms which exhibit
the original structure of this block in the same way as in Eq 135. The
predictive covariance block for gradient-gradient interaction P∇∇t+1−
can be simplified further (Appendix B.3):

P∇∇t+1− = P∇∇t +
1
2
[

∆τ/3V(s⊺t Vst) + ∆τ/3(Vst)(Vst)
⊺ + U⊺

t (v
⊺
t U⊺

t st) + (U⊺
t st)(Utvt)

⊺

+ Ut(s
⊺
t Utvt) + (Utvt)(U

⊺
t st)

⊺ + Wt(s
⊺
t Wtst) + (Wtst)(Wtst)

⊺]. (141)

In contrast to Eq 136, also rank-one terms (outer vector products)
appear in the above equation.

Measurements

Eq 141 as well as the explicit form of the updated Kalman equations for
the symmetrized process on the Hessian is derived in Appendix B.3;
here again just the results are reported; the predictive Kalman equa-
tions, except for P∇∇t+1−, are already inserted into the updates. By
combining Eq. 140 with 133 we get:

mB
t+1 = mB

t +
1
2
[
(VG−1

t+1∆t)(Vs̃t)
⊺ + (Vs̃t)(VG−1

t+1∆t)
⊺ + (UtG−1

t+1∆t)(Utvt)
⊺

+ (Utvt)(UtG−1
t+1∆t)

⊺ + (WtG−1
t+1∆t)(Wtst)

⊺ + (Wtst)(WtG−1
t+1∆t)

⊺]
m∇t+1 = m∇t + (I ⊗ s⊺t)m

B
t + P∇∇t+1−G−1

t+1∆t

(142)

A MODEL FOR TWICE-DIFFERENTIABLE FUNCTIONS | 153

P∇∇t+1 = P∇∇t+1− − P∇∇t+1−G−1
t+1P∇∇t+1−

P∇B
t+1 = (I ⊗ s̃⊺t)(V⊗⊖V) + (I ⊗ v⊺t)(U

⊺
t ⊗⊖U⊺

t) + (I ⊗ s⊺t)(Wt⊗⊖Wt)

− (I ⊗ ṽ⊺t)(Ṽ
⊺
t ⊗⊖Ṽ⊺

t)− (I ⊗ ũ⊺
t)(Ũ

⊺
t ⊗⊖Ũ⊺

t)− (I ⊗ w̃⊺
t)(W̃

⊺
t ⊗⊖W̃⊺

t)

PBB
t+1 = ∆τ(V⊗⊖V) + (Wt⊗⊖Wt)

−VG−1
t+1V⊗⊖(Vs̃t)(Vs̃t)

⊺ −UtG−1
t+1V⊗⊖(Utvt)(Vs̃t)

⊺ −WtG−1
t+1V⊗⊖(Wtst)(Vs̃t)

⊺

−VG−1
t+1U⊺

t ⊗⊖(Vs̃t)(Utvt)
⊺ −UtG−1

t+1U⊺
t ⊗⊖(Utvt)(Utvt)

⊺ −WtG−1
t+1U⊺

t ⊗⊖(Wtst)(Utvt)
⊺

−VG−1
t+1Wt⊗⊖(Vs̃t)(Wtst)

⊺ −UtG−1
t+1Wt⊗⊖(Utvt)(Wtst)

⊺ −WtG−1
t+1Wt⊗⊖(Wtst)(Wtst)

⊺.

where Gt+1 = P∇∇t+1− + Rt+1 again is the innovation covariance and
∆t := yt+1 − m∇t − (I ⊗ s⊺t)m

B
t the residual (further notation e.g. Ṽt

is introduced in Eq. 228). The expected value mB of the Hessian is
now symmetric as well in contrast to the estimator in Eq. 137. Also
the uncertainty on xB contracts faster, since more information about
xB can be deduced from a single gradient under stronger prior as-
sumptions. The update mB roughly resemble the ones of Dennis class
quasi-Newton methods; connections will be discussed in Sections 9.2.1
and 9.2.2. We will call algorithms that arise from the Kalman filter
update as in Eqs. 141 and 142 by the general name of KFhess for
’Kalman filtering on Hessians’.

Back-Projection for an Iterative Procedure

Similar to the back-projection for the non-symmetric process, the up-
dated estimators m∇, mB and P∇∇, already exhibit their original struc-
ture. Also the Hessian covariance PBB

t+1 can be projected back with the
same algorithm as described below Eq. 143 and in Appendix A.2.2,
since the minimization problem

Wt+1⊗⊖Wt+1 := arg min
W

W⊗⊖W − PBB
t+1

2

F
(143)

is just the square of a linear transformation of a Kronecker sum as
in Eq. 143. Thus its solution is the linear transform of the solu-
tion if all symmetric Kronecker products were replaced by Kronecker
products. In other words let T be the linear operator defined by
T [A ⊗ B] := A⊗⊖B (Eq. 190 in Appendix A.2.1), then Wt+1 can be
obtained by solving

Wt+1 ⊗Wt+1 := arg min
W

W ⊗W − P̃BB
t+1

2

F
(144)

where P̃BB
t+1 is the same as PBB

t+1 of Eq. 142 but all symmetric Kronecker
products are replaces by normal Kronecker products.

Unfortunately, the back-projection of P∇B
t+1 is not as easy as in the

non-symmetric case since (I⊗ v⊺)(A⊗⊖B) ̸= (A⊗⊖v⊺B) (the right hand

154 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

side is not even defined). It is not clear, how to do this properly
algorithmically for now. An intermediate practical workaround is to
impose independence between the gradient and Hessian part of the
state x such that Pt is block diagonal with P∇B = 0.6 The theoretical 6 Note that the majority of the full co-

variance P ∈ R(N+N2)×(N+N2), i. e., the
block PBB ∈ RN2×N2 as well as the block
P∇∇ ∈ RN×N , is still dense under this
approximation. Thus omitting U might
have minor practical implications even.
If not, an algorithmic solution for back-
projecting P∇B can be found in the fu-
ture.

analysis below is not affected by this.

9.2 Recovering Classic Quasi-NewtonMethods
The estimators for the Hessian mB

t and gradient m∇t can be used to
construct noise-informed, probabilistic quasi-Newton methods. With
slight abuse of notation (mB

t occasionally denotes the reshaped N× N
matrix, instead of the vectorized version) we can write updates of the
form:

wt+1 = wt − αt(mB
t)
−1m∇t or wt+1 = wt − αt(mB

t)
−1∇LS (wt). (145)

The updates to the Hessian estimators mB
t are of low-rank and thus

mB
t can be inverted analytically by the matrix inversion lemma, anal-

ogously to Dennis-class estimators. Section 9.2.1 will explore con-
nections of noise- and diffusion-free Kalman updates to Broyden’s
method and the Dennis family, and Section 9.2.2 likewise for noise-
free updates with non-zero diffusion.

9.2.1 Diffusion- and Noise-Free Updates
Hennig [56] (recap in Chapter 3) established that Broyden’s method [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015and the Dennis family of quasi-Newton methods can be seen as one-
step Gaussian regression on constant symmetric positive definite (spd)
Hessian matrices in w-space, when gradient evaluations are exact
(R = 0). In addition, the Dennis members bfgs and dfp are identical
to multi-step Gaussian regression for exact line searches, again for
constant Hessians.

For this reason we examine the Kalman update equations, first
under the assumption that the Hessian is constant, i. e., diffusion q
is zero, ∆L(w) = ∆L = const, and in Section 9.2.2 for non-quadratic
objectives where the Hessian changes with w. All lemmas assume
that the initial state xB

0 is Gaussian distributed with mean mB
0 = σB

0 I
and (symmetric) Kronecker covariance PBB

0 .

Lemma 4 One-step, diffusion-free Kalman updates (q = 0) which have

access to exact gradient evaluation (R = 0), are identical to one-step Gaussian

regression updates on matrices as in [56], for both, the symmetric and non-

symmetric hypothesis on xB
t and same observation pair (∆yt, st).

Proof For the non-symmetric update: For R = V = 0, and t > 0
Eq. 135 simplifies to

RECOVERING CLASSIC QUASI-NEWTON METHODS | 155

P∇∇−1
t+1− =

[
(I ⊗ s⊺t)(Wt ⊗Wt)(I ⊗ st)

]−1
=

W−1
t

s⊺t Wtst
and WtP∇∇−1

t+1− =
IN×N

s⊺t Wtst
. (146)

Thus the Kalman updates of Eq. 137 become:

mB
t+1 = mB

t + (WtP∇∇−1
t+1− ∆t)(Wtst)

⊺ = mB
t +

∆t(Wtst)⊺

s⊺t Wtst

PBB
t+1 = (Wt ⊗Wt)−WtP∇∇−1

t+1− Wt ⊗ (Wtst)(Wtst)
⊺ = Wt ⊗

(
Wt −

(Wtst)(Wtst)⊺

(s⊺t Wtst)

)
.

(147)

Eq. 147 is equivalent to Eqs. 2.4 and 2.5 in [56] for M = 1 (single
step). Analogously for the symmetric update, and by the the matrix
inversion lemma, Eq. 140 becomes:

P∇∇−1
t+1− =

[
(I ⊗ s⊺t)(Wt⊗⊖Wt)(I ⊗ st)

]−1
= 2

W−1
t

s⊺t Wtst
− sts

⊺
t

(s⊺t Wtst)2

WtP∇∇−1
t+1− = 2

IN×N

s⊺t Wtst
− (Wtst)s

⊺
t

(s⊺t Wtst)2 .

(148)

Thus the corresponding Kalman updates of Eq. 141 are:

mB
t+1 = mB

t +
1
2
[
(WtP∇∇−1

t+1− ∆t)(Wtst)
⊺ + (Wtst)(WtP∇∇−1

t+1− ∆t)
⊺]

= mB
t +

[
∆t(Wtst)⊺ + (Wtst)∆

⊺
t

s⊺t Wtst
− s⊺t ∆t(Wtst)(Wtst)⊺

(s⊺t Wtst)2

]
PBB

t+1 = (Wt⊗⊖Wt)−WtP∇∇−1
t+1− Wt⊗⊖(Wtst)(Wtst)

⊺

=

(
Wt −

(Wtst)(Wtst)⊺

(s⊺t Wtst)

)
⊗⊖
(

Wt −
(Wtst)(Wtst)⊺

(s⊺t Wtst)

)
(149)

Eq. 149 is identical to Eqs. 2.7 and 2.8 in [56] for M = 1 (single step).

Lemma 5 For the setup as in Lemma 4, multi-step Kalman updates are

equivalent to multi-step, auto-regressive Gaussian updates as in [56].

Proof Can be directly seen from Eqs. 147 and 149 for Wt+1 := Wt −
(Wtst)(Wtst)

⊺

(s⊺t Wtst)
, and Eqs. 2.4 and 2.7 of [56] for M = 1 (single observation).

Lemma 6 For setup as in Lemma 4 and symmetric updates, as well as

a given sequence of search directions pt, the Kalman update equations are

equivalent to exact Gaussian inference on matrices as in [56] if the search

directions are W0-conjugate, i. e., p⊺t W0 pt′ = p⊺t W0 ptδtt′ for all t and t′.
If the search directions are defined as pt := −(I ⊗ m∇⊺t)(mB

t)
−1

, and line

searches are exact, this is e. g., fulfilled for W0 = ζ∆L, ζ > 0, which

also recovers the dfp-algorithm in the sense that the sequence of search

156 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

directions pt (and consequently (wt, yt)-pairs) are identical. The same holds

for W0 = ζ

(
∆L +

√
p⊺t ∆yt

p⊺t mB
t pt

mB
t

)
and the bfgs-update. This also means

that for m0 =
#»

I , both algorithms are identical to linear conjugate gradients.

Proof First note that (I ⊗m∇⊺t)(mB
t)
−1 = (mB

t)
−1m∇t , where the left

hand side of the equation uses the original vectorized version of mB
t ,

and the right hand side (with overloaded notation) the non-vectorized
version. For the first part of the proof, combine Lemma 3.2 of [56] with
Lemma 4 above and set W0 = Whennig. The second part of the lemma
follows then directly from Lemma 3.3 and Theorem 3.4 of [56].

9.2.2 Noise-Free Updates
In the previous section, we saw that it is possible to recover classic
one-step quasi-Newton updates with a diffusion-free filter and exact
gradient observations. Thus, the question arises if it is also possible
to construct equivalent multi-step Kalman filter updates, if the filter
adapts its intensity q, or to a less rigorous degree its diffusion Q,
in such a way that classic methods, like the bfgs-rule or Broyden’s
method get recovered. Differing q or Q per iteration in essence imply
a different scale for the variability of the Hessian elements as well as
different correlations. We will do this here for the symmetric case
only, since it is usually more involved, but the results translate directly
to the non-symmetric updates as well, by replacing the symmetric
Kronecker products with non-symmetric ones. Firstly, the predictive
Kalman filter equations for q ̸= 0 and R = 0 are:

P∇∇t+1− =
∆τ

3
(I ⊗ s⊺t)q(I ⊗ st) + (I ⊗ s⊺t)(Wt⊗⊖Wt)(I ⊗ st)

P∇B
t+1− =

∆τ

2
(I ⊗ s⊺t)q + (I ⊗ s⊺t)(Wt⊗⊖Wt)

PBB
t+1− = ∆τq + (Wt⊗⊖Wt)

(150)

From the previous section, we know that we recover the Dennis class
on mB if

P∇∇t+1−
!
= (I ⊗ s⊺t)(WDen⊗⊖WDen)(I ⊗ st)

P∇B
t+1−

!
= (I ⊗ s⊺t)(WDen⊗⊖WDen)

PBB
t+1−

!
= (WDen⊗⊖WDen),

(151)

where WDen is defined up to a positive scalar as in Eq. 72, and the
subscript den is a placeholder for a member of the Dennis family, e. g.,
dfp. Thus, for the filter-update mB to be identical, we require:

RECOVERING CLASSIC QUASI-NEWTON METHODS | 157

∆τq = QBB !
= (WDen⊗⊖WDen)− (Wt⊗⊖Wt) (152a)

1
2

∆τ(I ⊗ s⊺)q = Q∇B !
= (I ⊗ s⊺) [(WDen⊗⊖WDen)− (Wt⊗⊖Wt)] (152b)

1
3

∆τ(I ⊗ s⊺)q(I ⊗ s) = Q∇∇ !
= (I ⊗ s⊺) [(WDen⊗⊖WDen)− (Wt⊗⊖Wt)] (I ⊗ s). (152c)

Thus the Dennis-updates can be recovered for blocks of Q as in Eq. 152,
but we can also see that all three equations can not simultaneously be
fulfilled for some common intensity matrix q ∈ RN2×N2 , due to the
factors 1/2 and 1/3 on the left hand side. This leads to the following
theorem:

Theorem 7 Assume exact gradient evaluations (R = 0), and the same

sequence of pairs (wt, yt), i. e., st := (I ⊗ m∇⊺t)(mB
t)
−1

and the same

learning rates αt. Then, the Kalman filter updates as in Eq. 133 recover

the Dennis family of quasi-Newton updates for possibly indefinite diffusion

matrices Q given by Eq. 152. Additionally, the same can not generally be

constructed for diffusions arising from an integrated Wiener process with

intensity matrix q as in Eq. 130 and 131.

The structure is, however, very close to that of a Wiener process, since
matrix blocks just differ by a constant relative factor, i. e., if q is chosen
such that QBB !

= QBB
Den, then the other blocks need to be multiplied

by constant factors as follows: Q∇B→ 2 ·Q∇B and Q∇∇→ 3 ·Q∇∇, in
order to recover the Dennis-updates.7 7

Relative factor means that the same
correspondence could be achieved by
choosing q such that Q∇∇ !

= Q∇∇Den , then
Q∇B→ 2/3 · Q∇B and QBB→ 1/3 · QBB.
Thus blocks have different sizes relative
to each other, once an absolute scale is
fixed.

We can ask now if it is possible to generally find a Gaussian model,
not necessarily only one that is based on a Wiener process, which
recovers the Dennis family. For this, we need the matrix Q to be
symmetric positive semi-definite (semi-spd) such that p(xt+1−|xt) de-
fines a Gaussian distribution. This is only satisfied if the difference
(WDen⊗⊖WDen)− (Wt⊗⊖Wt) is semi-spd. Since WDen and Wt are both
coupled to the identity matrix, the Hessian estimator Bt, or the mean
Hessian ∆L̄D, depending on the Dennis member, this is not satisfied
in general.

An easy instance is the Dennis-update psb, where WDen = I and
Wt = I − st−1s⊺t−1

(s⊺t−1st−1)
, where we used ζ = 1 for simplicity and without

loss of generality. If we choose an ortho-normal basis P ∈ RN×N of
Wt with P⊺P = I, where the first column is equal to st−1/∥st−1∥, then
we can write

(WDen⊗⊖WDen)− (Wt⊗⊖Wt) = Γ(P⊗ P)
[
(I ⊗ I)− (I − e1e⊺1)⊗ (I − e1e⊺1)

]
(P⊗ P)⊺Γ⊺

= (P⊗⊖P) [IN2 − K] (P⊗⊖P)⊺ = (P⊗⊖P)D(P⊗⊖P)⊺ =: Q∗t ,
(153)

where e1 is the first Cartesian vector and Γ is the linear operator defined
in Eq. 186 that maps a Kronecker product onto a symmetric Kronecker
product, and D := I−K a diagonal matrix.8 We would like to find the

8 We also used that (P⊗⊖P) = Γ(P ⊗
P)Γ⊺ = Γ(P ⊗ P). For general Kro-
necker products this does not hold, i. e.,
Γ(A⊗ B)Γ⊺ ̸= Γ(A⊗ B).

158 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

non-zero eigenvalues of the matrix Q∗t . These are at most 1
2 N(N + 1),

since this is the maximal rank of Q∗t . Define the matrices v(ij) :=
pi p

⊺
j + pj p

⊺
i and e(ij) = eie

⊺
j + eje

⊺
i where pi ∈ RN is the ith column of

the ortho-normal basis P and ei the ith Cartesian vector. We can see that
e(ij) form the (not-normalized) standard basis for symmetric N × N
matrices, which is of rank 1

2 N(N + 1). Since the matrices v(ij) and e(ij)
are congruent via the invertible transformation P, i. e., v(ij) = Pe(ij)P⊺

with PP⊺ = I, also v(ij) form a basis. Vectorization does not change
the linear independence, thus a corresponding vectors-basis is given
by # »v(ij) =

»

pi p
⊺
j + pj p

⊺
i = (P⊗ P)

»

eie
⊺
j + eje

⊺
i , with (P⊗ P)(P⊗ P)⊺ = I.

We can now find all 1
2 N(N + 1) non-zero eigenvalues of Q∗t since

Q∗t
»v(ij) = (P⊗⊖P)D(P⊗⊖P)⊺ # »v(ij) =

(
D(ij)(ij) + D(ji)(ji)

)
»v(ij). (154)

From Eq. 154 we see that they are given by all possible combinations
λ(ij) := D(ij),(ij) + D(ji),(ji). From the definition of K and D we see
that D is the zero-matrix with a few ‘1’-entries on the diagonal, in
particular λ(ij) = δj1 + δi1 − δj1δi1 ∈ {0, 1}. Since the eigenvalues
λ(ij) are greater or equal to zero, Q∗ is semi-spd. We can therefore
formulate the following theorem.

Theorem 8 Assume noise free observations (R = 0), a matrix Q∗t as in

Eq. 153, and a diffusion matrix Qt that is constructed from the blocks QBB
t =

Q∗t , Q∇B
t = (I ⊗ s⊺t)Q

∗
t , and Q∇∇t = (I ⊗ s⊺t)Q

∗
t (I ⊗ st). Then, the

Kalman filter updates as in Eq. 133 recover the psb-updat. Additionally, since

Q∗t is symmetric positive semi-definite, there exists corresponding Gaussian

distributions xt+1 ∼ N (Atxt, Qt), and thus a Gauss-Markov-model for xt.

The identical algorithm arises for pt = −(mB
t)
−1yt, and same (wt, yt)-pairs,

i. e., for identical learning rates.

[45] Golub and Van Loan, Matrix compu-

tations, 1996Note that Theorem 8 did not impose further restrictions on LD(w)

and also does not assume exact line searches, as e. g., done in Hennig
[56]. For other members of the Dennis family, the same would apply [56] Hennig, “Probabilistic Interpreta-

tion of Linear Solvers,” 2015if, exchanging sub- with superscript,

(WDen
t ⊗⊖WDen

t)− (WDen
t−1 −

(WDen
t−1 st−1)(WDen

t−1 st−1)
⊺

s⊺t−1WDen
t−1 st−1

)⊗⊖(WDen
t−1 −

(WDen
t−1 st−1)(WDen

t−1 st−1)
⊺

s⊺t−1WDen
t−1 st−1

) (155)

is semi-spd. One might ask if conditions can be imposed on the
estimator Bt and on the loss LD(w), such that 155 is always semi-
spd. Interesting corner cases might include quadratic losses where
∆LD = const, or Hessians ∆LD(w) that all share the same eigen-basis.
Alternatively one might attempt to find weaker restrictions on ∆LD
only on the optimization path. A promising direction might be to
decompose Eq. 155 with a generalized eigen-decomposition for WDen

and Wt, and then to impose restrictions on the eigenspectrum. See
e. g., [45, § 8.7], Theorems 8.71 and 8.72.

RECOVERING CLASSIC QUASI-NEWTON METHODS | 159

Scales of Dennis-Covariances

Since classic quasi-Newton methods are succesful in practice, it might
be beneficial to get a better intuition about the relative scaling of the
Dennis-covariances Wden between Hessian elements only. Consider a
Hessian function ∆LD(w) with N = 2-dimensional input w and noise
free gradient observations (R = 0). Figure 58 shows the diagonal
of the Hessian estimator Bden

t of five members of the Dennis class
on a 2D-toy function for absolute scale ζ = 1 as in Eq. 72. Top and
bottom row show the (1, 1) and (2, 2)-element of ∆LD(w(τ)) respec-
tively (the (2, 2)-element is constant). The true Hessian is shown in
blue () and the Dennis-estimator Bden in black (), 2 standard
deviations 2 diag[Wden] shaded (). Note that all standard devia-

−10

0

10

20

30

∆
L11 D

PSB

30 60 90

−4

−2

0

2

4

∆
L22 D

Greenstadt

30 60 90

DFP

30 60 90
t

SR1

30 60 90

BFGS

30 60 90

Figure 58: Sketch of Dennis-class hyper-
parameters. Top and bottom row: (1,
1)-element and (2, 2)-element of the Hes-
sian ∆LD(w) respectively. True Hessian
(), Dennis-estimator (), and 2
std diag[Wden] ().

tions diag[Wden] () could be scaled up or down by a positive scalar
shared across all dimensions; so we are interested in their behavior
relative to the evolution of ∆LD and the estimator Bden, as well as how
a shared fitted absolute scale would affect the individual dimensions.9 9 Since Wden occasionally depends on

the quantities Bden and ∆LD , positive
definiteness of Bden and ∆LD will be as-
sumed where necessary for the sake of
interpreting Wden⊗⊖Wden as covariance
matrix.

From the figure, we can deduce the following points:

• psb is equally uncertain, independent of the Hessian estimator Bt or
the true Hessian ∆LD,t. This is probably the simplest, yet possibly
effective, approach, a global uncertainty scale, assuming B stays in
a reasonable range. If this concept was used for KFhess, q would
adapted such that the posterior uncertainty would be isotropic and
probably quite conservative for most directions.

• greenstadt scales its uncertainty proportional to the magnitude
of the Hessian estimator Bt. While it might be true that larger
parts of the estimator also “need larger variances”, it is still less

160 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

favored from an uncertainty point of view, since it vanishes for
vanishing estimators (t ≈ 30 and 70 in the figure). This means that
the uncertainty might be scaled down although Bt might be far off,
or likewise, but less concerning, scaled up although the estimator
might be performing well (t < 20 and t > 80). Most definitely
it would be troublesome to find a well working absolute scale for
all dimensions simultaneously as can be seen by scaling W in the
bottom row up and down.

• dfp is similar to greenstadt in the sense that it couples the un-
certainty to the Hessian, but this time to the true mean value ∆L̄D
instead of to the estimator B. Again this only scales the uncertainty
up for large Hessians relative to small Hessians, but does not en-
code if the current estimator is actually doing well and thus an
absolute scale is hard to find.

• bfgs is a combination of greenstadt and dpf in the sense that it
scales the uncertainty up if either the estimator or the true Hessian
is large.10 This is beneficial since it is virtually never overconfident 10 The hyperparameter Wbfgs can even

be rewritten as a convex combination of
Bt and ∆L̄D , t such that:

Wbfgs = ζ(θ∆L̄D,t + (1− θ)Bt)

θ =

(
1 +

√
s⊺t Btst

s⊺t ∆yt

)−1

∈ (0, 1).

If Bt = ∆L̄D,t then θ = 1
2 but Wbfgs ̸=

0. For s⊺t Btst ≫ s⊺t ∆L̄D,tst, θ→ 0
and Wbfgs→ ζBt, while for s⊺t Btst ≪
s⊺t ∆L̄D,tst, θ→ 1 and Wbfgs→ ζ∆L̄D,t.

for a large enough ζ ≥ 1. But it also means that it is still very
underconfident for potentially very good estimators, as can be seen
from the figure: The estimator Bt is quite good nearly everywhere
but the uncertainty wildly varies. bfgs usually does not bother
about this relative under-confidence, since the residual ∆ = ∆y− Bs
vanishes in that case and the update to Bt vanishes, too. In other
words, the relative scaling of Wbfgs is sensible as long as the residual
∆ is large as well, but it is not sensible for vanishing residuals ∆.
For noisy gradient observations, and thus noisy residuals ∆y, the
latter will virtually never be the case and thus bfgs-type scaling
might be less favorable, too.

• sr1 possesses the only covariance, among the five shown, which
encodes the difference of the Hessian estimator Bt to the true mean
Hessian ∆L̄D,t and has thus, from an uncertainty perspective, the
arguably best approach to coupling Wden to these quantities. This
can be seen especially at iterations t > 70 where mt and ∆L are very
close and also the uncertainty shrinks. This is a feature that all other
methods, including bfgs, lack.11 It also enables the possibility to 11 The factor θ of bfgs also compares B

to ∆L̄D , but, depending on their mag-
nitudes, just shifts Wden to the larger of
the two instead of shrinking it when they
are close, or scaling it up when they are
different. Thus bfgs encodes their rela-

tive magnitude, while sr1 encodes their
difference.

adjust a reasonable absolute scale ζ which yields an uncertainty
that is neither too conservative nor specifically over-confident for
all Hessian elements.

The points above shed light on how classic quasi-Newton methods
tune their relative uncertainty: For achieving good estimators Bt,
some, including the state-of-the-art bfgs-optimizer, additionally rely
on the residual ∆ to vanish when the estimator is well calibrated, and
trade this assumption for a Wden that is possibly not well scaled in

TOWARDS A FAST SOLVER: LOW-RANK APPROXIMATIONS | 161

those cases. Ultimately this strategy is justified since only the esti-
mator counts. This means that the W-adaptation of e. g., bfgs is less
preferable when ∆, which appears in all of the Dennis-updates, is not
exact anymore, i. e., when gradients are noise corrupted and ∆ virtu-
ally never vanishes.12 Thus, when one is concerned about the scale W 12 This is supposed to mean that, if the

gradients y are instances drawn from a
distribution, then also ∆ are, and the
‘true’ (expected) residual is unknown
and generally non-vanishing.

not only for non-vanishing ∆, then e. g., the adaption of sr1 should be
a favorable choice.13

13 One might wonder, why sr1 does not
do better than bfgs even in the noise free
case, since Wden seems to be scaled well
everywhere. In practice though, there
are further benefits of bfgs which are
crucial for a good overall optimization
performance, such as being able to en-
sure positive definite B (and thus de-
scent directions) while still being able to
scale Wden reasonable well for large ∆s.
In a sense, bfgs might be the better trade-
off between algorithmic appeal and rela-
tive uncertainty estimation under noise
free gradients which ensure exact van-
ishing residuals.

This also means that the best performing classic hyperparame-
ters choices are not necessary the best choice for probabilistic quasi-
Newton methods, where ∆ is a random variable, too, and features like
positive definite estimates mB might not be needed or can be insured
in different ways (see § 9.3). The approach taken by sr1, which re-
sembles a local maximum marginal likelihood estimator, or possibly
just an isotropic adaptive scale as in psb, might indeed be more ap-
propriate. A first cautious approach to the hyperparameter setting of
q based on maximum marginal likelihood estimators is discussed in
Appendix B.4.4 and left out here, since it is not used for the experi-
ments.

9.3 Towards a Fast Solver: Low-Rank Approximations
Depending on the input-dimension N, for practical algorithms, the fil-
tering updates will need to be approximated further. Lower-dimensional
noisy problems already might benefit from updates as in Eqs. 141 and
142 which are cubic in cost, like Newton’s method. In this section we
will focus on the more technical case of very high dimensional inputs
N. In this scenario, all computations need to be resource and memory
efficient, in particular with cost linear in N. Classic quasi-Newton
methods solve this issue by limited memory versions of their full up-
dates: A small number M < 10 of lastly evaluated gradients y and
path segments s are kept in storage. Pictorially this restarts the estima-
tion of ∆LD with a shifting memory window of size M and yields a
scalar-plus-low-rank estimator BM of the Hessian, such that the search
direction −B−1

M ∇LD can be computed in linear time. Intuitively this
only works well if there is structure in ∆LD(w), which often seems
to be the case in practice; for example the limited memory version
l-bfgs [99] of the bfgs optimizer is widely successful and sometimes [99] Nocedal, “Updating quasi-Newton

matrices with limited storage,” 1980even performs better than vanilla bfgs.
[26] Dauphin et al., “Identifying and
Attacking the Saddle Point Problem
in High-dimensional Non-convex Opti-
mization,” 2014

[20] Byrd et al., “A Stochastic Quasi-
Newton Method for Large-Scale Opti-
mization,” 2014

A first approach to scalable probabilistic quasi-Newton updates is
thus to impose a limited memory, too. There is an up and a down-
side to this. On the one hand, the Kalman filter updates will be of
same complexity as classic limited memory versions and can thus be
computed very fast, on the other hand, the information contained in
only a handful of noisy gradients might not be enough to construct

162 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

a low-rank basis of ∆LD that is robust to stochastic gradient evalua-
tions. In contrast to this, a fully fletched filter with a dense but analytic
(mB)−1 as in Eq. 142 will automatically average over all past observa-
tions, weighted by the gains. This is closely related to the discussion
in Section 2.4 on noisy, high dimensional Gaussian random vectors.
We will postpone the discussion on robustness for now and start with
deriving an approximate filter.14

14 Potential extensions might be to sta-
bilize the basis P and PB, defined be-
low (overloaded notation with the co-
variance P) by averaging it, similar to
e. g., [26] who smooth the first eigen-
direction of ∆L from noisy as well as
approximate evaluations thereof; or ad-
vocated by [20].For tractability reasons, we simplify all relevant matrices to scalar-

plus-low-rank structure:

mB
t = σB

t I + PB
t ΛB

t PB⊺
t ΛB

t = ΛB⊺
t ∈ R2M×2M, σB

t ∈ R+

Wt = σW
t I + PtΛW

t P⊺
t ΛW

t = ΛW⊺
t ∈ RM×M, σW

t ∈ R+

Vt = σV
t I + PtΛV

t P⊺
t ΛV

t = ΛV⊺
t ∈ RM×M, σV

t ∈ R+ (156)

Ut = σU
t I + PtΛU

t P⊺
t ΛU

t ̸= ΛU⊺
t ∈ RM×M, σU

t ∈ R

Rt = σR
t I + PR

t ΛR
t PR⊺

t ΛR
t = Λ∇⊺t ∈ RM×M, σR

t ∈ R+

P∇∇t = σ∇t I + PtΛ∇t P⊺
t Λ∇t = Λ∇⊺t ∈ RM×M, σ∇t ∈ R+.

The low rank terms of classic quasi-Newton updates are spanned
by the past M gradient differences ∆y that are still in storage as well as
their corresponding path segments s, leading to a basis of size 2M. We
will assume the same here and define a low-rank basis PB ∈ RN×2M

for the (reshaped) Hessian estimator mB that is spanned by the last M
gradient evaluations {yt−i+1}i=1...M+1 (this yields M− 1 past gradient
differences) as well as past M− 1 path segments {st−i+1}i=1...M. All
other objects in Eq. 156 share a reduced basis P ∈ RN×M, which is only
spanned by path segments {st−i+1}i=1...M, such that PB = [P, Py].15

15 With this definitions, the matrices Py

contains one column less than Py. This
is because P encodes path segments in-
stead of locations, but Py encode gra-
dients instead of gradient differences.
Other parameterization, i. e., a basis us-
ing gradient differences ∆ys are also pos-
sible, but algorithmically less appealing.
In a practical implementation, it is eas-
ier to work with matrices of same size,
thus P is initialized with the zero vec-
tor such that it contains an additional
column of zeros. We will also use this
notation for the derivations below and
consider P and Py of same size N ×M.

This is reasonable since contraction of covariances should mostly hap-
pen in dimensions spanned by the observed projections of the Hessian.
Additionally, since the basis PB can be always ortho-normalized, e. g.,
by Gram-Schmidt, we will use throughout that PB⊺PB = I2M×2M and
P⊺P = IM×M.16

16 As mentioned above, precisely speak-
ing, the first of the diagonal elements of
PB⊺PB is zero in a practical implementa-
tion, since P contains a column of zeros.
This is not relevant for the derivations
below, nor does it need special care dur-
ing the implementation.

Combining Eq. 156 with Eqs. 140 and 142 yields the predictive
equations

m∇t+1− = PB
−πm∇−

t+1

P∇∇t+1− = σ∇−t+1 I + P−Λ∇−t+1P⊺
−,

(157)

and updated equations

G−1 = σG−1

t+1 I + P−ΛG−1

t+1 P⊺
−

m∇t+1 = PB
t+1πm∇

t+1

mB
t+1 = σB

t+1 I + PB
t+1ΛB

t+1PB⊺
t+1

P∇∇t+1 = σ∇t+1 I + P−Λ∇t+1P⊺
−

(158)

EXPERIMENTS | 163

PBB
t+1 =

11

∑
i=1

(
σL,BB

i I + P−ΛL,BB
i P⊺

−
)
⊗⊖
(

σR,BB
i I + P−ΛR,BB

i P⊺
−
)

P∇B
t+1 =

6

∑
j=1

(
I ⊗ ζ⊺j

) (
σL,∇B

j I + P−ΛL,∇B
j P⊺

−
)
⊗⊖
(

σR,∇B
j I + P−ΛR,∇B

j P⊺
−
)

.

All matrices Λ are of very small size M×M, or 2M× 2M, and all σ

are positive scalars. Also, all matrices and vectors can be expressed
again only in terms of the low-rank basis PB

−, which is the same as
PB with a newly added observation-pair (st, yt). The precise formulas
for updating them are reported in Appendix B.4 and left out here
for readability. Importantly, all corresponding computations are of
small cost and only involve the memory limit M; in particular, they
are independent of the input-dimensionality N, once the basis PB

− is
computed. The latter has to be done once per gradient observation in
storage and is of cost linear in N.

Computing the search direction as in Eq. 145 is linear in N because
the inverse of mB

t is analytic by the matrix inversion lemma, and the
low-rank part of the inverse is also spanned by the ortho-normal basis
PB
−. Between iterations, the back-projection of PBB onto Kronecker

form is of negligible cost (Appendix B.4.3), since the inner products
needed also only involve Λs and σs. It is also possible to manipulate
the eigen-values of mB, since they can be obtained by computing
the eigen-decomposition of ΛB ∈ R2M×2M only. Thus, even if the
estimators mB might exhibit negative eigen-values, the update can be
forced to use a positive definite mB,pos with negligible computation
overhead.17 We will call the corresponding algorithm l-KFhess, for 17 Flipping negative eigen-values is e. g.,

advocated by [26]. The rational is that
the magnitude of the eigen-value still
encodes a proper length-scale, just the
direction is flipped.

[26] Dauphin et al., “Identifying and
Attacking the Saddle Point Problem
in High-dimensional Non-convex Opti-
mization,” 2014

the limited memory version of ‘Kalman filtering on Hessians’.
Comments and formulas on hyperparameters adaptation, espe-

cially for Rt and V can be found in Appendix B.4.4. In particular,
the observation noise Rt can again be estimated within the mini-batch
using Σ̂, and Vt by maximum marginal likelihood estimation.

9.4 Experiments
A first test for l-KFhess are noise-free problems where exact gradients
are available, since, if it performs very poorly there, it probably also
will on noisy problems. We use the same mlp as in Section 8.3.3 and
train it on MNIST for feasibility. For comparison, we also run full-
batch gradient descent (gd), as well as the state-of-the-art optimizer
l-bfgs and compare the performances. The cost per step is larger for
l-bfgs and KFhess updates in comparison to gd by a constant factor
but they all are of same complexity linear in N. We will be mostly
interested in how l-KFhess performs relative to gd, and regard l-

164 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

Algorithm 7: Sketch of the noise-free
KFhess algorithm. The intensity matrix
V, as well as W0 are set to the unity ma-
trix.

1: function l-KFhess_noiseFree(L, wt)
2: [yt]← L(wt) � initial evaluation
3: Y← yt, S← 0N � store gradient and path
4: all Λ← 0 and σB← 1, σV← 1, σW← 1 � init state
5: while budget not used do
6: pt←−(mB)−1m∇

7: α←lineSearch(w, pt)
8: wt←wt + αpt � update best guess
9: [yt]← L(wt) � evaluate objective

10: store Y←[Y, yt] � remove oldest if size>M
11: store S←[S, αpt] � remove oldest if size>M
12:

13: PB←computeBasis(S, Y) � Gram-Schmidt, O(N)

14: [all Λ−, σ−]←computePredictions(S, Y)
15: [all Λ, σ]←computeUpdates(all Λ−, σ−)
16: [ΛW , σW]←projectKronecker(all Λ−, σ−, Λ, σ)
17: end while
18: return wt

19: end function

50 100 150 200
−3

−2

−1

0

steps

lo
g

tr
ai

n
er

ro
r

50 100 150 200

−1.5

−1

−0.5

0

steps

lo
g

te
st

er
ro

r

100 200
−3

−2

−1

0

function evaluations

100 200

−1.5

−1

−0.5

0

function evaluations

Figure 59: Multi-layer perceptron on
MNIST. Top and bottom row show log
train and test error respectively. Left
and right column shows values versus
t and # evaluations respectively. Col-
ors are gd (), l-bfgs (), and l-
KFhess (). Same colors show the
same setup for different seeds (10 each).

CONCLUSION AND OUTLOOK | 165

bfgs as ‘best possible’ performance on this problem. If we can gain
performance relative to gd here, it is more likely to also perform
better in stochastic setting later in comparison to sgd, where l-bfgs is
not applicable anymore. The initial covariance W0 and the intensity
matrix V are set to the identity, such that σV = σW = 1, which is
similar to a psb-style update. l-bfgs and l-KFhess both set the scalar
contribution of the Hessian estimate to B0 = mB

0 = (y⊺t yt)/(s⊺t yt)I in
each step. A pseudo-code for the noise-free version of l-KFhess can
be found in Algorithm 7. The first search direction is initialized with
gradient descent, after that, mB

t has non-trivial structure. We set the
memory limit to the smallest possible value, M = 1, such that always
one past gradient y and path segment s are kept in storage.

Figure 59 shows results. The top and bottom row show logarithmic
test- and training set error respectively. In the left column, the values
are plotted versus the number of iterations t, and in the right col-
umn versus the number of function evaluations (since all optimizers
use a line search, the curves need not be equal). l-bfgs () and l-
KFhess() both perform much better than gd (). l-bfgs seems
to be slightly more efficient than l-KFhess since it needs less func-
tion evaluations on average during a line search, but therefore l-
KFhess reaches good test errors more consistently on this problem.
The good performance of l-KFhess suggests that it might be worth
looking into its noisy version in the future, a feature which is not
natural to classic quasi-Newton methods.

9.5 Conclusion andOutlook
The following bullet-points summarize the main results of this chap-
ter:

• We presented a novel probabilistic filtering framework on Hessians
based on a continuous Gauss-Markov-model and local observations
of Gaussian distributed gradients. We derived discrete Kalman fil-
ter prediction and update equations for the special case of Brow-
nian motion. We then provided a way to use the updates in an
iterative manner by projecting back onto the original structure of
the distribution of the Kalman state. Finally, we provided approxi-
mate updates for very high-dimensional optimization problems by
imposing a scalar-plus-low-rank structure on all relevant matrices.

• We analyzed correspondence of the mean estimator of the Hes-
sian, arising from the filtering framework, to classic quasi-Newton
methods, such as the members of the Dennis family, or Broyden’s
method, for the special case of exact gradient evaluations. We
showed that correspondence can be exact for the diffusion-free fil-
ter, while it is closely related but only approximate otherwise. There

166 | SECOND-ORDER FILTER FOR HESSIAN ELEMENTS

is, however, exact correspondence between Gauss-Markov models
that are not based on Wiener processes, for the Dennis member psb,
and possibly for others with restrictions on the the function LD(w)

and the estimator mB.

• Based on the findings above, we analyzed the implicit hyperparam-
eters choices of the Dennis class members. We argued that most
of them are only sensible in the case of exact gradient observa-
tions and should not be transferred blindly to the stochastic setting.
We instead argue in favor of an sr1-type approach that resembles
hyperparameter setting by empirical Bayes or maximum marginal
likelihood estimation.

• We showed first experimental evidence that the derived filter can
run on very high-dimensional problems, too, and that it might be
worth investigating this line of research in the future.

Future research directions:

• Promising applications for KFhess might be lower to mid-sized
dimensional noisy problems, where all relevant matrices can be
stored densely. Since then, all past collected information will po-
tentially be present in the Hessian estimator instead of a cut-off
memory only, this setup should be more robust. Still, the question
of success can not easily be answered, since it crucially depends
on how many noisy gradient differences, i. e., N numbers instead
of 1

2 N(N + 1) of interest, will be needed to estimate a sufficiently
accurate mB, while the optimizer moves in w-space. This depends
on the dimensionality N, the mini-batch size |B|, as well as the loss
LD(w) and the local noise levels Σ(w). But there might be classes
of applications where this trade-off is in favor of the filter.

• It might be further interesting to ask if the approximate filter of
Section 9.3 can be robustified for noisy settings. Currently, due to
the limited memory, it looses its ability to naturally smooth over
all past iterations. Nevertheless, evidence showed that modeling
only a handful of off-diagonal Hessian-contributions is worthwhile
in high-dimensional applications. It is not entirely clear how this
could be approached but one might attempt to use a different low-
rank basis, which does not loose all past information and propagate
it to the next iteration.

Epilogue

10Conclusions andOutlook

This dissertation mainly focused on three current issues in stochas-
tic, empirical risk minimization for machine learning applica-

tions. These are: i) improvement of generalization performance and
over-fitting prevention, ii) increase in automation by removing manual
tuning parameters, in particular learning rates, and iii) development
of concepts for robust, stochastic search directions.

Chapter 6 introduced a novel early-stopping criterion that allows
to fold-in the validation set into the training procedure. This enables
an increase in generalization performance since all the available data
can be used for training. Chapter 7 designed a novel probabilistic
line search routine, so far applicable to stochastic gradient descent
(sgd), which eliminates the learning rate as tuning parameter entirely,
while retaining, or even increasing performance in the test accuracy.
The last two Chapters 8 and 9 elaborated on a novel probabilistic
framework for noise-robust first- and second-order optimization. By
drawing connections, the framework gives valuable insight into exist-
ing classic optimizers, and also opens up a class of potentially viable
probabilistic optimizers with increased expressiveness, automation,
and robustness to noise. First prototypes were presented in the form
of KFgrad and KFhess.

All of the derived work is based on the argument that conditional
distributions of full- as well as stochastic mini-batch gradients and
losses can locally be approximated by Gaussians. These distributions
have analytic form, and their parameters, in particular variances, can
be estimated with justifiable overhead at run-time. They can also be
interpreted as likelihoods, such that stochastic evaluations of losses
and gradients can readily be incorporated into noise-informed deci-
sion making at run-time of the optimizer, by means of well-known
inference techniques of machine learning and statistics. In particu-
lar, we used gp-regression, Kalman filtering, Bayesian optimization,
and others, rendered to the specific needs of an optimizer, such as
memory requirements, hardware limits, and constraints on the com-
putational complexity of the desired algorithm. The result are self-
contained, fast and flexible numerical methods that—on the lowest
level of computation—are learning machines themselves, whose own
internal model-parameters are either set by smart design or adapted
by cheap/approximate empirical Bayes.

170 | CONCLUSIONS AND OUTLOOK

The benefits of a single language to cover all theses topics—probability
theory—in this regard are mainly: The possibility to express different
aspects of the same problem in a single framework. Current stand-
alone concepts and algorithms that solve sub-tasks can in the future
be chained together and communicate with each other. For instance,
as outline in Chapter 5, the posterior marginal distribution of the
first-order Kalman filter might be used by the probabilistic line search.
Thus, instead of a large toolbox with many standalone implementa-
tions that a user has to choose from, a unified framework will poten-
tially be able to automatically pick a sub-algorithm depending on the
task, adapt its hyperparameters, and interpolate between, or switch
optimization routines during one run. There is still a lot of work to do
towards that end, but the works presented here are first steps towards
that goal.

The models used throughout this thesis were fully Gaussian, mean-
ing that all relevant variables are affine maps of each other, and ob-
servation noise is additive and Gaussian. Inference in fully Gaussian
systems is analytic, tractable and only needs access to solvers of classic
linear algebra, i. e., solutions to matrix-matrix products and linear sys-
tems. We have seen that Gaussian likelihoods for losses and gradients
are often approximately correct; alternatively, Gaussian approxima-
tions can be seen as casting a difficult inference task onto one, or many
successive linearized ones, in the sense that the latter can be solved
using only linear operations (see also [58]). Since numerical methods, [58] Hennig, Osborne, and Girolami,

“Probabilistic numerics and uncertainty
in computations,” 2015

like optimizers, should ideally not call yet another non-trivial numer-
ical method, it can be argued that Gaussians thus occur somewhat
naturally, as a minimalistic model that includes uncertainty of com-
putations, if one imposes linear constraints on the class of allowed
computations.

Further benefits of a shared probabilistic framework are increased
interpretability of parameters or hyper-parameters of the optimization
routine, as well as valuable insight into classic methods. An example
of this was presented in Chapter 8 where the ad-hoc exponential
smoothing factors of momentum-sgd resemble Kalman-gains of a
Gauss-Markov-model. Or Chapter 9, which presented an argument
that a bfgs-type update is not what should be aimed for in stochastic
optimization.

The outlooks and future research directions were already discussed
at the end of each chapter. On a more general, practical note, future
research should also go towards: i) The creation of software and tool-
boxes that are accessible and easy-to-use. ii) Linking standalone algo-
rithms to each other, such that they can share resources and computa-
tions. On a more theoretical note, it would be beneficial to iii) Improve
the theoretical analysis of the presented algorithms. This is more or
less crucial depending on the task. But, for instance, the eb-criterion

CONCLUSIONS AND OUTLOOK | 171

for early stopping, presented in Chapter 8 might benefit greatly from
it. An interesting research direction that might also lead to algorith-
mic considerations, is the iv) Trade-off between computational cost per
step, and the gains in the overall performance. This is closely linked to
the size |B| of the mini-batch in stochastic empirical risk minimization,
and for sure not easy so solve. Success in this research direction might
help the optimizer to automatically allocate its resources, increase or
decrease |B| as needed, and also choose among different probabilistic
sub-routines, depending on, whether it is beneficial to use one or the
other. The general notion of using readily available and well-studied
techniques of probabilistic inference, for naturally or artificially occur-
ring stochasticity in optimization, is a promising research direction in
general. The notion of uncertainty arising from lack of knowledge,
rather than physical randomness must be embraced to that end.

Appendix

AKronecker Algebra

This chapter introduces the Kronecker product and its algebra
which was used throughout this thesis. A significant part of

this section is taken from [85] and [136]; proofs were added, some re- [85] Loan, “The ubiquitous Kronecker
product,” 2000

[136] Van Loan and Pitsianis, “Approxi-
mation with Kronecker Products,” 1993

sults (especially on the symmetric Kronecker product) were extended
or stated more explicitly (e.g. Eq. 180 is not given in [85]). The Einstein

summation convention [35] is used throughout for ease of notation;
[35] Einstein, “Die Grundlage der allge-
meinen Relativitätstheorie,” 1916

this means sum-symbols are being dropped (unless emphasis is nec-
essary), and sums occur across same indices.

A.1 Kronecker Products
Let A ∈ RN1×N2 and B ∈ RK1×K2 be matrices or vectors. Then the
Kronecker product of A and B is in RN1K1×N2K2 and defined as:

(A⊗ B)(ij),(kl) = AikBjl , i = 1 . . . N1, k = 1 . . . N2,

j = 1 . . . K1, l = 1 . . . K2

(159)

Example for N1 = N2 = 2 and K1 = 3, K2 = 2:

⎡⎣ A11 A12

A21 A22

⎤⎦⊗
⎡⎢⎢⎢⎣

B11 B12

B21 B22

B31 B32

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A11B31 A11B32 A12B31 A12B32

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

A21B31 A21B32 A22B31 A22B32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(160)

The Kronecker product applied to a vector #»

X yields

(A⊗ B)
#»

X =
»

AXB⊺ (161)

where the operation #» stacks the rows of a matrix X ∈ RN2×K2 into a
column vector #»

X ∈ RN2K2×1. The operation on the right side of Eq. 161
costs O(N2K1(K2 + N1)) or O(N1K2(N2 + K1)) while the left side
costs O(N1K1N2K2). The Kronecker product has some nice algebraic

176 | KRONECKER ALGEBRA

properties which roughly resemble the ones of rank-one matrices. For
matrices A and B of appropriate size it is:

transpose (A⊗ B)⊺ = A⊺ ⊗ B⊺ (162a)

inverse (A⊗ B)−1 = A−1 ⊗ B−1 (162b)

factorizing (A⊗ B)(C⊗ D) = AC⊗ BD (162c)

distributive left (A⊗ B) + (A⊗ C) = A⊗ (B + C) (162d)

distributive right (A⊗ B) + (C⊗ B) = (A + C)⊗ B (162e)

associative (A⊗ B)⊗ C = A⊗ (B⊗ C) (162f)

trace tr [(A⊗ B)] = tr [A] tr [B] (162g)

Also the Frobenius norm of a matrix A can be re-written using the
Kronecker product:

∥A∥2
F =

#»

A⊺(I ⊗ I)
#»

A (163)

Proof of Eq. 162a: follows directly from definition (Eq. 159):

(A⊗ B)⊺
(ij)(kl) = (A⊗ B)(kl)(ij) = AkiBl j = A⊺

ikB⊺
jl = (A⊺⊗ B⊺)(ij)(kl). ■

Proof of Eq. 162c: Sizes of matrices need to fit the operations, in other
words A ∈ RN1×N2 , C ∈ RN2×N3 , B ∈ RK1×K2 , and D ∈ RK2×K3 , then

[(A⊗ B)(C⊗ D)](ij),(kl) = (A⊗ B)(ij)(mn)(C⊗ D)(mn),(kl) = AimBjnCmkDnl

= (AC)ik(BD)jl = (AC⊗ BD)(ij),(kl). ■

Proof of Eq. 162b: uses Eq. 162c. It only holds for matrices where an
inverse exists. Then

(A⊗ B)(A−1 ⊗ B−1) = AA−1 ⊗ BB−1 = IN×N ⊗ IK×K = INK×NK. ■

Proof of Eq. 162d and Eq. 162e: follows from definition and rearrang-
ing terms:

[(A⊗ B) + (A⊗ C)](ij),(kl) = AikBjl + AikCjl = Aik(B + C)jl = [A⊗ (B + C)](ij),(kl) . ■

Proof of Eq. 162f: follows from definition and rearranging terms:

[(A⊗ B)⊗ C]((ij),m),((kl),n) = (A⊗ B)(ij),(kl)Cmn = AikBjlCmn

= Aik(B⊗ C)(jm),(ln) = [A⊗ (B⊗ C)](i,(jm)),(k,(ln)) . ■

Proof of Eq. 162g: follows from definition and definition of trace:

tr [(A⊗ B)] = (A⊗ B)(ij),(ij) = AiiBjj = tr [A] tr [B] . ■

Proof of Eq. 163: follows from definition and definition of the Frobe-
nius norm:

KRONECKER PRODUCTS | 177

#»

A⊺(I ⊗ I)
#»

A = A(ij)(I ⊗ I)(ij),(kl)A(kl) = Aijδikδjl Akl = ∑
i,j

A2
ij = ∥A∥2

F. ■

A.1.1 Closest Kronecker Product under Frobenius Norm
Find A∗ ∈ RN1×N2 and B∗ ∈ RK1×K2 such that the Frobenius norm

∥C− A⊗ B∥2
F with C ∈ RN1K1×N2K2 (164)

is minimized. Equivalently:

A∗, B∗ = arg min
A,B

∥C− A⊗ B∥2
F. (165)

There exists a fixed permutation R such that the Kronecker product
can be written as an outer product of the vectorized matrices A and B:

R(A⊗ B) =
#»

A
#»

B⊺ and R(C) =

⎛⎜⎜⎜⎝
vec(c11)⊺

...

vec(cN1 N2)⊺

⎞⎟⎟⎟⎠ . (166)

R vectorizes and then transposes each block cαβ of the resulting matrix
C = A⊗ B and stacks them row by row (blocks as shown in Eq. 160 by
horizontal and vertical lines, and α = 1, . . . , N1, β = 1, . . . , N2). The
resulting matrix is in RN1 N2×K1K2 . The Frobenius norm in Eq. 165 stays
the same since elements in the sum are only reordered. Eq. 165 thus
reduced to solving a rank-one approximation problem of the form:

»

A∗,
»

B∗ = arg min
A,B

R(C)− #»

A
#»

B⊺
2

F
. (167)

Let R(C) = UΣV⊺ be the singular value decomposition of R(C).
Then this can be solved by computing the leading singular value σ1

and corresponding left and right singular vectors u1 and v1 of R(C).
Then the solution up to a scalar z ̸= 0 is:

»

A∗ = z
√

σ1u1 and
»

B∗ = z−1√σ1v1. (168)

For order-r approximations we simply get

»

A∗ = z
r

∑
i=1

√
σiui and

»

B∗ = z−1
r

∑
i=1

√
σivi. (169)

178 | KRONECKER ALGEBRA

A.1.2 Approximating Sums of Kronecker Products
Find A∗ ∈ RN×N and B∗ ∈ RK×K such that the Frobenius norm

∥C− A⊗ B∥2
F with C =

p

∑
α=1

Rα ⊗ Sα (170)

is minimized. Equivalently:

A∗, B∗ = arg min
A,B

 p

∑
α=1

(Rα ⊗ Sα)− A⊗ B


2

F

. (171)

Rα and Sα have the same shape as A and B respectively. This is
equivalent to finding the rank-one approximation of:RS⊺ − #»

A
#»

B⊺
2

F
with R ∈ RN2×p, S ∈ RK2×p,

#»

A ∈ RN2×1,
#»

B ∈ RK2×1. (172)

Denote the singular value decomposition (SVD) and compact SVD of
C as:

C = Ũ Σ Ṽ⊺ with Ũ ∈ RN2×N2
, Σ ∈ RN2×K2

, Ṽ ∈ RK2×K2

C = Ũ+Σ+Ṽ⊺
+ with Ũ+ ∈ RN2×p, Σ+ ∈ Rp×p, Ṽ+ ∈ RK2×p.

(173)

Σ+ is of the form diag(σ1 . . . σp) where σi are the singular values of C.
Assuming the σi are sorted from largest to smallest the solution to the
rank-one approximation problem of Eq. 172 is

A =
√

σ1ũ1 and B =
√

σ1ṽ1 (174)

where ũ1 and ṽ1 are the corresponding left and right singular vectors
to σ1. They are also the eigenvectors to the following matrices

[CC⊺] ũi = [RS⊺SR⊺] ũi = σ2
i ũi

[C⊺C] ṽi = [SR⊺RS⊺] ṽi = σ2
i ṽi.

(175)

This can be seen by plugging Eq. 173 into Eq. 175 and using the
orthonormality of Ũ and Ṽ. This means that if we find the eigende-
composition of C⊺C and CC⊺ we can find the σ1, ũ1, and ṽ1. Define:

S⊺S =: USDSU⊺
S ∈ Rp×p eigen-decomposition (176a)

R⊺R =: URDRU⊺
R ∈ Rp×p eigen-decomposition (176b)

Ξ := D1/2
S U⊺

S R⊺RUSD1/2
S (176c)

Ξ =: USRDSRU⊺
SR ∈ Rp×p eigen-decomposition (176d)

S̃ := SUSD−1/2
S with S̃⊺S̃ = Ip×p (176e)

Ŝ := S̃USR with Ŝ⊺Ŝ = Ip×p (176f)

Ip×p = USD−1/2
S D1/2

S U⊺
S . (176g)

KRONECKER PRODUCTS | 179

Note that Ξ can be written as Ξ = ξξ⊺. Plugging Eq. 176 into Eq. 175
yields

C⊺C = SR⊺RS⊺

= S(USD−1/2
S D1/2

S U⊺
S)(R⊺R)(USD1/2

S D−1/2
S U⊺

S)S
⊺

= S̃(D1/2
S U⊺

S R⊺RUSD1/2
S)S̃⊺ = S̃(USRDSRU⊺

SR)S̃
⊺

= ŜDSRŜ⊺.

(177)

Analogously:

CC⊺ = RS⊺SR⊺

= R(URD−1/2
R D1/2

R U⊺
R)(S

⊺S)(URD1/2
R D−1/2

R U⊺
R)R⊺

= R̃(D1/2
R U⊺

RS⊺SURD1/2
R)R̃⊺ = R̃(URSDRSU⊺

RS)R̃⊺

= R̂DRSR̂⊺.

(178)

The computation of A and B, requires R̂, Ŝ, DSR, and DRS. The follow-
ing pseudo-code (matlab notation) illustrates the necessary algorithm:

Require: S, R
RR← R⊺R � compute p× p matrices
SS← S⊺S
US, DS← eigs(SS, p) � sorted eigen-decomposition of RR.
UR, DR← eigs(RR, p) � sorted eigen-decomposition of SS.

ΞS←D1/2
S U⊺

S RRUSD1/2
S

USR, DSR← eigs(XiS, p) � sorted eigen-decomposition of ΞS.
S̄← SUSD−1/2

S USR � right singular vectors

ΞR←D1/2
R U⊺

RSSURD1/2
R

URS, DRS← eigs(XiR, p) � sorted eigen-decomposition of ΞR.
R̄← RURD−1/2

R URS � left singular vectors

σ←diag(D1/2
SR) � singular values

R∗i ← R̄(:, i)σ(i)1/2 for i = 1, . . . papprox � reshaped as N × N
S∗i ← S̄(:, i)σ(i)1/2 for i = 1, . . . papprox � reshaped as K× K

For the special (symmetric) case of R = S, some equations simplify:

C⊺C = SS⊺SS⊺ = S(USDSU⊺
S)S

⊺

= S(USD−1/2
S D1/2

S U⊺
S)(USDSU⊺

S)(USD1/2
S D−1/2

S U⊺
S)S

⊺

= (SUSD−1/2
S)(D1/2

S DSD1/2
S)(D−1/2

S U⊺
S S⊺)

= S̃D2
SS̃⊺.

(179)

In this case only the SVD of S⊺S is needed. The corresponding simpli-
fied pseudo-code (matlab notation) is:

180 | KRONECKER ALGEBRA

Require: S
SS← S⊺S � compute p× p matrix
US, DS← eigs(SS, p) � sorted eigen-decomposition of SS.
S̄← SUSD−1/2

S � singular vectors
σ←diag(DS) � singular values
S∗i ← S̄(:, i)σ(i)1/2 for i = 1, . . . papprox � reshaped as K× K

A.1.3 Coefficients of Sum of Kronecker Approximation
Ideally find a solution for A∗ and B∗ of the form A∗i = ∑

p
α=1 γαRα

and B∗i = ∑
p
α=1 γαSα which are linear combinations of the input with

weights γα, α = 1 . . . p. Like this beneficial matrix forms are preserved,
for example if Rα and Sα are of the form ’diagonal-plus-low-rank’.
Some algebra shows that the ith approximation is:

A∗i =
p

∑
α=1

[
URD−1/2

R URS

]
α,i

σi · Rα

B∗i =
p

∑
α=1

[
USD−1/2

S USR

]
α,i

σi · Sα

A∗ =
p

∑
α=1

[
URD−1/2

R URS

]
α,1

σ1 · Rα leading component

B∗ =
p

∑
α=1

[
USD−1/2

S USR

]
α,1

σ1 · Sα. leading component

(180)

Again for the symmetric case, where R = S we get:

A∗i =
p

∑
α=1

[US]α,i · Rα

A∗ =
p

∑
α=1

[US]α,1 · Rα. leading component
(181)

A.1.4 Decomposition into Symmetric and Anti-Symmetric Part
Let A be in RN×N . The Kronecker product A⊗ A can be decomposed
into a symmetric A⊗⊖A and a anti-symmetric A⊗�A part leading to
the definitions of the symmetric and anti-symmetric Kronecker prod-
uct. If A ⊗ A has full rank of N2, then the symmetric Kronecker
product and anti-symmetric Kronecker product span the 1/2N(N + 1)
and 1/2N(N − 1) dimensional subspaces respectively. They can be
obtained by applying the symmetrization and anti-symmetrization
operators Γ and ∆. Define the operators ‘⊗⊖’ and ⊗� by:

A⊗⊖B := Γ(A⊗ B)Γ⊺ and A⊗�B := ∆(A⊗ B)∆⊺ (182)

for B also in RN×N . The product can be decomposed into:

SYMMETRIC KRONECKER PRODUCTS | 181

A⊗ B = (Γ + ∆)(A⊗ B)(Γ + ∆)⊺

= Γ(A⊗ B)Γ⊺ + ∆(A⊗ B)∆⊺ + ∆(A⊗ B)Γ⊺ + Γ(A⊗ B)∆⊺

= A⊗⊖B + A⊗�B + ∆(A⊗ B)Γ⊺ + Γ(A⊗ B)∆⊺.

(183)

As mentioned above, if A = B, then ∆(A⊗ A)Γ⊺ = Γ(A⊗ A)∆⊺ = 0
and the product decomposes into symmetric and anti-symmetric part:

A⊗ A = A⊗⊖A + A⊗�A (184)

This also implies that:

IN×N⊗⊖IN×N = Γ(IN×N ⊗ IN×N)Γ⊺ = Γ (185a)

IN×N⊗�IN×N = ∆(IN×N ⊗ IN×N)∆⊺ = ∆ (185b)

IN×N⊗⊖IN×N + IN×N⊗�IN×N = (IN×N ⊗ IN×N) = Γ + ∆ = IN2×N2 . (185c)

The element-wise definitions of Γ, ∆, ’⊗⊖’ and ’⊗�’ and proof for the
decomposition can be found in Appendix A.2 and A.3 respectively.

A.2 Symmetric Kronecker Products
Let A ∈ RN×N and B ∈ RN×N be square matrices of same size. Then
the symmetric Kronecker product of A and B is in RN2×N2 and defined
as (A⊗⊖B) := Γ(A⊗ B)Γ⊺ with projection operator Γ:

ΓA =
1
2
(A + A⊺), Γ(ij),(kl) =

1
2
(δikδjl + δilδkj)

(A⊗⊖B)(ij),(kl) =
1
4
(AikBjl + Ail Bjk + AjkBil + Ajl Bik)

(A⊗⊖B)
#»

X =
1
4
(

»

AXB⊺ + AX⊺B⊺ + BX⊺A⊺ + BXA⊺)

(186)

where δij = 1 if i = j and zero otherwise. The symmetric Kronecker
product symmetrizes X. If A = B then Eq. 186 simplifies to

(A⊗⊖A)(ij),(kl) =
1
2
(Aik Ajl + Ajk Ail)

(A⊗⊖A)
#»

X =
1
2
(

»

AXA⊺ + AX⊺A⊺).
(187)

Similar to the Kronecker product, its symmetric version has some nice
algebraic properties:

182 | KRONECKER ALGEBRA

transpose (A⊗⊖B)⊺ = A⊺⊗⊖B⊺ (188a)

factorizing (A⊗⊖A)(C⊗⊖C) = AC⊗⊖AC but (A⊗⊖B)(C⊗⊖D) ̸= (AC⊗ BD) (188b)

(A⊗⊖B)(C⊗⊖D) =
1
2
[AC⊗⊖BD + AD⊗⊖BC] (188c)

inverse (A⊗⊖A)−1 = (A−1⊗⊖A−1) but (A⊗⊖B)−1 ̸= (A−1⊗⊖B−1) (188d)

commutative A⊗⊖B = B⊗⊖A but A⊗ B ̸= B⊗ A (188e)

trace tr [A⊗⊖B] =
1
2
(tr [A] tr [B] + tr [AB]). (188f)

Proof of Eq. 188a: follows from definition and rearranging terms:

(A⊗⊖B)⊺
(ij)(kl) = (A⊗⊖B)(kl)(ij) =

1
4

(
AkiBl j + AkjBli + AliBkj + Al jBki

)
=

1
4

(
A⊺

ikB⊺
jl + A⊺

jkB⊺
il + A⊺

il B
⊺
jk + A⊺

jl B
⊺
ik

)
= (A⊺⊗⊖B⊺)(ij)(kl). ■

Proof of Eq. 188c: follows from definition and rearranging terms:

[(A⊗⊖B)(C⊗⊖D)](ij),(kl) = (A⊗⊖B)(ij)(mn)(C⊗⊖D)(mn),(kl)

=
1
4
[
AimBjn + AjmBin + AinBjm + AjnBim

] 1
4
[CmkDnl + CnkDml + Cml Dnk + Cnl Dmk]

= 2
1
4

1
4

[
(AC)ik(BD)jl + (AC)il(BD)jk + (AC)jk(BD)il + (AC)jl(BD)ik

+ (AD)ik(BC)jl + (AD)il(BC)jk + (AD)jk(BC)il + (AD)jl(BC)ik

]
=

1
2
[AC⊗⊖BD + AD⊗⊖BC](ij),(kl) . ■

Proof of Eq. 188b: follows directly from Eq. 188c for A = B and
C = D. ■

Proof of Eq. 188d: follows directly from Eq. 188c. Note that in general
(A⊗⊖B)−1 ̸= A−1⊗⊖B−1.

(A⊗⊖A)(A−1⊗⊖A−1) = AA−1 ⊗ AA−1 = IN×N⊗⊖IN×N = Γ ■

Proof of Eq. 188e: follows directly from definition and reordering.
Note that A⊗ B ̸= B⊗ A:

(A⊗⊖B)(ij),(kl) =
1
4
(AikBjl + Ail Bjk + AjkBil + Ajl Bik)

=
1
4
(Bik Ajl + Bil Ajk + Bjk Ail + Bjl Aik) = (B⊗⊖A)(ij),(kl). ■

Proof of Eq. 188f: follows directly from definition and the definition
of trace:

tr [A⊗⊖B] = ∑
i,j
(A⊗⊖B)(ij),(ij) =

1
4 ∑

i,j
(AiiBjj + AijBji + AjiBij + AjjBii)

=
1
2
(tr [A] tr [B] + tr [AB]). ■

SYMMETRIC KRONECKER PRODUCTS | 183

A.2.1 Closest Symmetric Kronecker Product under Frobenius
Norm

Find the nearest symmetric Kronecker product to a square matrix C
of appropriate size under the Frobenius norm similar to Eq. 165:

A∗sym, B∗sym = arg min
A,B

∥C− A⊗⊖B∥2
F. (189)

The symmetric Kronecker product can be obtained from the Kronecker
product by applying a linear operator T to its vectorized version; T

can be read off from Eq. 186:

T(ijkl),(abcd)(A⊗ B)(abcd) = Γ(ij),(ab)(A⊗ B)(ab),(cd)Γ(kl),(cd) = (A⊗⊖B)(ij),(kl)

T(ijkl),(abcd) = Γ(ij),(ab)Γ(kl),(cd) =
1
2
(δiaδjb + δibδaj)

1
2
(δkcδld + δkdδcl)

=
1
4
(δiaδjbδkcδld + δibδajδkcδld + δiaδjbδkdδcl + δibδajδkdδcl).

(190)

With slight abuse of notation Eq. 189 can be rewritten as:

A∗sym, B∗sym = arg min
A,B

∥T [C− A⊗ B]∥2
F. (191)

Since Eq. 191 is a quadratic form, the solution of Eq. 191 is the linear
projection T of the solution of Eq. 170. Therefore we can simply solve
the corresponding nearest Kronecker product problem as described
in Appendix A.1.1 and project the solution through T . In other words
the nearest symmetric Kronecker product is:

A∗sym = A∗ with A∗ from Section A.1, Eq. 168

B∗sym = B∗ with B∗ from Section A.1, Eq. 168

A∗⊗⊖B∗ = T [A∗ ⊗ B∗] = A∗sym⊗⊖B∗sym.

(192)

The above is also valid for higher order approximations as described
in Appendix A.1.1.

A.2.2 Approximating Sums of Symmetric Kronecker Products
Find the nearest symmetric Kronecker product to a sum of symmetric
Kronecker products under the Frobenius norm similar to Eq. 171:

A∗sym, B∗sym = arg min
A,B

 p

∑
α=1

(Rα⊗⊖Sα)− A⊗⊖B


2

F

. (193)

184 | KRONECKER ALGEBRA

Using the same operator T as defined in Eq. 190, Eq. 193 can be
rewritten as:

A∗sym, B∗sym = arg min
A,B

T
[

p

∑
α=1

(Rα ⊗ Sα)− A⊗ B

]
2

F

. (194)

By the same argument as in Section B.1 the solution to Eq. 193 is:

A∗sym = A∗ with A∗ from Section A.3, Eq. 180

B∗sym = B∗ with B∗ from Section A.3, Eq. 180

A∗⊗⊖B∗ = T [A∗ ⊗ B∗] = A∗sym⊗⊖B∗sym.

(195)

The above is also valid for higher order approximations as described
in Appendix A.1.2.

A.2.3 Approximate 2x2 Symmetric Kronecker Product with re-
duced 2x2 Symmetric Kronecker Product

Let A, B, C be in R2×2. Find the nearest symmetric Kronecker prod-
uct C⊗⊖C to a general symmetric Kronecker product A⊗⊖B under the
Frobenius norm:

C∗sym = arg min
C
∥A⊗⊖B− C⊗⊖C∥2

F. (196)

Note that using Eq. 188e we can write

C∗sym = arg min
C

1
2

A⊗⊖B +
1
2

B⊗⊖A− C⊗⊖C
2

F
. (197)

Using the same notation for R ans S as in Appendix A.1.2 and A.2.2
yields

S =
(

»√
0.5A

»√
0.5B

)
, R =

(
»√

0.5B
»√

0.5A
)

. (198)

We want to show that in this setting R̂ = Ŝ. Define a :=
»√

0.5A and
b :=

»√
0.5B, then R⊺R and S⊺S become

S⊺S =

⎛⎝a⊺a a⊺b

b⊺a b⊺b

⎞⎠ , R⊺R =

⎛⎝b⊺b b⊺a

a⊺b a⊺a

⎞⎠ . (199)

SYMMETRIC KRONECKER PRODUCTS | 185

SS and RR contain the same elements, just permuted For arbitrary
2× 2 matrices we can write the eigenvectors and eigenvalues explicitly:
(ζ11, ζ12, ζ21, and ζ22 stand for arbitrary elements of a 2× 2 matrix)

S⊺Sx =

⎛⎝ζ11 ζ12

ζ21 ζ22

⎞⎠⎛⎝x1

x2

⎞⎠ = λ1,2

⎛⎝x1

x2

⎞⎠
λ1,2 =

1
2
(ζ11 + ζ22)±

1
2

[
(ζ11 + ζ22)

2 − 4(ζ11ζ22 − ζ12c)
] 1

2

x1 =
−ζ12

ζ11 − λ1,2
x2, x2 =

−ζ21

ζ22 − λ1,2
x1.

(200)

RR has the same trace and determinant as SS, such that we can write
analogously:

R⊺Rx =

⎛⎝ζ22 ζ21

ζ12 ζ11

⎞⎠⎛⎝x1

x2

⎞⎠ = λ1,2

⎛⎝x1

x2

⎞⎠
λ1,2 =

1
2
(ζ11 + ζ22)±

1
2

[
(ζ11 + ζ22)

2 − 4(ζ11ζ22 − ζ12ζ21)
] 1

2

x1 =
−ζ21

ζ22 − λ1,2
x2, x2 =

−ζ12

ζ11 − λ1,2
x1.

(201)

For the same eigenvalue λi, x1 and x2 exchange place. With this knowl-
edge the eigenvalue decomposition of R⊺R and S⊺S can be written as:

S⊺S = USDSU⊺
S =

⎛⎝v1 u1

v2 u2

⎞⎠⎛⎝λ1 0

0 λ2

⎞⎠⎛⎝v1 v2

u1 u2

⎞⎠
R⊺R = URDRU⊺

R =

⎛⎝v2 u2

v1 u1

⎞⎠⎛⎝λ1 0

0 λ2

⎞⎠⎛⎝v2 v1

u2 u1

⎞⎠ .

(202)

Let us show that S̃ = R̃. With some algebra we find:

S̃ = SUSD−1/2
S =

(
v1√
λ1

a + v2√
λ1

b u1√
λ2

a + u2√
λ2

b
)

R̃ = RURD−1/2
R =

(
v2√
λ1

b + v1√
λ1

a u2√
λ2

b + u1√
λ2

a
)

.
(203)

To show that R̂ = Ŝ we need to show that URS = USR. Again with
some algebra we find:

D1/2
S U⊺

S R⊺RUSD1/2
S = D1/2

R U⊺
RS⊺SURD1/2

R =⎛⎝ λ1(v2
1b⊺b + v1v2(a⊺b + b⊺a) + v2

2a⊺a)
√

λ1λ2(v1v2b⊺b + v2u1a⊺b + v1u2b⊺a + v2u2a⊺a)
√

λ1λ2(v1v2b⊺b + v2u1b⊺a + v1u2a⊺b + v2u2a⊺a) λ2(u2
1b⊺b + u1u2(a⊺b + b⊺a) + u2

2a⊺a)

⎞⎠ .

Since R̂ = Ŝ the resulting Kronecker product will be of the form C⊗⊖C.
Also, we only need to compute S⊺S and its eigendecomposition (we
get R⊺R for free) and the eigendecomposition of D1/2

S U⊺
S R⊺RUSD1/2

S .

186 | KRONECKER ALGEBRA

A.3 Anti-Symmetric Kronecker Products
Let A ∈ RN×N and B ∈ RN×N be square matrices of same size. Then
the anti-symmetric Kronecker product of A and B is in RN2×N2 and
defined as (A⊗�B) := ∆(A⊗ B)∆⊺ with projection operator ∆:

∆A =
1
2
(A− A⊺), ∆(ij),(kl) =

1
2
(δikδjl − δilδkj)

(A⊗�B)(ij),(kl) =
1
4
(AikBjl − Ail Bjk − AjkBil + Ajl Bik)

(A⊗�B)
#»

X =
1
4
(

»

AXB⊺ − AX⊺B⊺ − BX⊺A⊺ + BXA⊺)

(204)

The anti-symmetric Kronecker product anti-symmetrizes X. If A = B
then:

(A⊗�A)(i,j),(k,l) =
1
2
(Aik Ajl − Ajk Ail)

(A⊗�A)
#»

X =
1
2
(

»

AXA⊺ − AX⊺A⊺).
(205)

The algebraic properties are similar to the ones of the symmetric Kro-
necker product::

transpose (A⊗�B)⊺ = A⊺⊗�B⊺ (206a)

factorizing (A⊗�A)(C⊗�C) = AC⊗�AC but (A⊗�B)(C⊗�D) ̸= (AC⊗ BD) (206b)

(A⊗�B)(C⊗�D) =
1
2
[AC⊗�BD + AD⊗�BC] (206c)

inverse (A⊗�A)−1 = (A−1⊗�A−1) but (A⊗�B)−1 ̸= (A−1⊗�B−1) (206d)

commutative A⊗�B = B⊗�A but A⊗ B ̸= B⊗ A (206e)

trace tr [A⊗�B] =
1
2
(tr [A] tr [B]− tr [AB]). (206f)

Proof of Eq. 206a: follows from definition and rearranging terms:

(A⊗�B)⊺
(ij)(kl) = (A⊗�B)(kl)(ij) =

1
4

(
AkiBl j − AkjBli − AliBkj + Al jBki

)
=

1
4

(
A⊺

ikB⊺
jl − A⊺

jkB⊺
il − A⊺

il B
⊺
jk + A⊺

jl B
⊺
ik

)
= (A⊺⊗�B⊺)(ij)(kl). ■

Proof of Eq. 206c: follows from definition and rearranging terms:

[(A⊗�B)(C⊗�D)](ij),(kl) = (A⊗�B)(ij)(mn)(C⊗�D)(mn),(kl)

=
1
4
[
AimBjn − AjmBin − AinBjm + AjnBim

] 1
4
[CmkDnl − CnkDml − Cml Dnk + Cnl Dmk]

= 2
1
4

1
4

[
(AC)ik(BD)jl − (AC)jk(BD)il − (AC)il(BD)jk + (AC)jl(BD)ik

+ (AD)ik(BC)jl − (AD)jk(BC)il − (AD)il(BC)jk + (AD)jl(BC)ik

]
=

1
2
[AC⊗�BD + AD⊗�BC](ij),(kl) . ■

ANTI-SYMMETRIC KRONECKER PRODUCTS | 187

Proof of Eq. 206b: follows directly from Eq. 206c for A = B and
C = D. ■

Proof of Eq. 206d: follows directly from Eq. 206b. Note that in general
(A⊗�B)−1 ̸= A−1⊗�B−1.

(A⊗�A)(A−1⊗�A−1) = AA−1 ⊗ AA−1 = IN×N⊗�IN×N = Γ. ■

Proof of Eq. 206e: follows directly from definition and reordering.
Note that A⊗ B ̸= B⊗ A:

(A⊗�B)(i,j),(k,l) =
1
4
(AikBjl − Ail Bjk − AjkBil + Ajl Bik)

=
1
4
(Bik Ajl − Bil Ajk − Bjk Ail + Bjl Aik) = (B⊗�A)(i,j),(k,l). ■

Proof of Eq. 206f: follows directly from definition and the definition
of trace:

tr [A⊗�B] = ∑
i,j
(A⊗�B)(ij),(ij) =

1
4 ∑

i,j
(AiiBjj − AijBji − AjiBij + AjjBii)

=
1
2
(tr [A] tr [B]− tr [AB]). ■

BDerivation of Filtering Equations for Optimization

This chapter includes derivations of the most essential formulas of
Chapter 9. Section B.2 and Section B.3 deal with the non-symmetric
and symmetric hypothesis class on matrices respectively. Section B.4
derives low-rank approximations of the symmetric class. Additionally,
Section B.1 derives the maximum marginal likelihood solution for the
diagonal of the intensity matrix q for first order filtering.

B.1 Hyper-Parameter Adaptation for First-Order Filter
The marginal likelihood for parameter q, for the current noisy data-
point yt+1 with noise covariance Rt+1 is:

p(yt+1) =
∫

p(yt+1|xt+1, y1, . . . , yt)p(xt+1|y1, . . . , yt)dxt+1

=
∫
N (yt+1; xt+1, Rt+1)N (xt+1; mt+1−, Pt+1−)dxt+1

= N (yt+1; mt+1−, Pt+1− + Rt+1)

=
e−

1
2 (yt+1−mt+1−)⊺(Pt+1−+Rt+1)

−1(yt+1−mt+1−)

(2π)N/2|Pt+1− + Rt+1|1/2

log p(yt+1) ∝ −1
2

log |Pt+1− + Rt+1| −
1
2
(yt+1 −mt+1−)⊺(Pt+1− + Rt+1)

−1(yt+1 −mt+1−)

(207)

This derivative assumes that all matrices R, q, P, et cetera are diagonal
as in Section 8.2. First, we need the gradient with respect to qkk, the find
its root. For notational convenience we write ∆t+1 := yt+1 − mt+1−
(residual) and skip all indice t:

∂

∂qkk
log p(yt+1) = −

1
2

∂

∂qkk
log |P− + R| − ∂

∂qkk

1
2

∆⊺(P− + R)−1∆. (208)

From Eq. 121 we know that P− = P + ∆τq. Also, P− is the only term
that includes q. The second term of the right hand side of of Eq. 208
is:

− ∂

∂qkk

1
2

∆⊺(P− + R)−1∆ = −1
2

∂

∂qkk
∆i(∆τq + P + R)−1

ij ∆j = −
1
2

∂

∂qkk
∆i

δij

∆τqii + Pii + Rii
∆j

= −1
2

∆i
∂

∂qkk
(∆τqii + Pii + Rii)

−1∆i = −
1
2

∆i(−1)(∆τqii + Pii + Rii)
−2 ∂

∂qkk
(∆τqii + Pii + Rii)∆i

=
∆τ

2
∆i(∆τqii + Pii + Rii)

−2 ∂qii
∂qkk

∆i =
∆τ

2
∆i(∆τqii + Pii + Rii)

−2∆iδik

=
∆τ

2
∆k(∆τqkk + Pkk + Rkk)

−2∆k =
∆τ

2

(
∆kG−1

kk

)2

(209)

190 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

For the first part we need the matrix identity ∂ log |X(z)|/∂z = tr[X−1∂(z)X/∂z]

− 1
2

∂

∂qkk
log |P− + R| = −1

2
∂

∂qkk
log |∆τq + P + R| = −1

2
tr
[

G−1 ∂(∆τq + P + R)
∂qkk

]
= −1

2
G−1

ij

(
∂(∆τqji + Pji + Rji)

∂qkk

)
= −1

2
∆τG−1

ij
∂qji

∂qkk
= −1

2
∆τG−1

ij δkjδikδij

= −1
2

∆τG−1
kk

(210)

Therefore the gradient from Eq. 208 is:

∂

∂qkk
log p(yt+1) =

∆τ

2

(
∆kG−1

kk

)2
− ∆τ

2
G−1

kk (211)

The analytic root of the gradient thus is at

∆τ
(

∆kG−1
kk

)2
= ∆τG−1

kk

∆τ∆k∆k
1

(∆τqkk + Pkk + Rkk)2 = ∆τ
1

(∆τqkk + Pkk + Rkk)

∆k∆k = ∆τqkk + Pkk + Rkk

qkk =
1

∆τ
(∆k∆k − Pkk − Rkk) .

(212)

If we want to approximate Eq. 207 with a gamma distribution around
some point q0 then we also need the second derivative; so we list it
here for completeness. From Eq. 211 we have:

∂2

∂2qkk
log p(yt+1) =

∆τ

2
∆k∆k

∂

∂qkk

(
G−1

kk

)2
− ∆τ

2
∂

∂qkk
G−1

kk

=

(
∆τ∆k∆kG−1

kk −
1
2

∆τ

)
∂

∂qkk
(∆τqkk + Pkk + Rkk)

−1

=

(
∆τ∆k∆kG−1

kk −
1
2

∆τ

)
(∆τqkk + Pkk + Rkk)

−2 (−1)∆τ

=

(
1
2
− ∆k∆kG−1

kk

)(
G−1

kk ∆τ
)2

.

(213)

For P, q, and R scalar matrices with P = pI, q = uI and R = rI, the
gradient and its root are:

∂

∂u
log p(yt+1) =

∆τ

2

N

∑
i=1

(
∆iG−1

ii

)2
− ∆τ

2
tr[G−1]

u∗ =
1

∆τ

(
1
N ∑

i
∆2

i − p− r

)
,

(214)

which measure the how the mean-discrepancy between observation
and predictive state which can not be explained by p or r already.

SECOND-ORDER FILTER (NON-SYMMETRIC) | 191

B.2 Second-Order Filter (Non-symmetric)
This section derives the explicit forms of the updated Kalman equation
of Section 9.1.1. The iteration index t will be occasionally dropped,
in order to de-clutter notation. For computing the updated Kalman
equations we need terms of the following structure:

[(I ⊗ v⊺)(A⊺ ⊗ B⊺)]i,(kl) = δiavb A⊺
akB⊺

bl = A⊺
ikB⊺

blvb = A⊺
ik(Bv)l = (A⊺ ⊗ (Bv)⊺)i,(kl)

[(A⊗ B)(I ⊗ v)](ik),l = AiaBkbδalvb = Ail Bkbvb = Ail(Bv)k = (A⊗ (Bv))(ik),l

[(I ⊗ s⊺)(A⊗ A)(I ⊗ v)]p,q = δpasb Aac Abdδcqvd = sb Apq Abdvd = Apq(s⊺Av).

(215)

All updated Kalman equations (Eq. 133) need explicit form of the in-
novation Gt+1 = P∇∇t+1−+ Rt+1 and related quantities which we derive
here: inserting 215 in 135 yields a rewritten form of the predictive
covariance bloc P∇∇t+1−:

P∇∇t+1− = P∇∇t + ∆τ/3Vt(s
⊺
t Vtst) + U⊺

t (v
⊺
t U⊺

t st) + Ut(s
⊺
t Utvt) + Wt(s

⊺
t Wtst). (216)

For ease of notation, define s̃ := ∆τ
2 s and also:

Ṽ⊺
t := P∇∇t+1−G−1

t+1V, Ũ⊺
t := P∇∇t+1−G−1

t+1U⊺
t , W̃ts⊺ := P∇∇t+1−G−1

t+1Wt (217)

The quantities defined in Eq. 217 can be roughly though of as a ‘gain-
corrected’ versions of the original quantities; if observations are noise
free (R = 0), then Ṽ = V, W̃ = W and Ũ = U. For the updated
covariance block P∇B

t+1 we need the intermediate quantity:[
P∇∇t+1−G−1

t+1P∇B
t+1−

]
p,(kl)

= (P∇∇t+1−G−1
t+1)p,i

[
Vik(Vs̃)l + U⊺

ik(Uv)l + Wik(Ws)l
]

= Ṽ⊺
pk(Vs̃)l + Ũ⊺

pk(Uu)l + W̃⊺
pk(Ws)l

=
[
(Ṽ⊺

t ⊗ (Vs̃t)
⊺) + (Ũ⊺

t ⊗ (Utut)
⊺) + (W̃⊺

t ⊗ (Wtst)
⊺)
]

p,(kl)

(218)

Therefore the updated covariance block P∇B
t+1 is:

P∇B
t+1 = (V − Ṽ⊺

t)⊗ (Vs̃t)
⊺ + (U⊺

t − Ũ⊺
t)⊗ (Utvt)

⊺ + (Wt − W̃⊺
t)⊗ (Wtst)

⊺

= (I ⊗ s̃⊺t)([V − Ṽ⊺
t]⊗V) + (I ⊗ v⊺t)([U

⊺
t − Ũ⊺

t]⊗U⊺
t) + (I ⊗ s⊺t)([Wt − W̃⊺

t]⊗Wt)

= (I ⊗ s̃⊺t)(V ⊗V) + (I ⊗ v⊺t)(U
⊺
t ⊗U⊺

t) + (I ⊗ s⊺t)(Wt ⊗Wt)

− (I ⊗ s̃⊺t)(Ṽ
⊺ ⊗V)− (I ⊗ v⊺t)(Ũ

⊺
t ⊗U⊺

t)− (I ⊗ s⊺t)(W̃
⊺
t ⊗Wt)

(219)

The updated covariance block PBB
t+1 requires the term PB∇

t+1−G−1
t+1P∇B

t+1−:[
PB∇

t+1−G−1
t+1P∇B

t+1−
]
(ij),(kl) =

[
Vip(Vs̃)j + Uip(Uv)j + Wip(Ws)j

]
G−1

pq[
Vqk(Vs̃)l + U⊺

qk(Uv)l + Wqk(Ws)l
] (220)

Eq 220 contains only terms of general form:

Aip(Aζ)jG−1
pq B⊺

qk(Bη)l = [AG−1B⊺]ik[(Aζ)(Bη)⊺]jl =
[

AG−1B⊺ ⊗ (Aζ)(Bη)⊺
]
(ij),(kl)

. (221)

192 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

This mean that PBB
t+1 can be re-written as:

PBB
t+1 = ∆τ(V ⊗V) + (Wt ⊗Wt)

−VG−1
t+1V ⊗ (Vs̃t)(Vs̃t)

⊺ −UtG−1
t+1Vt ⊗ (Utvt)(Vs̃t)

⊺ −WtG−1
t+1V ⊗ (Wtst)(Vs̃t)

⊺

−VG−1
t+1U⊺

t ⊗ (Vs̃t)(Utvt)
⊺ −UtG−1

t+1U⊺
t ⊗ (Utvt)(Utvt)

⊺ −WtG−1
t+1U⊺

t ⊗ (Wtst)(Utvt)
⊺

−VG−1
t+1Wt ⊗ (Vs̃t)(Wtst)

⊺ −UtG−1
t+1Wt ⊗ (Utvt)(Wtst)

⊺ −WtG−1
t+1Wt ⊗ (Wtst)(Wtst)

⊺

(222)

For the Hessian part of the updated mean mB
t+1 we need the term

PB∇
t+1−G−1

t+1 multiplied with the residual ∆t :=
[
yt+1 −m∇t − (I ⊗ s⊺t)m

B
t
]
.

Again use s̃t =
∆t
2 st.[

PB∇
t+1−G−1

t+1∆t
]
(ij) =

[
Vip(Vs̃)j + Uip(Uv)j + Wip(Ws)j

]
(G−1∆)p

= (VG−1∆)i(Vs̃)j + (UG−1∆)i(Uv)j + (WG−1∆)i(Ws)j

(223)

Therefore mB
t+1 becomes:

mB
t+1 = mB

t + (VtG−1
t+1∆)(Vt s̃t)

⊺ + (UtG−1
t+1∆)(Utvt)

⊺ + (WtG−1
t+1∆)(Wtst)

⊺. (224)

The gradient part of the updated mean m∇t+1 requires the term Pt+1−G−1
t+1∆t.

For appropriate forms of all N × N objects we can perform this com-
putation (see also Sections 9.3 and B.4). The same holds for (I⊗ s⊺t)m

B
t .

Therefore we can directly compute:

m∇t+1 = m∇t + (I ⊗ s⊺t)m
B
t + P∇∇t+1−G−1

t+1∆t. (225)

B.3 Second-Order Filter (Symmetric)
This section derives the explicit forms of the updated Kalman equation
of Section 9.1.2. The iteration index t will be occasionally dropped,
in order to de-clutter notation. The section is structured similarly to
the derivation of the non-symmetric filter in Section B.2. For comput-
ing the updated Kalman equations we need terms of the following
structure:

[(I ⊗ v⊺)(A⊺⊗⊖A⊺)]i,(kl) =
1
2
(

A⊺
ik(Av)l + A⊺

il(Av)k
)

[(A⊗⊖A)(I ⊗ v)](kl),i =
1
2
(Aki(Av)l + Ali(Av)k)

[(I ⊗ s⊺)(A⊗⊖A)(I ⊗ v)]p,q =
1
2
(

Apq(s⊺Av) + (Av)p(A⊺s)q
) (226)

All updated Kalman equations (Eq. 133) need explicit form of the in-
novation Gt+1 = P∇∇t+1−+ Rt+1 and related quantities which we derive
here: inserting 226 in 135 yields a rewritten form of the predictive
covariance bloc P∇∇t+1−, which we will also use in Section 9.3 and B.4.

P∇∇t+1− = P∇∇t +
1
2
[

∆τ/3V(s⊺t Vst) + ∆τ/3(Vst)(Vst)
⊺ + U⊺

t (v
⊺
t U⊺

t st) + (U⊺
t st)(Utvt)

⊺

+ Ut(s
⊺
t Utvt) + (Utvt)(U

⊺
t st)

⊺ + Wt(s
⊺
t Wtst) + (Wtst)(Wtst)

⊺] (227)

SECOND-ORDER FILTER (SYMMETRIC) | 193

For ease of notation, define s̃ := ∆τ
2 s and also:

Ṽ⊺
t = P∇∇t+1−G−1

t+1V ṽt = Ṽ−1
t Vs̃t

Ũ⊺
t = P∇∇t+1−G−1

t+1U⊺
t ũt = Ũ−1

t Utvt (228)

W̃⊺
t = P∇∇t+1−G−1

t+1Wt w̃t = W̃−1
t Wtst

The quantities defined in Eq. 228 can be roughly though of as a ‘gain-
corrected’ versions of the original quantities; if observations are noise
free (R = 0), then Ṽ = V, W̃ = W, Ũ = U, ṽ = s̃, ũ = v, and w̃ = s. For
the updated covariance block P∇B

t+1 we need the intermediate quantity:[
P∇∇t+1−G−1

t+1P∇B
t+1−

]
p,(kl)

= (P∇∇t+1−G−1
t+1)p,i

1
2
[
Vik(Vs̃)l + Vil(Vs̃)k + U⊺

ik(Uv)l + U⊺
il(Uv)k + Wik(Ws)l + Wil(Ws)k

]
=

1
2

[
Ṽ⊺

pk(Ṽṽ)l + Ṽ⊺
pl(Ṽṽ)k + Ũ⊺

pk(Ũũ)l + Ũ⊺
pl(Ũũ)k + W̃⊺

pk(W̃w̃)l + W̃⊺
pl(W̃w̃)k

]
=
[
(I ⊗ ṽ⊺t)(Ṽ

⊺
t ⊗⊖Ṽ⊺

t) + (I ⊗ ũ⊺
t)(Ũ

⊺
t ⊗⊖Ũ⊺

t) + (I ⊗ w̃⊺
t)(W̃

⊺
t ⊗⊖W̃⊺

t)
]

p,(kl) .

(229)

Therefore the updated covariance block P∇B
t+1 is:

P∇B
t+1 = (I ⊗ s̃⊺t)(V⊗⊖V) + (I ⊗ v⊺t)(U

⊺
t ⊗⊖U⊺

t) + (I ⊗ s⊺t)(Wt⊗⊖Wt)

− (I ⊗ ṽ⊺t)(Ṽ
⊺
t ⊗⊖Ṽ⊺

t)− (I ⊗ ũ⊺
t)(Ũ

⊺
t ⊗⊖Ũ⊺

t)− (I ⊗ w̃⊺
t)(W̃

⊺
t ⊗⊖W̃⊺

t).
(230)

The updated covariance block PBB
t+1 requires the term PB∇

t+1−G−1
t+1P∇B

t+1−:[
PB∇

t+1−G−1
t+1P∇B

t+1−
]
(ij),(kl) =

1
4
[
Vip(Vs̃)j + Vjp(Vs̃)i + Uip(Uv)j + Ujp(Uv)i

+ Wip(Ws)j + Wjp(Ws)i
]
G−1

pq
[
Vqk(Vs̃)l + Vql(Vs̃)k + U⊺

qk(Uv)l + U⊺
ql(Uv)k

+ Wqk(Ws)l + Wql(Ws)k
]
.

(231)

Eq 231 contains only terms of general form:

1
4
[
Aipζ j + Ajpζi

]
G−1

pq

[
Bqkηl + Bqlηk

]
=

1
4

[
AipG−1

pq Bqkηlζ j + AjpG−1
pq Bqkηlζi + AipG−1

pq Bqlηkζ j + AjpG−1
pq Bqlηkζi

]
=

1
4

[
(AG−1B)ik(ζη⊺)jl + (AG−1B)jk(ζη⊺)il + (AG−1B)il(ζη⊺)jk + (AG−1B)jl(ζη⊺)ik

]
=
[

AG−1B⊗⊖ζη⊺
]
(ij),(kl)

.

(232)

This mean that PBB
t+1 can be re-written as:

PBB
t+1 = ∆τ(V⊗⊖V) + (Wt⊗⊖Wt)

−VG−1
t+1V⊗⊖(Vs̃t)(Vs̃t)

⊺ −UtG−1
t+1Vt⊗⊖(Utvt)(Vs̃t)

⊺ −WtG−1
t+1V⊗⊖(Wtst)(Vs̃t)

⊺

−VG−1
t+1U⊺

t ⊗⊖(Vs̃t)(Utvt)
⊺ −UtG−1

t+1U⊺
t ⊗⊖(Utvt)(Utvt)

⊺ −WtG−1
t+1U⊺

t ⊗⊖(Wtst)(Utvt)
⊺

−VG−1
t+1Wt⊗⊖(Vs̃t)(Wtst)

⊺ −UtG−1
t+1Wt⊗⊖(Utvt)(Wtst)

⊺ −WtG−1
t+1Wt⊗⊖(Wtst)(Wtst)

⊺

(233)

194 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

For the Hessian part of the updated mean mB
t+1 we need the term

PB∇
t+1−G−1

t+1 multiplied with the residual ∆t :=
[
yt+1 −m∇t − (I ⊗ s⊺t)m

B
t
]
.

Again use s̃t =
∆t
2 st.[

PB∇
t+1−G−1

t+1∆t
]
(ij) =

1
2
[
Vip(Vs̃)j + Vjp(Vs̃)i + Uip(Uv)j + Ujp(Uv)i

+ Wip(Ws)j + Wjp(Ws)i
]
(G−1∆)p

=
1
2
[
(VG−1∆)i(Vs̃)j + (VG−1∆)j(Vs̃)i + (UG−1∆)i(Uv)j

+ (UG−1∆)j(Uv)i + (WG−1∆)i(Ws)j + (WG−1∆)j(Ws)i
]

(234)

Therefore mB
t+1 becomes:

mB
t+1 = mB

t +
1
2
[
(VtG−1

t+1∆)(Vt s̃t)
⊺ + (Vt s̃t)(VG−1

t+1∆t)
⊺ + (UtG−1

t+1∆)(Utvt)
⊺

+ (Utvt)(UtG−1
t+1∆t)

⊺ + (WtG−1
t+1∆)(Wtst)

⊺ + (Wtst)(WtG−1
t+1∆t)

⊺]. (235)

The gradient part of the updated mean m∇t+1 requires the term Pt+1−G−1
t+1∆t.

For appropriate forms of all N × N objects we can perform this com-
putation (see also Section 9.3 and B.4). The same holds for (I ⊗ s⊺t)m

B
t .

Therefore we can directly compute:

m∇t+1 = m∇t + (I ⊗ s⊺t)m
B
t + P∇∇t+1−G−1

t+1∆t. (236)

B.4 Low-Rank Approximation (Second-Order Filter, Symmetric)
This section states the solution to linear-cost filtering equations on
Hessians. All matrices have scalar-plus-low-rank form as in Eq. 156.
The derivations and intermediate steps are left out because they are
very lengthy (although straightforward by inserting the low-rank as-
sumptions into the Kalman equations). For better readability, terms
are color coded in red for contributions of path segments st, orange
for contributions of gradients y, and green for contributions of off-
diagonal noise terms vt.

basis: Given an new observation pair (s, y), and the updated state
from the previous iteration πv, πm∇ , π∇, σV , σW , σU , σB, σR, ΛV , ΛW ,
ΛU , ΛB, with basis P, PB, then we can write:

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 195

m∇ = PBπm∇ PB
t+1 =

[
P ŝ⊥ P̂Y ŷ⊥

]
∈ RN×2(M+1)

v = Pπv P⊺
−P =

⎡⎣ IM
s⊺⊥P
∥s⊥∥

⎤⎦ =

⎡⎣IM×M

01×M

⎤⎦ ∈ R(M+1)×M

s = Pπs + ∥s⊥∥ŝ⊥ p−∆ =
[

I(M+1)×(M+1) 0(M+1)×(M+1)

]
π∆

y = PB
−πy + ∥y⊥∥ŷ⊥ p∆ =

[
IM×M 0M×(M+2)

]
π∆

s⊺s = π⊺
s πs + ∥s⊥∥2

PY
old = ŝ⊥πPY + P̂YnY πPY ∈ R1×M, nY ∈ RM×M

P− =
[

P ŝ⊥
]
∈ RN×(M+1) v⊺s = π⊺

v πs

PB
− =

[
P ŝ⊥ P̂Y

]
∈ RN×(2M+1)

It can be shown (by inserting low rank approximations into the Kalman
updates) that especially m∇, mB, v et cetera keep their respective forms
even after the Kalman update. The only forms that have to be projected
back again are PBB and P∇B just like in the original non-low-rank
updates.

useful notation: s⊺s and v⊺s given above:

aV̄ := σV̄(s
⊺s) + π⊺

s ΛV̄πs bV := 1/2∆t/2σ2
VΛG−1 p−∆ dV := 1/2∆t/2σVσG−1 π⊺

s Λ⊺
V

aUT := σU(v⊺s) + π⊺
v Λ⊺

Uπs

aU := σU(s⊺v) + π⊺
s ΛUπv bU := 1/2σ2

UΛG−1 p−∆ dU := 1/2σUσG−1 π⊺
v Λ⊺

U

aW := σW(s⊺s) + π⊺
s ΛWπs bW := 1/2σ2

WΛG−1 p−∆ dW := 1/2σWσG−1 π⊺
s Λ⊺

W

cU := 1/2σG−1 σUΛU p∆ + 1/2σUΛU(P⊺P−)ΛG−1 p−∆ eU := 1/2σUΛG−1 p−∆ π⊺
v Λ⊺

U

cV := 1/2∆t/2σG−1 σVΛV p∆ + 1/2∆t/2σVΛV(P⊺P−)ΛG−1 p−∆ eV := 1/2∆t/2σVΛG−1 p−∆ π⊺
s Λ⊺

V

cW := 1/2σG−1 σWΛW p∆ + 1/2σWΛW(P⊺P−)ΛG−1 p−∆ eW := 1/2σWΛG−1 p−∆ π⊺
s Λ⊺

W

fU := 1/2σG−1 ΛU p∆π⊺
v Λ⊺

U + 1/2ΛU(P⊺P−)ΛG−1 p−∆ π⊺
v Λ⊺

U gU := 1/2σ2
UσG−1

fV := 1/2∆t/2σG−1 ΛV p∆π⊺
s Λ⊺

V
1/2 + 1/2∆t/2ΛV(P⊺P−)ΛG−1 p−∆ π⊺

s Λ⊺
V gV := 1/2∆t/2σ2

VσG−1

fW := 1/2σG−1 ΛW p∆π⊺
s Λ⊺

W + 1/2ΛW(P⊺P−)ΛG−1 p−∆ π⊺
s Λ⊺

W gW := 1/2σ2
WσG−1

λa := fU + f ⊺U + fV + f ⊺V + fW + f ⊺W + πvc⊺U + cUπ⊺
v + πsc⊺V + πsc⊺W + cVπ⊺

s + cWπ⊺
s

λb := eV + eW + eU + bUπ⊺
v + bVπ⊺

s + bWπ⊺
s

λc := gUπv + d⊺V + d⊺W + d⊺U + gVπs + gWπs

λd := ∥s⊥∥ [bV + bW]

λe := ∥s⊥∥ [cV + cW]

λ f := ∥s⊥∥ [gV + gW]

196 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

B.4.1 Predictive Equations
predict P∇∇:

P∇∇t+1− = (σ∇ + 1/2 [σV̄ aV̄ + σUaUT + σUaU + σW aW]) I

+ P
(

Λ∇ + 1/2
[
aV̄ΛV̄ + aUT Λ⊺

U + aUΛU + aWΛW + ΛV̄πsπ⊺
s ΛV̄

+ Λ⊺
Uπsπ⊺

v Λ⊺
U + ΛUπvπ⊺

s ΛU + ΛWπsπ⊺
s ΛW + σV̄ΛV̄πsπ⊺

s + σUΛUπvπ⊺
s

+ σWΛWπsπ⊺
s + σUΛ⊺

Uπsπ⊺
v + σUπvπ⊺

s ΛU + σV̄πsπ⊺
s ΛV̄ + σUπsπ⊺

v Λ⊺
U

+ σWπsπ⊺
s ΛW + σ2

Uπsπ⊺
v + σ2

Uπvπ⊺
s + σ2

V̄πsπ⊺
s + σ2

Wπsπ⊺
s
])

P⊺

+ P
(

1/2∥s⊥∥
[
σV̄ΛV̄πs + σUΛUπv + σWΛWπs + σ2

Uπv + σ2
V̄πs + σ2

Wπs
])

ŝ⊺⊥

+ ŝ⊥

(
1/2∥s⊥∥

[
σV̄π⊺

s ΛV̄ + σUπ⊺
v Λ⊺

U + σWπ⊺
s ΛW + σ2

Uπ⊺
v + σ2

V̄π⊺
s + σ2

Wπ⊺
s
])

P⊺

+ ŝ⊥
(

1/2∥s⊥∥2[σ2
V̄ + σ2

W
])

ŝ⊺⊥ = σ∇− I + P−Λ∇−P⊺
−

(237)

predict m∇:

m∇t+1− = P(πP
m∇ + σBπs + ΛPP

B πs + ΛPY
B π⊺

PY∥s⊥∥)
+ ŝ⊥

(
πPY πY

m∇ + σB∥s⊥∥+ πPY ΛYP
B πs + πPY ΛYY

B π⊺
PY∥s⊥∥

)
+ P̂Y(nYπY

m∇ + nYΛYP
B πs + nYΛYY

B π⊺
PY∥s⊥∥

)
=
[

P ŝ⊥ P̂Y
]

πm∇− = PB
−πt+1

m∇−

(238)

B.4.2 Updated Equations
innovation matrix G:

G−1 = σG−1 I + P−ΛG−1 P⊺
− with ΛG−1 = −σ2

G−1 [σG−1 I + Λ−1
∇−]

−1,

and σG−1 = (σ∇− + σR)
−1 = σ−1

G

(239)

update state: m∇:

∆ = PB
−
(
πy − πm∇−

)
+ ∥y⊥∥ŷ⊥ = PB

t+1π∆

m∇t+1 = PB
−πm∇− + PB

t+1(σ∇−σG−1 π∆)

+ P−
(
σ∇−ΛG−1 p−∆ + σG−1 Λ∇−p−∆ + Λ∇−ΛG−1 p−∆

)
= PB

t+1πt+1
m∇

(240)

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 197

update state: mB:

mB
t+1 = σB I

+ P
(

ΛPP
B + λPP

b + λPP⊺
b + λa

)
P⊺

+ P
(

λPs
d + λsP⊺

b + ΛPY
B π⊺

PY + λe

)
ŝ⊺⊥

+ ŝ⊥
(

λPs⊺
d + λsP

b + πPY ΛYP
B + λ⊺

e

)
P⊺

+ ŝ⊥
[
πPY ΛYY

B π⊺
PY + λss

d + λss
d

]
ŝ⊺⊥

+ P
[
ΛPY

B n⊺
Y

]
P̂Y⊺ + P̂Y

[
nYΛYP

B

]
P⊺

+ ŝ⊥
[
πPY ΛYY

B n⊺
Y

]
P̂Y⊺ + P̂Y

[
nYΛYY

B π⊺
PY

]
ŝ⊺⊥

+ P̂Y
[
nYΛYY

B n⊺
Y

]
P̂Y⊺

+ PB
t+1
(
π∆λ⊺

c
)

P⊺ + P
(
λcπ⊺

∆
)

PB⊺
t+1 + PB

t+1

(
π∆λ f

)
ŝ⊺⊥ + ŝ⊥

(
λ f π⊺

∆

)
PB⊺

t+1

= σt+1
B I + PB

t+1Λt+1
B PB⊺

t+1

(241)

update P∇∇:

P∇∇t+1 =
(

σ∇− − σ2
∇−σG−1

)
I + P−

(
Λ∇− −

[
σ2
∇−ΛG−1 + 2σ∇−σG−1 Λ∇−

+ σ∇−Λ∇−ΛG−1 + σ∇−ΛG−1 Λ∇− + σG−1 Λ∇−Λ∇− + Λ∇−ΛG−1 Λ∇−
])

P⊺
−

= σt+1
∇ I + P−Λt+1

∇ P⊺
−

(242)

covariance PBB: Left hand side (terms without U):
√

∆tV =
√

∆tσv I + P(
√

∆tΛV)P⊺ = σL1 I + P−ΛL1 P⊺
−

W = σW I + P(ΛW)P⊺ = σL2 I + P−ΛL2 P⊺
−

VG−1V =
(
σVσVσG−1

)
I + P(σVσG−1 ΛV + σVσG−1 ΛV + σG−1 ΛVΛV + ΛV(P⊺P−)ΛG−1(P⊺

−P)ΛV)P⊺

+ P−(σVσVΛG−1)P⊺
− + P(σVΛV(P⊺P−)ΛG−1)P⊺

− + P−(σVΛG−1(P⊺
−P)ΛV)P⊺

= σL3 I + P−ΛL3 P⊺
−

WG−1V =
(
σVσWσG−1

)
I + P(σVσG−1 ΛW + σWσG−1 ΛV + σG−1 ΛWΛV + ΛW(P⊺P−)ΛG−1(P⊺

−P)ΛV)P⊺

+ P−(σVσWΛG−1)P⊺
− + P(σVΛW(P⊺P−)ΛG−1)P⊺

− + P−(σWΛG−1(P⊺
−P)ΛV)P⊺

= σL5 I + P−ΛL5 P⊺
−

VG−1W =
(
σWσVσG−1

)
I + P(σWσG−1 ΛV + σVσG−1 ΛW + σG−1 ΛVΛW + ΛV(P⊺P−)ΛG−1(P⊺

−P)ΛW)P⊺

+ P−(σWσVΛG−1)P⊺
− + P(σWΛV(P⊺P−)ΛG−1)P⊺

− + P−(σVΛG−1(P⊺
−P)ΛW)P⊺

= σL9 I + P−ΛL9 P⊺
−

WG−1W =
(
σWσWσG−1

)
I + P(σWσG−1 ΛW + σWσG−1 ΛW + σG−1 ΛWΛW + ΛW(P⊺P−)ΛG−1(P⊺

−P)ΛW)P⊺

+ P−(σWσWΛG−1)P⊺
− + P(σWΛW(P⊺P−)ΛG−1)P⊺

− + P−(σWΛG−1(P⊺
−P)ΛW)P⊺

= σL11 I + P−ΛL11 P⊺
−

198 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

Left hand side (terms including U):

UG−1V =
(
σVσUσG−1

)
I + P(σVσG−1 ΛU + σUσG−1 ΛV + σG−1 ΛUΛV + ΛU(P⊺P−)ΛG−1(P⊺

−P)ΛV)P⊺

+ P−(σVσUΛG−1)P⊺
− + P(σVΛU(P⊺P−)ΛG−1)P⊺

− + P−(σUΛG−1(P⊺
−P)ΛV)P⊺

= σL4 I + P−ΛL4 P⊺
−

VG−1U⊺ =
(
σUσVσG−1

)
I + P(σUσG−1 ΛV + σVσG−1 Λ⊺

U + σG−1 ΛVΛ⊺
U + ΛV(P⊺P−)ΛG−1(P⊺

−P)Λ⊺
U)P⊺

+ P−(σUσVΛG−1)P⊺
− + P(σUΛV(P⊺P−)ΛG−1)P⊺

− + P−(σVΛG−1(P⊺
−P)Λ⊺

U)P⊺

= σL6 I + P−ΛL6 P⊺
−

UG−1U⊺ =
(
σUσUσG−1

)
I + P(σUσG−1 ΛU + σUσG−1 Λ⊺

U + σG−1 ΛUΛ⊺
U + ΛU(P⊺P−)ΛG−1(P⊺

−P)Λ⊺
U)P⊺

+ P−(σUσUΛG−1)P⊺
− + P(σUΛU(P⊺P−)ΛG−1)P⊺

− + P−(σUΛG−1(P⊺
−P)Λ⊺

U)P⊺

= σL7 I + P−ΛL7 P⊺
−

WG−1U⊺ =
(
σUσWσG−1

)
I + P(σUσG−1 ΛW + σWσG−1 Λ⊺

U + σG−1 ΛWΛ⊺
U + ΛW(P⊺P−)ΛG−1(P⊺

−P)Λ⊺
U)P⊺

+ P−(σUσWΛG−1)P⊺
− + P(σUΛW(P⊺P−)ΛG−1)P⊺

− + P−(σWΛG−1(P⊺
−P)Λ⊺

U)P⊺

= σL8 I + P−ΛL8 P⊺
−

UG−1W =
(
σWσUσG−1

)
I + P(σWσG−1 ΛU + σUσG−1 ΛW + σG−1 ΛUΛW + ΛU(P⊺P−)ΛG−1(P⊺

−P)ΛW)P⊺

+ P−(σWσUΛG−1)P⊺
− + P(σWΛU(P⊺P−)ΛG−1)P⊺

− + P−(σUΛG−1(P⊺
−P)ΛW)P⊺

= σL10 I + P−ΛL10 P⊺
−

Right hand side (terms without U):
√

∆tV = (
√

∆tσV)I + P(
√

∆tΛV)P⊺ = σR1 I + P−ΛR1 P⊺
−

W = σW I + P(ΛW)P⊺ = σR2 I + P−ΛR2 P⊺
−

−(∆t/2Vs)(∆t/2Vs)⊺ = P(− (∆t/2)2 [σVσVπsπ⊺
s + σVΛVπsπ⊺

s + σVπsπ⊺
s Λ⊺

V + ΛVπsπ⊺
s Λ⊺

V
]
)P⊺

+ ŝ⊥(− (∆t/2)2 ∥s⊥∥
[
σVσVπ⊺

s + σVπ⊺
s Λ⊺

V
]
)P⊺ + P(− (∆t/2)2 ∥s⊥∥ [σVσVπs + σVΛVπs])ŝ

⊺
⊥

+ ŝ⊥(− (∆t/2)2 ∥s⊥∥∥s⊥∥σVσV)ŝ
⊺
⊥ = σR3 I + P−ΛR3 P⊺

−
−(Ws)(∆t/2Vs)⊺ = P(−∆t/2

[
σWσVπsπ⊺

s + σVΛWπsπ⊺
s + σWπsπ⊺

s Λ⊺
V + ΛWπsπ⊺

s Λ⊺
V
]
)P⊺

+ ŝ⊥(−∆t/2∥s⊥∥
[
σWσVπ⊺

s + σWπ⊺
s Λ⊺

V
]
)P⊺ + P(−∆t/2∥s⊥∥ [σWσVπs + σVΛWπs])ŝ

⊺
⊥

+ ŝ⊥(−∆t/2∥s⊥∥∥s⊥∥σWσV)ŝ
⊺
⊥ = σR5 I + P−ΛR5 P⊺

−
−(∆t/2Vs)(Ws)⊺ = P(−∆t/2

[
σVσWπsπ⊺

s + σWΛVπsπ⊺
s + σVπsπ⊺

s Λ⊺
W + ΛVπsπ⊺

s Λ⊺
W
]
)P⊺

+ ŝ⊥(−∆t/2∥s⊥∥
[
σVσWπ⊺

s + σVπ⊺
s Λ⊺

W
]
)P⊺ + P(−∆t/2∥s⊥∥ [σVσWπs + σWΛVπs])ŝ

⊺
⊥

+ ŝ⊥(−∆t/2∥s⊥∥∥s⊥∥σVσW)ŝ⊺⊥ = σR9 I + P−ΛR9 P⊺
−

−(Ws)(Ws)⊺ = P(−
[
σWσWπsπ⊺

s + σWΛWπsπ⊺
s + σWπsπ⊺

s Λ⊺
W + ΛWπsπ⊺

s Λ⊺
W
]
)P⊺

+ ŝ⊥(−∥s⊥∥
[
σWσWπ⊺

s + σWπ⊺
s Λ⊺

W
]
)P⊺ + P(−∥s⊥∥ [σWσWπs + σWΛWπs])ŝ

⊺
⊥

+ ŝ⊥(−∥s⊥∥∥s⊥∥σWσW)ŝ⊺⊥ = σR11 I + P−ΛR11 P⊺
−

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 199

Right hand side (terms including U):

−(Uv)(∆t/2Vs)⊺ = P(−∆t/2
[
σUσVπvπ⊺

s + σVΛUπvπ⊺
s + σUπvπ⊺

s Λ⊺
V + ΛUπvπ⊺

s Λ⊺
V
]
)P⊺

+ P(−∆t/2∥s⊥∥ [σUσVπv + σVΛUπv])ŝ
⊺
⊥ = σR4 I + P−ΛR4 P⊺

−
−(∆t/2Vs)(Uv)⊺ = P(−∆t/2

[
σVσUπsπ⊺

v + σUΛVπsπ⊺
v + σVπsπ⊺

v Λ⊺
U + ΛVπsπ⊺

v Λ⊺
U
]
)P⊺

+ ŝ⊥(−∆t/2∥s⊥∥
[
σVσUπ⊺

v + σVπ⊺
v Λ⊺

U
]
)P⊺ = σR6 I + P−ΛR6 P⊺

−
−(Uv)(Uv)⊺ = P(−

[
σUσUπvπ⊺

v + σUΛUπvπ⊺
v + σUπvπ⊺

v Λ⊺
U + ΛUπvπ⊺

v Λ⊺
U
]
)P⊺ = σR7 I + P−ΛR7 P⊺

−
−(Ws)(Uv)⊺ = P(−

[
σWσUπsπ⊺

v + σUΛWπsπ⊺
v + σWπsπ⊺

v Λ⊺
U + ΛWπsπ⊺

v Λ⊺
U
]
)P⊺

+ ŝ⊥(−∥s⊥∥
[
σWσUπ⊺

v + σWπ⊺
v Λ⊺

U
]
)P⊺ = σR8 I + P−ΛR8 P⊺

−
−(Uv)(Ws)⊺ = P(−

[
σUσWπvπ⊺

s + σWΛUπvπ⊺
s + σUπvπ⊺

s Λ⊺
W + ΛUπvπ⊺

s Λ⊺
W
]
)P⊺

+ P(−∥s⊥∥ [σUσWπv + σWΛUπv])ŝ
⊺
⊥ = σR10 I + P−ΛR10 P⊺

−

back-projection of PBB onto kronecker structure: Let wL1 , . . . , wL11

be the weights from the Kronecker-approximation of the left hand side
as in Eq. 180, and wR1 , . . . , wR11 of the right hand side, then:

Al =

(
11

∑
i=1

wLi σLi

)
I + P−

(
11

∑
i=1

wLi ΛLi

)
P⊺
−

Ar =

(
11

∑
i=1

wRi σRi

)
I + P−

(
11

∑
i=1

wRi ΛRi

)
P⊺
−.

(243)

The weights wLi and wRi for i = 1, . . . , 11 are cheap to compute (most
notably independent of the dimensionality N) since they only involve
the smaller matrices Λ and scalars σ. This is because the inner prod-
ucts R⊺R (here R is the matrix as in Eq. 172 and not the measurement
noise) and S⊺S (also Eq. 172) are easy to compute when the basis P is
known (see Section B.4.3 for formula). We then find Wt+1 such that
Wt+1 ⊗Wt+1 = Al ⊗ Ar. This is fast as well since Al and Ar both lie
in the span of P−. Thus also Wt+1 will lie in the span of P− and the
computation again only involves small Λs and σs.

update P∇B: As mentioned in Section 9.1.2, the back-projection for
P∇B is not straightforward in the symmetric hypothesis class, since
(I⊗⊖v⊺) ̸= (A⊗⊖v⊺A) (right side not even defined). So here we will
report the back-projection as if the non-symmetric(!) hypothesis class
was used. Until this is solved, for the symmetric class, P∇B can be
set to zero, such that off diagonal covariance contributions between
gradient and Hessian are ignored.1 The right hand side of Kronecker

1 This does not mean that the whole co-
variance Pt ∈ R(N2+N)×(N2+N) is diag-
onal, since P∇∇ ∈ RN×N and PBB ∈
RN2×N2 are dense, just that it is block-
diagonal.for non-symmetric Kronecker products is:

200 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

Uv = σU Iv + PΛU P⊺v = P(σUπv + ΛUπv)

= P−π3

∆t/2Vs = ∆t/2σV Is + P∆t/2ΛV P⊺s = P(∆t/2σVπs + ∆t/2ΛVπs) + ŝ⊥(∆t/2σV∥s⊥∥)
= P−π1

Ws = σW Is + PΛW P⊺s = P(σWπW + ΛWπs) + ŝ⊥(σW∥s⊥∥)
= P−π2

(244)

Left hand side of Kronecker:

U −UG−1P∇∇t+1− =
(
σU − σUσG−1 σ∇−

)
I

+ P
(
ΛU − σ∇−σG−1 ΛU

)
P⊺

+ P−
(
− [σ∇−σUΛG−1 + σUσG−1 Λ∇− + σUΛG−1Λ∇−]

)
P⊺
−

+ P
(
− [σ∇−ΛU(P⊺P−)ΛG−1 + σG−1 ΛU(P⊺P−)Λ∇− + ΛU(P⊺P−)ΛG−1Λ∇−]

)
P⊺
−

= σ1 I + P−Λ1P⊺
−

V −VG−1P∇∇t+1− =
(
σV − σVσG−1 σ∇−

)
I

+ P
(
ΛV − σ∇−σG−1 ΛV

)
P⊺

+ P−
(
− [σ∇−σVΛG−1 + σVσG−1 Λ∇− + σVΛG−1Λ∇−]

)
P⊺
−

+ P
(
− [σ∇−ΛV(P⊺P−)ΛG−1 + σG−1 ΛV(P⊺P−)Λ∇− + ΛV(P⊺P−)ΛG−1Λ∇−]

)
P⊺
−

= σ2 I + P−Λ2P⊺
−

W −WG−1P∇∇t+1− =
(
σW − σWσG−1 σ∇−

)
I

+ P
(
ΛW − σ∇−σG−1 ΛW

)
P⊺

+ P−
(
− [σ∇−σWΛG−1 + σWσG−1 Λ∇− + σWΛG−1Λ∇−]

)
P⊺
−

+ P
(
− [σ∇−ΛW(P⊺P−)ΛG−1 + σG−1 ΛW(P⊺P−)Λ∇− + ΛW(P⊺P−)ΛG−1Λ∇−]

)
P⊺
−

= σ3 I + P−Λ3P⊺
−

(245)

back-projection P∇B: If w1, w2 and w3 denote the weights found
by the Kronecker approximation, we see that Ut+1 is spanned by P−.
Then:

Ut+1 = (w1σ1 + w2σ2 + w3σ3)I + P−(w1Λ1 + w2Λ2 + w3Λ3)P⊺
−

= σt+1
U + P−Λt+1

U P⊺
−

U−1
t+1 = σ−1

Ut+1
+ P−

([
−σ2

Ut+1

(
Λt+1,−1

U + σ−1
Ut+1

)
)
]−1)P⊺

−

= σt+1
U−1 I + P−Λt+1

U−1 P−

U−1
t+1vt+1 = P

(
σVwV ∆t/2πs + wV ∆t/2ΛVπs + wUσUπv + wUΛUπv + wWσWπs

+ wWΛWπs
)
+ ŝ⊥

(
∥s⊥∥

[
wV ∆t/2σV + wWσW

])
= P−π̃v

vt+1 = P−
(
σt+1

U−1 π̃v + Λt+1
U−1 π̃v

)
= P−πv.

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 201

B.4.3 Gram-Schmidt &Matrix Algebra:
low-rank matrix algebra: Let A = σA I + PΛAP⊺ and B = σB I +
PΛBP⊺ with P⊺P− I, and let ΛA, ΛB ∈ RM×M and P ∈ RN×M with
M≪ N then:

A + B = (σA + σB)I + P(ΛA + ΛB)P⊺ (246a)

AB = (σA + σA)I + P(σAΛB + σBΛA + ΛAΛB)P⊺ (246b)

A−1 = σ−1
A I + P(−σ−2

A [Λ−1
A + σ−1

A IM]−1)P⊺ (246c)
#»

A⊺ #»

B = NσAσB + σA tr[ΛB] + σB tr[ΛA] + tr[Λ⊺
AΛB] (246d)

Especially Eq. 246d reduces the cost for the Kronecker back-projections
drastically.

positive definite projection: Let C = σI + PΛP⊺ be symmetric (Λ =

Λ⊺) with M non-zero eigenvalues λ1, . . . λM and σ > 0, then flipping
the sign of negative eigenvalues involves:

Q̃DQ̃⊺ = Λ eigen-decomposition with elements li = Dii eigen-values, then

λi = σ + li. Therefore for negative λk (not negative lk)

lpos
k = −lk − 2σ since λ

pos
k = σ + (−lk − 2σ) = −σ− lk = −λk and thus

Λpos = Q̃DposQ̃⊺ where lk→ lpos
k in D.

(247)

The resulting matrix is of form Cpos = σI + PΛposP⊺ and has eigen-
values λ

pos
i = |λi|.

gram-schmidt: Some explanation on how to get πPY . P̂Y
i denotes

the ith column of the N×M matrix P̂Y. PY+ denotes the N× (M + 1)
matrix [ŝ⊥, P̂Y]

P̂Y
i =

PY
old,i −∑i

j=1

(
P̂Y+⊺

j PY
old,i

)
P̂Y+⊺

j P̂Y+
j

P̂Y+
j

∥PY
old,i −∑i

j=1

(
P̂Y+⊺

j PY
old,i

)
P̂Y+⊺

j P̂Y+
j

P̂Y+
j ∥

(248)

Note that the sum in Eq. 248 runs to i instead of i− 1 since we added
ŝ⊥ to P̂Y+. Now use that P̂Y are orthonormal P̂Y+⊺

j P̂Y+
j = 1 and define

ñji = P̂Y+⊺
j PY

old,i. ñ will be an (M + 1)×M matrix where the first row
is the projection on ŝ⊥.

P̂Y
i =

PY
old,i −∑i

j=1 ñji P̂Y+
j

∥PY
old,i −∑i

j=1 ñji P̂Y+
j ∥

(249)

202 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

Now define cY
ii = ∥PY

old,i −∑i
j=1 ñji P̂Y+

j ∥. cY will be an M×M matrix.

P̂Y
i cY

ii = PY
old,i −

i

∑
j=1

ñji P̂Y+
j (250)

If the remaining elements of cY and ñ are filled with zeros, then after
the complete loop (computation for all i) is done we can write:

P̂YcY = PY
old − P̂Y+ñ

= PY
old − P̂Y ñ(2:end,:) − ŝ⊥ñ(1,:)

PY
old = P̂YnY + P̂Y ñ(2:end,:) + ŝ⊥ñ(1,:)

= P̂Y
(

cY + ñ(2:end,:)

)
+ ŝ⊥ñ(1,:)

= P̂YnY + ŝ⊥πPY .

(251)

B.4.4 Hyper-Parameter Adaptation (Second-Order, Symmetric)
The observation noise Rt can again be estimated within the mini-batch
using Σ̂. The difference now to filtering on gradients, is that Rt must
be of form scalar-plus-low rank instead of being diagonal (the same
holds for the hyper-parameters P∇∇0 and V). For a start, it is the
simplest, to drop the low rank term of Rt and set σR

t = 1
|S|N ∑i Σ̂i to

the mean of the estimated gradient variances.2 2 Alternatively one could assume a
block-diagonal Hessian where correla-
tions between layers are dropped, and
then estimate one σR

t per layer.

We also drop the low rank part of V, and just adapt a scalar σV

with V = σV I. The maximum marginal likelihood estimator is not
analytic anymore, but we can always compute the first (and perhaps
second) derivative of log p(yt) and perform a, or multiple gradient
descent, or Newton steps on it. The (logarithmic) marginal likelihood
of parameter σV , given the current datapoint yt+1 is:

p(yt+1) =
∫

p(yt+1|xt+1, y1, . . . , yt)p(xt+1|y1, . . . , yt)dxt+1

=
∫
N
(

yt+1; x∇t+1, Rt+1

)
N (xt+1; mt+1−, Pt+1−)dxt+1

= N
(

yt+1; m∇t+1−, P∇∇t+1− + Rt+1

)
=

e−
1
2 (yt+1−m∇t+1−)

⊺(P∇∇t+1−+Rt+1)
−1(yt+1−m∇t+1−)

(2π)N/2|P∇∇t+1− + Rt+1|1/2

2 log p(yt+1) ∝ − log |P∇∇t+1− + Rt+1| − (yt+1 −m∇t+1−)
⊺(P∇∇t+1− + Rt+1)

−1(yt+1 −m∇t+1−)

(252)

first derivative: Some matrix identities which we will need to com-
pute the derivative of Eq. (252) are:

∂a⊺Xb
∂z

= a⊺
∂X
∂z

b,
∂X−1

∂z
= −X−1 ∂X

∂z
X−1,

∂ log |X(z)|
∂z

= tr
[

X−1 ∂X
∂z

]
(253)

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 203

Where a and b are vectors and X is a matrix. V is hidden in P∇∇−

only. The derivative of Eq. (252) with respect to the scalar σV yields:

− ∂

∂σV
2 log p(y) = (y−m∇−)⊺

∂(P∇∇− + R)−1

∂σV
(y−m∇−) + 2 tr

[
(P∇∇− + R)−1 ∂(P∇∇− + R)

∂σV

]
= −(y−m∇−)⊺(P∇∇− + R)−1 ∂(P∇∇− + R)

∂σV
(P∇∇− + R)−1(y−m∇−) + 2 tr

[
(P∇∇− + R)−1 ∂(P∇∇− + R)

∂σV

]
(254)

Thus, we need ∂aV̄/∂σV =
√

∆t/3(s⊺s) and ∂σV̄/∂σV =
√

∆t/3. We get:

∂(P∇∇− + R)
∂σV

=

(
1
2

aV̄
∂σV̄
∂σV

+
1
2

σV̄
∂aV̄
∂σV

)
I + P

(
1
2

2σV̄
∂σV̄
∂σV

πsπ⊺
s

)
P⊺

+ P
(

1
2
∥s⊥∥2σV̄

∂σV̄
∂σV

πs

)
ŝ⊺⊥ + ŝ⊥

(
1
2
∥s⊥∥2σV̄

∂σV̄
∂σV

π⊺
s

)
P⊺ + ŝ⊥

(
1
2
∥s⊥∥22σV̄

∂σV̄
∂σV

)
ŝ⊺⊥

=
∆t
3

σV

[(
π⊺

s πs + ∥s⊥∥2
)

I + P
(
πsπ⊺

s
)

P⊺ + P (∥s⊥∥πs) ŝ⊺⊥ + ŝ⊥
(
∥s⊥∥π⊺

s
)

P⊺ + ŝ⊥
(
∥s⊥∥2

)
ŝ⊺⊥
]

= σC I + P−ΛCP⊺
− = C

(255)

Combining Eq. (255) with Eq. (254) gives:

∂

∂σV
log p(y) =

1
2

∆⊺G−1CG−1∆− tr
[

G−1C
]

(256)

Compute 2nd term of Eq. 256:

G−1C = (σG−1 I + P−ΛG−1 P⊺
−)(σC I + P−ΛCP⊺

−)

= (σG−1 σC)I + P−(σCΛG−1 + σG−1 ΛC + ΛG−1 ΛC)P⊺
−

=: σGC I + P−ΛGCP⊺
−

tr
[

G−1C
]
= NσGC + tr [ΛGC]

(257)

and 1st term:

G−1CG−1 = (σGC I + P−(ΛGC)P⊺
−)(σG−1 I + P−ΛG−1 P⊺

−)

=
1
2

σGCσG−1 π⊺
∆π∆ +

1
2

π⊺
∆(PB⊺

t+1P−)(σG−1 ΛGC + σGCΛG−1 + ΛGCΛG−1)(PB⊺
t+1P−)⊺π∆

(258)

Here PB⊺
t+1P− = [IM+1; 0M+1] ∈ R2(M+1)×(M+1). Thus, the gradient is:

∂

∂σV
log p(y) =

1
2

σGCσG−1 π⊺
∆π∆ +

1
2

π⊺
∆(PB⊺

t+1P−)(σG−1 ΛGC + σGCΛG−1 + ΛGCΛG−1)(PB⊺
t+1P−)⊺π∆

− NσGC − tr [ΛGC] ,
(259)

or

∂

∂σV
log p(y) =

∆t
3

σV

[
1
2
(s⊺s)(π⊺

∆π∆)σ
2
G−1 +

1
2

π⊺
∆(PB⊺

t+1P−)C̃(PB⊺
t+1P−)⊺π∆

− N(s⊺s)σG−1 − tr [(s⊺s)ΛG−1 + ΛCσG−1 + ΛG−1 ΛC]

]
=:

∆t
3

σV D̃

(260)

204 | DERIVATION OF FILTERING EQUATIONS FOR OPTIMIZATION

with

C̃ := −2(s⊺s)σG−1 ΛG−1 + (s⊺s)ΛG−1 ΛG−1 + σ−2
G−1 ΛG−1 Λ−1

∇−ΛCΛ−1
∇−ΛG−1 . (261)

We could then update σV at each iteration with a, or multiple gradient
steps with step size α according to:

σV = σV − α
∂

∂σV
log p(y), (262)

with ∂ log p(y)/∂σV as in Eq. 259 or Eq. 260.

second derivative: The second partial derivative of Eq. 260 is:

∂2

∂2σV
log p(y) =

1
2

∆t
3
(s⊺s)(π⊺

∆π∆)
∂

∂σV

(
σ2

G−1 σV

)
+

1
2

∆t
3

π⊺
∆(PB⊺

t+1P−)
∂

∂σV

(
σVC̃

)
(PB⊺

t+1P−)⊺π∆

− N
∆t
3
(s⊺s)

∂

∂σV
(σVσG−1)− ∂

∂σV

(
tr
[

∆t
3
(s⊺s)σVΛG−1 +

∆t
3

ΛCσVσG−1 +
∆t
3

σVΛG−1 ΛC

])
.

(263)

We need:

∂

∂σV

(
σ2

G−1 σV

)
= σ2

G−1
∂σV
∂σV

+ 2σVσG−1
∂σG−1

∂σV
= σ2

G−1 − 2
∆t
3

σ2
Vσ3

G−1(s⊺s)

∂

∂σV
(σG−1 σV) = σG−1

∂σV
∂σV

+ σV
∂σG−1

∂σV
= σG−1 − σV

∆t
3

σ2
G−1 σV(s⊺s).

(264)

We also need the derivative of C̃. Use ∂(XY)/∂z = X∂Y/∂z + ∂X/∂zY,
then:

∂C̃
∂σV

= 2(s⊺s)
∂

∂σV
(σG−1 ΛG−1) + (s⊺s)

∂

∂σV
(ΛG−1 ΛG−1) +

∂

∂σV

(
σ−2

G−1 ΛG−1 Λ−1
∇−ΛCΛ−1

∇−ΛG−1

)
= ΛG−1 Λ−1

∇−ΛCΛ−1
∇−

∂ΛG−1

∂σV
+ ΛG−1 Λ−1

∇−ΛC
∂Λ−1
∇−

∂σV
ΛG−1 + ΛG−1

∂Λ−1
∇−

∂σV
ΛCΛ−1

∇−ΛG−1

+
∂ΛG−1

∂σV
Λ−1
∇−ΛCΛ−1

∇−ΛG−1 .

(265)

Therefore ∂C̃/∂σV becomes:

∂C̃
∂σV

= −σV
∆t
3
[
2(s⊺s)σG−1 C̃ + 2(s⊺s)(s⊺s)σ2

G−1 ΛG−1 + (s⊺s)ΛG−1 C̃ + (s⊺s)C̃ΛG−1

+ σ−2
G−1 ΛG−1 Λ−1

∇−ΛCΛ−1
∇−
(

C̃ + 2ΛCΛ−1
∇−ΛG−1

)
+ σ−2

G−1 C̃Λ−1
∇−ΛCΛ−1

∇−ΛG−1

+ 2(s⊺s)σ3
G−1 ΛG−1 Λ−1

∇−ΛCΛ−1
∇−ΛG−1

]
=: −σV

∆t
3

C̃∂.

(266)

LOW-RANK APPROXIMATION (SECOND-ORDER FILTER, SYMMETRIC) | 205

For the last term in Eq. (263) we need to compute:

∂

∂σV

(
tr
[

∆t
3
(s⊺s)σVΛG−1 +

∆t
3

ΛCσVσG−1 +
∆t
3

σVΛG−1 ΛC

])
= tr

[
∆t
3
(s⊺s)

∂

∂σV
(σVΛG−1) +

∆t
3

ΛC
∂

∂σV
(σVσG−1) +

∆t
3

∂

∂σV
(σVΛG−1)ΛC

]
= tr

[
−
(

∆t
3

σV

)2
(s⊺s)C̃ +

∆t
3
(s⊺s)ΛG−1 −

(
∆t
3

σVσG−1

)2
(s⊺s)ΛC +

∆t
3

σG−1 ΛC

−
(

∆t
3

σV

)2
C̃ΛC +

∆t
3

ΛG−1 ΛC

]
=: tr [Ctrace] .

(267)

Now we can combine all equations to get the second derivative:

∂2

∂2σV
log p(y) =

1
2

∆t
3
(s⊺s)(π⊺

∆π∆)

(
σ2

G−1 − 2
∆t
3

σ2
Vσ3

G−1(s⊺s)
)

+
1
2

∆t
3

π⊺
∆(PB⊺

t+1P−)
(
−σ2

V
∆t
3

C̃∂ + C̃
)
(PB⊺

t+1P−)⊺π∆

− N
∆t
3
(s⊺s)

(
σG−1 − ∆t

3
σ2

Vσ2
G−1(s⊺s)

)
− tr [Ctrace]

(268)

The update for one Newton step, given the first and second derivative
as in Eqs. 260 and 268, is thus:

σV = σV − α

(
∂2

∂2σV
log p(y)

)−1
∂

∂σV
log p(y) (269)

with steps size α ≤ 1, α > 0. Thus, at each iteration, σV can be updated
according to

σV = σV − α̃
∂

∂σV
log p(y) or

σV = σV −
(

∂2

∂2σV
log p(y)

)−1
∂

∂σV
log p(y)

(270)

for a gradient descent, or Newton step respectively.

CAdditional Experimental Results for PROBLS

C.1 Noise Sensitivity

−4 −2 0

m:1000

−4 −2 0

m:100

−4 −2 0

−3

−2

−1

0

log learning rate

lo
g

te
st

an
d

tr
ai

n
se

te
rr

or

m:10

−4 −2 0

m:200

0 1 2 3 4 0 1 2 3 40 1 2 3 40 1 2 3 4

−3

−2

−1

0

lo
g

tr
ai

n
se

te
rr

or

0 1 2 3 4 0 1 2 3 40 1 2 3 40 1 2 3 4

−1

0

function evaluations in 104

lo
g

te
st

se
te

rr
or

Figure 60: Performance of N-I on MNIST
for varying mini-batch sizes: Plots and
colors same as in Figure 44 (middle plots
cropped for readability).

−4 −2

m:1000

−4 −2
0

0.3

0.6

0.9

log learning rate

te
st

an
d

tr
ai

n
se

te
rr

or

m:10

−4 −2

m:100

−4 −2

m:200

0 0.5 10 0.5 10 0.5 10 0.5 1
0

0.3

0.6

0.9

tr
ai

n
se

te
rr

or

0 0.5 10 0.5 1

0.6

0.7

0.8

0.9

function evaluations in 104

te
st

se
te

rr
or

0 0.5 1 0 0.5 1

Figure 61: Performance of N-II on
CIFAR-10 for varying mini-batch sizes:
Plots and colors same as in Figure 44, ex-
cept the scaling of the y-axis which is not
logarithmic here.

208 | ADDITIONAL EXPERIMENTAL RESULTS FOR PROBLS

−4 −2 0

m:200

−4 −2 0

m:100

−4 −2 0
0

0.3

0.6

0.9

log learning rate

te
st

an
d

tr
ai

n
se

te
rr

or
m:10

−4 −2 0

m:1000

0 0.5 10 0.5 1 0 0.5 10 0.5 1
0

0.3

0.6

0.9

tr
ai

n
se

te
rr

or

0 0.5 1
0.5

0.7

0.9

function evaluations in 104

te
st

se
te

rr
or

0 0.5 10 0.5 10 0.5 1

Figure 62: Performance of N-I on CIFAR-
10 for varying mini-batch sizes: Plots
and colors same as in Figure 61.

−8 −6 −4 −2 0 2

−3

−2

−1

log learning rate

lo
g

te
st

an
d

tr
ai

n
se

te
rr

or

m:10

−8 −6 −4 −2 0 2

m:50

−8 −6 −4 −2 0 2

m:100

−8 −6 −4 −2 0 2

m:400

0 0.5 1

−3

−2

−1

lo
g

tr
ai

n
se

te
rr

or

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1
−2

−1

function evaluations in 104

lo
g

te
st

se
te

rr
or

0 0.5 1 0 0.5 1 0 0.5 1

Figure 63: Performance of N-III on
GISETTE for varying mini-batch sizes:
Plots and colors same as in Figure 61.

NOISE SENSITIVITY | 209

−8 −6 −4 −2 0 2
−1.9

−1.4

−0.9

−0.4

log learning rate

lo
g

te
st

an
d

tr
ai

n
se

te
rr

or

m:10

−8 −6 −4 −2 0 2

m:50

−8 −6 −4 −2 0 2

m:100

−8 −6 −4 −2 0 2

m:400

0 0.5 1
−1.9

−1.4

−0.9

−0.4

lo
g

tr
ai

n
se

te
rr

or

0 0.5 1 0 0.5 1 0 0.5 1

0 0.5 1
−1.9

−1.4

−0.9

−0.4

function evaluations in 105

lo
g

te
st

se
te

rr
or

0 0.5 1 0 0.5 1 0 0.5 1

Figure 64: Performance of N-III on
WDBC for varying mini-batch sizes:
Plots, colors, and description same as in
Figure 63. Remark: since the training
set is of size 400, the most right column
(m = 400) in fact runs full-batch gradi-
ent descent; this is not a problem, since
the probabilistic line search can handle
noise free observations as well.

−8 −6 −4 −2 0 2

−1.2

−0.8

log learning rate

lo
g

te
st

an
d

tr
ai

n
se

te
rr

or

m:10

−8 −6 −4 −2 0 2

m:100

−8 −6 −4 −2 0 2

m:200

−8 −6 −4 −2 0 2

m:1000

0 10 20 30 40
−1.3

−1

−0.7

lo
g

tr
ai

n
se

te
rr

or

0 1 2 3 4 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8

0 10 20 30 40
−1.3

−1

−0.7

function evaluations in 104

lo
g

te
st

se
te

rr
or

0 1 2 3 4 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8

Figure 65: Performance of N-III on
EPSILON for varying mini-batch sizes:
Plots, colors, and description same as
in Figure 63. EPSILON is the largest
dataset, that was used in the experi-
ments (400k samples); this did not seem
to impair the performance of the line
search or variance estimator.

210 | ADDITIONAL EXPERIMENTAL RESULTS FOR PROBLS

C.2 Hyper-parameter Sensitivity

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 66: Sensitivity to hyper-
parameters c2, and cW , αext = 1.4 (§7.4.1).
Experimental setup as in Figures 46 and
45. Top row from left to right: logarith-
mic test set error, train set error, and aver-
age number of function evaluations per
line search averaged over 10 different ini-
tializations. Bottom row: Correspond-
ing relative standard deviations. In all
plots darker colors are better. For extrap-
olation parameters αext > 1 (Figures 67,
68, 69, and 70) the different parameter
combinations all result in similar good
performance. Only at extreme choices
(e. g., αext = 1.0, Figure 70, no extrapola-
tion), the line search performs poorer. At
the extreme value of cW = 0.99 (imposes
near absolute certainty about the Wolfe
conditions), the line search becomes less
efficient. The default values (cW = 0.3,
c2 = 0.5, and αext = 1.3) are indicated as
red dots in Figure 67.

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 67: Same as Figure 66 but for
fixed αext = 1.3. The default values
adopted in the line search implementa-
tion (cW = 0.3, c2 = 0.5, and αext = 1.3)
are indicated as red dots.

HYPER-PARAMETER SENSITIVITY | 211

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 68: Same as Figure 66 but for fixed
αext = 1.2

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 69: Same as Figure 66 but for fixed
αext = 1.1

212 | ADDITIONAL EXPERIMENTAL RESULTS FOR PROBLS

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.99

W
ol

fe
th

re
sh

ol
d

c W

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 70: Same as Figure 66 but for fixed
αext = 1.0

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 71: Sensitivity to varying hyper-
parameters c2, and αext, cW = 0.01
(§7.4.1). Experimental setup as in Fig-
ures 45 and 46, plots like in Figure 66.
In all plots darker colors are better. All
choices of cW result in good performance
though very tight choices of cW = 0.99
(imposes near absolute certainty about
the Wolfe conditions, Figure 81) are less
efficient. As described in Figure 66, for a
dropped extrapolation factor (αext → 1)
in combination with a loose curvature
condition (large c2) the line searches
performs poorer (top row, right half of
columns in Figures 71–80). The de-
fault values (cW = 0.3, c2 = 0.5, and
αext = 1.3) are indicated as red dots in
Figure 74.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 72: Same as Figure 71 but for fixed
cW = 0.10.

HYPER-PARAMETER SENSITIVITY | 213

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 73: Same as Figure 71 but for fixed
cW = 0.20.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 74: Same as Figure 71 but for fixed
cW = 0.30. The default values as red
dots.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 75: Same as Figure 71 but for fixed
cW = 0.40.

214 | ADDITIONAL EXPERIMENTAL RESULTS FOR PROBLS

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 76: Same as Figure 71 but for fixed
cW = 0.50.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 77: Same as Figure 71 but for fixed
cW = 0.60.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 78: Same as Figure 71 but for fixed
cW = 0.70.

HYPER-PARAMETER SENSITIVITY | 215

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 79: Same as Figure 71 but for fixed
cW = 0.80.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 80: Same as Figure 71 but for fixed
cW = 0.90.

1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

log test set error

−1.8

−1.6

−1.4

log train set error

−2.5

−2

−1.5

−1

0.1 0.3 0.5 0.7 0.9
1.4
1.3
1.2
1.1

1

ex
tr

ap
ol

at
io

n
α

ex
t

2

4

6

·10−2

0.1 0.3 0.5 0.7 0.9
WII condition c2

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

function evaluations

2

4

6

0.1 0.3 0.5 0.7 0.9

2

4

·10−2

Figure 81: Same as Figure 71 but for fixed
cW = 0.99.

216 | ADDITIONAL EXPERIMENTAL RESULTS FOR PROBLS

C.3 Noise Estimation
Chapter 5 introduced the statistical variance estimators Λ̂(w) and Σ̂(w)

of the function and gradient estimate LS (w) and∇LS (w) at position x.
The underlying assumption is that LS (w) and∇LS (w) are distributed
according to⎡⎣ LS (w)

∇LS (w)

⎤⎦ ∼ N
⎛⎝ ⎡⎣ L(w)

∇L(w)

⎤⎦ ,

⎡⎣Σ(w) 0D×1

01×D diag Σ′(w)

⎤⎦⎞⎠ (271)

which implies Eq 106⎡⎣ LS (w)

s(w)′ · ∇LS (w)

⎤⎦ =

⎡⎣ y(w)

y′(w)

⎤⎦ ∼ N
⎛⎝ ⎡⎣ f (w)

f ′(w)

⎤⎦ ,

⎡⎣σf (w) 0

0 σf ′(w)

⎤⎦⎞⎠ . (272)

where s(w) is the possibly new search direction at w. This is an approx-
imation since the true covariance matrix is in general not diagonal. A
better estimator for the projected gradient noise would be (dropping
w from the notation)

η f ′ = s⊺
[

1
|B| − 1

1
|B|

|B|
∑
k=1

(∇ℓk −∇LS)(∇ℓk −∇LS)⊺
]

s

=
N

∑
i,j=1

sisj
1

|B| − 1
1
|B|

|B|
∑
k=1

(
∇ℓk

i −∇Li
S
) (
∇ℓk

j −∇Lj
S
)

=
1

|B| − 1

N

∑
i,j=1

sisj

(
1
|B|

|B|
∑
k=1
∇ℓk

i∇ℓk
j −∇Li

S∇Lj
S −∇Lj

S∇Li
S +∇Li

S∇Lj
S

)

=
1

|B| − 1

(
1
|B|

|B|
∑
k=1

N

∑
i,j=1

si∇ℓk
i sj∇ℓk

j −
N

∑
i,j=1

sj∇Lj
S si∇Li

S

)

=
1

|B| − 1

(
1
|B|

|B|
∑
k=1

(s′ · ∇ℓk)2 − (s′ · ∇LS)2

)
.

(273)

Comparing to σf ′ yields

η f ′ =
1

|B| − 1

N

∑
i,j=1

sisj

(
1
|B|

|B|
∑
k=1
∇ℓk

i∇ℓk
j −∇Lj

S∇Li
S

)

=
1

|B| − 1

N

∑
i=1

s2
i

(
1
|B|

|B|
∑
k=1

(∇ℓk
i)

2 − (∇Li
S)

2

)
+

1
|B| − 1

N

∑
i ̸=j=1

sisj

(
1
|B|

|B|
∑
k=1
∇ℓk

i∇ℓk
j −∇Lj

S∇Li
S

)

η f ′ = σf ′ +
1

|B| − 1

N

∑
i ̸=j=1

sisj

(
1
|B|

|B|
∑
k=1
∇ℓk

i∇ℓk
j −∇Lj

S∇Li
S

)
.

(274)

From Eq 273 we see that, in order to compute η f ′ , we need an efficient
way of computing the inner product (s′ · ∇ℓk) for all k. In addition, we
need to know the search direction s(w) of the potential next step (if w
was accepted) at the time of computing η f ′ . This is might be possible

NOISE ESTIMATION | 217

e. g., for the sgd search direction where s(w) = − 1
|B| ∑

|B|
k=1∇ℓk(w)

but potentially not possible or practical for arbitrary search directions.
For all experiments in this thesis we used the approximate variance
estimator σf ′ .

The following paragraph is concerned with the independence as-
sumption of gradient and function value y and y′ (in contrast to in-
dependence among gradient elements). In general y and y′ are not
independent since the algorithm draws them from the same minibatch;
the likelihood including the correlation factor ρ reads

p(y(t), y′(t) | f) = N
⎛⎝⎡⎣ y(t)

y′(t)

⎤⎦ ;

⎡⎣ f (t)

f ′(t)

⎤⎦ ,

⎡⎣σ2
f ρ

ρ σ2
f ′

⎤⎦⎞⎠ . (275)

The noise covariance matrix enters the gp only in the inverse of the
sum containing the kernel matrix of the observations. We can compute
it analytically for one datapoint at position t, since it is only a 2× 2
matrix. For ρ = 0, define:

detρ=0 := [ktt + σ2
f][k∂ ∂

tt + σ2
f ′]− k∂

tt k∂
tt

G−1
ρ=0 :=

⎡⎣ktt + σ2
f k∂

tt

k∂
tt k∂ ∂

tt + σ2
f ′

⎤⎦−1

=
1

detρ=0

⎡⎣ k∂ ∂
tt + σ2

f ′ −k∂
tt

− k∂
tt ktt + σ2

f

⎤⎦ .
(276)

For ρ ̸= 0 we thus get:

detρ ̸=0 := [ktt + σ2
f][k∂ ∂

tt + σ2
f ′]− [k∂

tt + ρ][k∂
tt + ρ] = detρ=0 − ρ(k∂

tt + k∂
tt)− ρ2

G−1
ρ ̸=0 :=

⎡⎣ktt + σ2
f k∂

tt + ρ

k∂
tt + ρ k∂ ∂

tt + σ2
f ′

⎤⎦−1

=
1

detρ ̸=0

⎡⎣ k∂ ∂
tt + σ2

f ′ −(k∂
tt + ρ)

−(k∂
tt + ρ) ktt + σ2

f

⎤⎦
=

detρ=0

detρ ̸=0
G−1

ρ=0 −
ρ

detρ ̸=0

⎡⎣0 1

1 0

⎤⎦ .

(277)

The fraction detρ=0/detρ ̸=0 in the first term of the last row, is a positive
scalar that scales all element of G−1

ρ=0 equally (since Gρ=0 and Gρ ̸=0 are
positive definite matrices, we know that detρ=0 > 0, detρ ̸=0 > 0). If |ρ|
is small in comparison to the determinant detρ=0, then detρ ̸=0 ≈ detρ=0

and the scaling factor is approximately one. The second term corrects
off-diagonal elements in Gρ ̸=0 and is proportional to ρ; if |ρ| ≪ detρ=0

this term is small as well. In might be possible to estimate ρ as well
from the minibatch in a similar style to the estimation of σf and σf ′ ;
it is not clear, however, if the additional computational cost would
justify the improvements in the gp-inference.

DDetailed Pseudocode of PROBLS

Algorithm 4 of Chapter 7 § 7.2 roughly sketches the structure of the
probabilistic line search and its main ingredients. This section pro-
vides a detailed pseudocode which can be used for re-implementation.
It is based on the code which was used for the experiments in this
thesis. A matlab implementation including a minimal example can
be found at http://tinyurl.com/probLineSearch. The actual line
search routine is called probLineSearch below and is quite short.
Most of the pseudocode is occupied with comments, helper function
that define the kernel of the gp, the gp-update or Gauss cdf and pdf.
For better readability of the pseudocode we use the following color
coding: Green: variables of the integrated Wiener process, Red: most
recently evaluated observation (noisy loss and gradient). If the line
search terminates, these will be returned as ‘accepted’. Orange: in-
puts from the main solver procedure and unchanged during each line
search.

operator or function definition

A⊙ B elementwise multiplication

A⊘ B elementwise division

A⊙b elementwise power of b

A′ transpose of A

A · B scalar-scalar, scalar-matrix or matrix-matrix multiplication

A/B right matrix division, the same as A · B−1

A\B left matrix division, the same as A−1 · B
sign(a) sign of scalar a

erf(x) error function erf(x) = 2√
π

∫ x
0 e−t2

dt

max(A) maximum element in A

min(A) minimum element in A

|a| absolute value of scalar a

A < B elementwise ‘less’ comparison

A ≤ B elementwise ‘less-or-equal’ comparison

A > B elementwise ‘greater’ comparison

A ≥ B elementwise ‘greater-or-equal’ comparison

[a, b, c]← f (x) function f called at x returns the values a, b and c

http://tinyurl.com/probLineSearch

220 | DETAILED PSEUDOCODE OF PROBLS

1: function SGDSolver(f , x0)
2: � f – function handle. Usage: [y, dy, Σ f , Σd f]← f (x).
3:

4: x← x0 � initial weights
5: α← e.g. ≈ 10−4 � initial step (rather small)
6: αstats← α

7: [y, dy, Σ f , Σd f]← f (x) � initial function evaluation
8: d←−dy � initial search direction
9:

10: � loop over line searches
11: while budget not used doa
12: [α, αstats, x, y, dy, Σ f , Σd f]←probLineSearch(x, d, y, dy, Σ f , Σd f , α, αstats, f)
13: d←−dy � new search direction
14: end while
15: return x
16: end function

1: function probLineSearch(x0, d, f0, d f0, Σ f0 , Σd f0 , α0, αstats, f)
2: � x0 – current weights [D× 1]
3: � f – function handle to objective.
4: � d – search direction [D× 1]
5: � f0 – function value at start, f0 = f (x0)

6: � d f0 – gradient at start, d f0 = ∇ f (x0) [D× 1]
7: � Σ f0 – sample variance of f0

8: � Σd f0 – sample variances of d f0, [D× 1]

9: � α0 – initial step size
10:

11: � scaling and noise level of gp
12: β←|d′ · Σd f0 |
13: σf ←

√
Σ f0 /(α0 · β) � variance of y0

14: σd f ←
√
((d⊙2)′ · Σd f0)/β � sample variance of dy0

15:

16: � initialize counter and non-fixed parameters
17: L← 6 � maximum # of f evaluations per line search
18: N← 1 � size of gp= 2 · N
19: text← 1 � scaled step size for extrapolation
20: tt← 1 � scaled position of first function evaluation
21:

22: � storage for gp, dynamic arrays of max size [L + 1× 1]
23: T←[0] � scaled positions along search direction
24: Y←[0] � scaled function values at T
25: dY←[(d f0

′ · d)/β] � scaled projected gradients at T
26:

DETAILED PSEUDOCODE OF PROBLS | 221

27: � initialize gp with observation at start
28: [G, A]←updateGP(T, Y, dY, N, σf , σd f)
29:

30: � loop until budged is used or acceptable point is found
31: for N from 2 to L + 1 do
32:

33: � evaluate objective function at tt.
34: [y, dy, Σ f , Σd f , T, Y, dY, N]←evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
35:

36: �update the gp which is now of size 2 · N.
37: [G, A]←updateGP(T, Y, dY, N, σf , σd f)
38:

39: � storage candidates, dynamic arrays of max size [N × 1].
40: Tcand←[] � scaled position of candidates
41: Mcand←[] � gp mean of candidates
42: Scand←[] � gp standard deviation of candidates
43:

44: � current point above the Wolfe threshold? If yes, return.
45: if probWolfe(tt, T, A, G) then
46: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
47: return output
48: end if
49:

50: �Wolfe conditions not satisfied at this point.
51: �find suitable candidates for next evaluation.
52:

53: �gp mean of function values and gradients at points in T.
54: M←map function m(_, T, A) over T
55: dM←map function d1m(_, T, A) over T
56:

57: � candidates 1: local minima of gp mean.
58: Tsorted← sort T in ascending order
59: TWolfes←[] � prepare list of acceptable points
60:

61: � iterate through all N − 1 cells, compute local minima.
62: for n from 1 to N − 1 do
63: Tn← value of Tsorted at n
64: Tn+1← value of Tsorted at n + 1
65:

66: �add a little offset for numerical stability
67: trep← Tn + 10−6 · (Tn+1 − Tn)

68:

69: � compute location of cubic minimum in nth cell
70: tcubMin←cubicMinimum(trep, T, A, N)
71:

222 | DETAILED PSEUDOCODE OF PROBLS

72: �add point to candidates if minimum lies between Tn and Tn+1

73: if tcubMin > Tn and tcubMin < Tn+1 then
74: if (not isnanOrIsinf(tcubMin)) and (tcubMin > 0) then
75: Tcand← append tcubMin
76: Mcand← append m(tcubMin, T, A)
77: Scand← append V(tcubMin, T, G)
78: end if
79: else
80:

81: �most likely uphill? If yes, break.
82: if n = 1 and d1m(0, T, A) > 0 then
83: r← 0.01
84: tt← r · (Tn + Tn+1)

85:

86: � evaluate objective function at tt and return.
87: [y, dy, Σ f , Σd f , T, Y, dY, N]←evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
88:

89: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
90: return output
91: end if
92: end if
93:

94: � check for Wolfe point among the old evaluations
95: if n > 1 and probWolfe(Tn, T, A, G) then
96: TWolfes← append Tn

97: end if
98: end for
99:

100: � check if acceptable points exists and return
101: if TWolfes is not empty then
102:

103: � if last evaluated point is among acceptable ones, return it.
104: if tt in TWolfes then
105: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
106: return output
107: end if
108:

109: � else, choose the one with the lowest gp mean
110: �and re-evaluate its gradient.
111: MWolfes←map m(_, T, A) over TWolfes
112: tt← value of TWolfes at index of min(MWolfes)

113:

114: � evaluate objective function at tt.
115: [y, dy, Σ f , Σd f , T, Y, dY, N]←evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
116:

DETAILED PSEUDOCODE OF PROBLS | 223

117: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
118: return output
119: end if
120:

121: � candidates 2: one extrapolation step
122: Tcand← append max(T) + text

123: Mcand← append m(max(T) + text, T, A)
124: Scand← append V(max(T) + text, T, G) 1

2

125:

126: �find minimal mean among M.
127: µEI←minimal value of M
128:

129: � expected improvement and Wolfe probabilities at Tcand
130: EIcand←expectedImprovement(Mcand, Scand, µEI)
131: PWcand←map probWolfe(_, T, A, G) over Tcand
132:

133: � choose candidate that maximizes EIcand ∧ PWcand
134: ibestCand← index of max(EIcand ⊙ PWcand)

135: ttbestCand← value of Tcand at ibestCand
136:

137: � extend extrapolation step if necessary
138: if ttbestCand is equal to tt + text then
139: text← 2 · text

140: end if
141:

142: � set location for next evaluation
143: tt← ttbestCand
144: end for
145:

146: � limit reached: evaluate a final time
147: �and return the point with lowest gp mean
148: [y, dy, Σ f , Σd f , T, Y, dY, N]←evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
149:

150: �update the gp which is now of size 2 · N.
151: [G, A]←updateGP(T, Y, dY, N, σf , σd f)
152:

153: � check last point for acceptance
154: if probWolfe(tt, T, A, G) then
155: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
156: return output
157: end if
158:

159: �at the end of budget return point with the lowest gp mean
160: M←map m(_, T, A) over T
161: ilowest← index of minimal value in M

224 | DETAILED PSEUDOCODE OF PROBLS

162: tlowest← value of T at ilowest
163:

164: � if tlowest is the last evaluated point, return
165: if tlowest is equal to tt then
166: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
167: return output
168: end if
169:

170: � else, re-evaluate its gradient and return
171: tt← value of tlowest
172:

173: � evaluate objective function at tt.
174: [y, dy, Σ f , Σd f , T, Y, dY, N]←evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
175:

176: output←rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β)
177: return output
178: end function

1: function rescaleOutput(x0, f0, α0, d, tt, y, dy, Σ f , Σd f , β, αstats)
2: �design parameters
3: αext← 1.3 � extrapolation parameter
4: θreset← 100 � reset threshold for gp scale
5:

6: αacc← tt · α0 � rescale accepted step size
7: xacc← x0 + αacc · d � update weights
8: facc← y · (α0 · β) + f0 � rescale accepted function value
9: d facc← dy � accepted gradient

10: Σ facc←Σ f � sample variance of facc

11: Σd facc←Σd f � sample variances of d facc

12: γ← 0.95 � exponential running average of scalings
13: αstats← γ · αstats + (1− γ) · αacc

14: αnext← αacc · αext � next initial step size
15:

16: � reset it gp scaling if needed.
17: if (αnext < αstats/θreset) or (αnext > αstats · θreset) then
18: αnext← αstats

19: end if
20:

21: � compressed output for readability of pseudocode
22: output←[αnext, αstats, xacc, facc, d facc, Σ facc , Σd facc]

23: return output
24: end function

DETAILED PSEUDOCODE OF PROBLS | 225

1: function evaluateObjective(tt, x0, α0, d, T, Y, dY, N, β, f)
2: � evaluate objective function at tt
3: [y, dy, Σ f , Σd f]← f (x0 + tt · α0 · d)
4:

5: � scale output
6: y←(y− f0)/(α0 · β)
7: dy←(dy′ · d)/β

8:

9: � storage
10: T← append tt
11: Y← append y
12: dY← append dy
13: N←N + 1
14:

15: return [y, dy, Σ f , Σd f , T, Y, dY, N]

16: end function

1: function cubicMinimum(t, T, A, N)
2: � compute necessary derivatives of gp mean at t
3: d1mt←d1m(t, T, A)
4: d2mt←d2m(t, T, A)
5: d3mt←d3m(t, T, A, N)
6: a← 0.5 · d3mt

7: b← d2mt − t · d3mt

8: c← d1mt − d2mt · t + 0.5 · d3mt · t2

9:

10: � third derivative is almost zero→ single extremum
11: if |d3mt| < 1−9 then
12: tcubMin←−(d1mt − t · d2mt)/d2mt

13: return tcubMin
14: end if
15:

16: � roots are complex, no extremum
17: λ← b2 − 4 · a · c
18: if λ < 0 then
19: tcubMin←+∞
20: return tcubMin
21: end if
22:

23: � compute the two possible roots
24: LR←(−b− sign(a) ·

√
λ)/(2 · a) � left root

25: RR←(−b + sign(a) ·
√

λ)/(2 · a) � right root
26:

27: � compute values of left and right root (up to a constant)

226 | DETAILED PSEUDOCODE OF PROBLS

28: dtL← LR− t � distance to left root
29: dtR← RR− t � distance to right root
30: CVL← d1mt · dtL + 0.5 · d2mt · dt2

L + (d3mt · dt3
L)/6

31: CVR← d1mt · dtR + 0.5 · d2mt · dt2
R + (d3mt · dt3

R)/6
32:

33: �find the minimum and return it.
34: if CVL < CVR then
35: tcubMin← LR
36: else
37: tcubMin← RR
38: end if
39:

40: return tcubMin
41: end function

1: function updateGP(T, Y, dY, N, σf , σd f)
2: � initialize kernel matrices
3: kTT←[N × N] matrix with zeros
4: kdTT←[N × N] matrix with zeros
5: dkdTT←[N × N] matrix with zeros
6:

7: �fill kernel matrices
8: for i = 1 to N do
9: for j = 1 to N do

10: kTT(i, j)←k(T(i), T(j))
11: kdTT(i, j)←kd(T(i), T(j))
12: dkdTT(i, j)←dkd(T(i), T(j))
13: end for
14: end for
15:

16: �diagonal covariance of Gaussian likelihood [2N × 2N].

17: Λ←
⎡⎣diag(σf

2)N×N 0N×N

0N×N diag(σd f
2)N×N

⎤⎦
18:

19: G←
⎛⎝ kTT kdTT

kd′TT dkdTT

⎞⎠+ Λ � [2N × 2N] matrix

20:

21: � residual between observed and predicted data

22: ∆←
⎛⎝ Y

dY

⎞⎠ � [2N × 1] vector

23:

24: � compute weighted observations A.
25: A←G\∆ � [2N × 1] vector
26:

DETAILED PSEUDOCODE OF PROBLS | 227

27: return [G, A]

28: end function

1: function m(t, T, A)
2: �posterior mean at t
3: return [k(t, T′), kd(t, T′)] · A
4: end function
5:

6: function d1m(t, T, A)
7: �first derivative of mean at t
8: return [dk(t, T′), dkd(t, T′)] · A
9: end function

10:

11: function d2m(t, T, A)
12: � second derivative of mean at t
13: return [ddk(t, T′), ddkd(t, T′)] · A
14: end function
15:

16: function d3m(t, T, A, N)
17: � third derivative of mean at t
18: return [dddk(t, T′), zeros(1, N)] · A
19: end function
20:

21: function V(t, T, G)
22: �posterior variance of function values at t
23: return k(t, t)−[k((t, T′), kd(t, T′)] · (G\[k(t, T′), kd(t, T′)]′)
24: end function
25:

26: function Vd(t, T, G)
27: �posterior variance of function values and derivatives at t
28: return kd(t, t)−[k(t, T′), kd(t, T′)] · (G\[dk(t, T′), dkd(t, T′)]′)
29: end function
30:

31: function dVd(t, T, G)
32: �posterior variance of derivatives at t
33: return dkd(t, t)−[dk(t, T′), dkd(t, T′)] · (G\[dk(t, T′), dkd(t, T′)]′)
34: end function
35:

36: function V0f(t, T, G)
37: �posterior covariances of function values at t = 0 and t
38: return k(0, t)−[k(0, T′), kd(0, T′)] · (G\[k(t, T′), kd(t, T′)]′)
39: end function
40:

41: function Vd0f(t, T, G)
42: �posterior covariance of gradient and function value

228 | DETAILED PSEUDOCODE OF PROBLS

43: �at t = 0 and t respectively
44: return dk(0, t)−[dk(0, T′), dkd(0, T′)] · (G\[k(t, T′), kd(t, T′)]′)
45: end function
46:

47: function V0df(t, T, G)
48: �posterior covariance of function value and gradient
49: �at t = 0 and t respectively
50: return kd(0, t)−[k(0, T′), kd(0, T′)] · (G\[dk(t, T′), dkd(t, T′)]′)
51: end function
52:

53: function Vd0df(t, T, G)
54: � same as V0f(_) but for gradients
55: return dkd(0, t)−[dk(0, T′), dkd(0, T′)] · (G\[dk(t, T′), dkd(t, T′)]′)
56: end function

1: � all following procedures use the same design parameter:
2: τ← 10
3:

4: function k(a, b)
5: �Wiener kernel integrated once in each argument
6: return 1/3⊙min(a + τ, b + τ)⊙3 + 1/2⊙ |a− b| ⊙min(a + τ, b + τ)⊙2

7: end function
8:

9: function kd(a, b)
10: �Wiener kernel integrated in first argument
11: return 1/2⊙ (a < b)⊙ (a + τ)⊙2 + (a ≥ b)⊙

(
(a + τ) · (b + τ)− 1/2⊙ (b + τ)⊙2)

12: end function
13:

14: function dk(a, b)
15: �Wiener kernel integrated in second argument
16: return 1/2⊙ (a > b)⊙ (b + τ)⊙2 + (a ≤ b)⊙ ((a + τ) · (b + τ)− 1/2⊙ (a + τ)⊙2)

17: end function
18:

19: function dkd(a, b)
20: �Wiener kernel
21: return min(a + τ, b + τ)

22: end function
23:

24: function ddk(a, b)
25: �Wiener kernel integrated in second argument
26: �and 1x derived in first argument
27: return (a ≤ b)⊙ (b− a)
28: end function
29:

30: function ddkd(a, b)

DETAILED PSEUDOCODE OF PROBLS | 229

31: �Wiener kernel 1x derived in first argument
32: return (a ≤ b)
33: end function
34:

35: function dddk(a, b)
36: �Wiener kernel 2x derived in first argument
37: �and integrated in second argument
38: return −(a ≤ b)
39: end function

1: function probWolfe(t, T, A, G)
2: �design parameters
3: c1← 0.05 � constant for Armĳo condition
4: c2← 0.5 � constant for curvature condition
5: cW← 0.3 � threshold for Wolfe probability
6:

7: �mean and covariance values at start position (t = 0)
8: m0← m(0, T, A)
9: dm0←d1m(0, T, A)

10: V0← V(0, T, G)
11: Vd0← Vd(0, T, G)
12: dVd0← dVd(0, T, G)
13:

14: �marginal mean and variance for Armĳo condition
15: ma←m0−m(t, T, A)+c1 · t · dm0

16: Vaa←V0 +(c1 · t)2 · dVd0+V(t)+2 · (c1 · t · (Vd0−Vd0f(t))−V0f(t))
17:

18: �marginal mean and variance for curvature condition
19: mb←d1m(t)−c2 · dm0

20: Vbb← c2
2 · dVd0 − 2 · c2·Vd0df(t)+dVd(t)

21:

22: � covariance between conditions
23: Vab←−c2 · (Vd0 + c1 · t · dVd0)+ c2·Vd0f(t)+V0df(t)+c1 · t·Vd0df(t)−Vd(t)
24:

25: � small variances→ deterministic evaluation
26: if Vaa ≤ 10−9 and Vbb ≤ 10−9 then
27: pWolfe←(ma ≥ 0) · (mb ≥ 0)
28:

29: �accept?
30: pacc← pWolfe > cW

31: return pacc

32: end if
33:

34: �zero or negative variances (maybe something went wrong?)
35: if Vaa ≤ 0 or Vbb ≤ 0 then

230 | DETAILED PSEUDOCODE OF PROBLS

36: return 0
37: end if
38:

39: �noisy case (everything is alright)
40: ρ←Vab/

√
Vaa ·Vbb � correlation

41:

42: � lower and upper integral limits for Armĳo condition
43: lowa←−ma/

√
Vaa

44: upa←+∞
45:

46: � lower and upper integral limits for curvature condition
47: lowb←−mb/

√
Vbb

48: upb←
(
2 · c2 ·

(
|dm0|+ 2 · √dVd0

)
−mb

)
/
√

Vbb

49:

50: � compute Wolfe probability
51: pWolfe←bvn(lowa, upa, lowb, upb, ρ)
52:

53: �accept?
54: pacc← pWolfe > cW

55: return pacc

56:

57:

The function bvn(lowa, upa, lowb, upb, ρ) evaluates the
2D-integral

∫ upa

lowa

∫ upb

lowb

N
⎛⎝⎡⎣a

b

⎤⎦ ;

⎡⎣0

0

⎤⎦ ,

⎡⎣1 ρ

ρ 1

⎤⎦⎞⎠dadb.

58:

59: end function

1: function gaussCDF(z)
2: �Gauss cumulative density function
3: return 0.5⊙

(
1 + erf(z/

√
2)
)

4: end function
5:

6: function gaussPDF(z)
7: �Gauss probability density function
8: return exp

(
−0.5⊙ z⊙2)⊘√2π

9: end function
10:

11: function expectedImprovement(m, s, η)
12: ζ←(η −m)⊘ s
13: return s⊙ [ζ⊙gaussCDF(ζ) +gaussPDF(ζ)]
14: end function
g

EBibliography

[1] R. Adler. The Geometry of Random Fields. Wiley, 1981 (cit. on p. 103).

[2] S.-I. Amari. “Natural Gradient Works Efficiently in Learning.” In: Neural Comput. 10.2 (Feb. 1998),
pp. 251–276. issn: 0899-7667. doi: 10.1162/089976698300017746. url: http://dx.doi.org/10.
1162/089976698300017746 (cit. on p. 43).

[3] L. Armĳo. “Minimization of functions having Lipschitz continuous first partial derivatives.” In:
Pacific Journal of Mathematics 16.1 (1966), pp. 1–3 (cit. on p. 53).

[4] P. Auer. “Using confidence bounds for exploitation-exploration trade-offs.” In: Journal of Machine

Learning Research 3 (2003), pp. 397–422 (cit. on p. 64).

[5] L. Balles and P. Hennig. “Follow the Signs for Robust Stochastic Optimization.” In: ArXiv e-prints

(May 2017). arXiv: 1705.07774 [cs.LG] (cit. on pp. 11, 92, 123).

[6] L. Balles, M. Mahsereci, and P. Hennig. “Automating Stochastic Optimization with Gradient Variance
Estimates.” In: ICML AutoML Workshop (2017) (cit. on pp. 13, 71, 72, 123).

[7] L. Balles, J. Romero, and P. Hennig. “Coupling Adaptive Batch Sizes with Learning Rates.” In: ArXiv

e-prints (Dec. 2016). arXiv: 1612.05086 [cs.LG] (cit. on pp. 121, 124).

[8] T. D. Barfoot, C. H. Tong, and S. Särkkä. “Batch Continuous-Time Trajectory Estimation as Exactly
Sparse Gaussian Process Regression.” In: Robotics: Science and Systems X, University of California,

Berkeley, USA, July 12-16, 2014. 2014. url: http://www.roboticsproceedings.org/rss10/p01.html
(cit. on p. 27).

[9] T. Bayes. “On a problem in the doctrine of chances.” In: Philosophical Transactions of the Royal Society

(1763) (cit. on p. 17).

[10] S. Becker and Y. LeCun. “Improving the Convergence of Back-Propagation Learning with Second-
Order Methods.” In: Proc. of the 1988 Connectionist Models Summer School. Ed. by D. Touretzky, G.
Hinton, and T. Sejnowski. San Mateo: Morgan Kaufman, 1989, pp. 29–37 (cit. on p. 148).

[11] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for hyper-parameter optimization.”
In: Advances in Neural Information Processing Systems. 2011, pp. 2546–2554 (cit. on p. 31).

[12] A. C. Berry. “The accuracy of the Gaussian approximation to the sum of independent variates.” In:
Transactions of the American Mathematical 49.49 (1941), pp. 122–136 (cit. on p. 65).

[13] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006 (cit. on pp. 33, 77, 78).

[14] L. Bottou. “Large-scale machine learning with stochastic gradient descent.” In: Proceedings of the 19th

Int. Conf. on Computational Statistic (COMPSTAT). Springer, 2010, pp. 177–186 (cit. on p. 99).

[15] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for Large-Scale Machine Learning.”
In: ArXiv e-prints (June 2016). arXiv: 1606.04838 [stat.ML] (cit. on p. 52).

[16] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ Press, 2004 (cit. on p. 36).

https://doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1162/089976698300017746
http://arxiv.org/abs/1705.07774
http://arxiv.org/abs/1612.05086
http://www.roboticsproceedings.org/rss10/p01.html
http://arxiv.org/abs/1606.04838

232 | BIBLIOGRAPHY

[17] T. Broderick, N. Boyd, A. Wibisono, A. Wilson, and M. Jordan. “Streaming Variational Bayes.” In:
Advances in Neural Information Processing Systems (NIPS 26). 2013, pp. 1727–1735 (cit. on p. 99).

[18] C. Broyden. “A class of methods for solving nonlinear simultaneous equations.” In: Math. Comp.

19.92 (1965), pp. 577–593 (cit. on p. 46).

[19] C. Broyden. “A new double-rank minimization algorithm.” In: Notices of the AMS 16.4 (1969), p. 670
(cit. on pp. 11, 47).

[20] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. “A Stochastic Quasi-Newton Method for Large-
Scale Optimization.” In: ArXiv e-prints (Jan. 2014). arXiv: 1401.7020 [math.OC] (cit. on pp. 52, 161,
162).

[21] A.-L. Cauchy. “Méthode générale pour la résolution des systèmes d’équations simultanées.” In:
Compte Rendu des S’eances de L’Acad’emie des Sciences XXV S’erie A.25 (Oct. 1847), pp. 536–538 (cit. on
pp. 6, 39).

[22] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. 2011. url: https://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html (cit. on pp. 83, 88).

[23] H.-S. Chang, E. Learned-Miller, and A. McCallum. “Active Bias: Training More Accurate Neural
Networks by Emphasizing High Variance Samples.” In: ArXiv e-prints (Apr. 2017). arXiv: 1704.07433
[stat.ML] (cit. on p. 35).

[24] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina. “Entropy-SGD: Biasing Gradient Descent Into Wide Valleys.” In: CoRR abs/1611.01838
(2016). url: http://arxiv.org/abs/1611.01838 (cit. on pp. 35, 84).

[25] R. Cox. “Probability, frequency and reasonable expectation.” In: American Journal of Physics 14.1
(1946), pp. 1–13 (cit. on p. 17).

[26] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. “Identifying and Attacking
the Saddle Point Problem in High-dimensional Non-convex Optimization.” In: Proceedings of the 27th

International Conference on Neural Information Processing Systems. NIPS’14. Montreal, Canada: MIT
Press, 2014, pp. 2933–2941. url: http://dl.acm.org/citation.cfm?id=2969033.2969154 (cit. on
pp. 34, 50, 83, 161–163).

[27] A. DeMoivre. The Doctrine of Chances. A Method of Calculating the Probabilities of Events in Play. 2nd.
Woodfall, 1738 (cit. on p. 65).

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale Hierarchical
Image Database.” In: CVPR09. 2009 (cit. on p. 123).

[29] J. Dennis. “On some methods based on Broyden’s secant approximations.” In: Numerical Methods for

Non-Linear Optimization. Dundee, 1971 (cit. on pp. 11, 47).

[30] J. J. Dennis and J. Moré. “Quasi-Newton methods, motivation and theory.” In: SIAM Review 19.1
(1977), pp. 46–89 (cit. on pp. 45–47, 54).

[31] P. Diaconis. “Bayesian numerical analysis.” In: Statistical decision theory and related topics IV.1 (1988),
pp. 163–175 (cit. on p. 9).

[32] P. Diaconis and M. Shahshahani. “The subgroup algorithm for generating uniform random vari-
ables.” In: Probability in Engineering and Informational Sciences 1.15-32 (1987), p. 40 (cit. on p. 84).

[33] Z. Drezner and G. Wesolowsky. “On the computation of the bivariate normal integral.” In: Journal

of Statistical Computation and Simulation 35.1-2 (1990), pp. 101–107 (cit. on p. 106).

http://arxiv.org/abs/1401.7020
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://arxiv.org/abs/1704.07433
http://arxiv.org/abs/1704.07433
http://arxiv.org/abs/1611.01838
http://dl.acm.org/citation.cfm?id=2969033.2969154

BIBLIOGRAPHY | 233

[34] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learning and stochastic
optimization.” In: Journal of Machine Learning Research 12 (2011), pp. 2121–2159 (cit. on p. 51).

[35] A. Einstein. “Die Grundlage der allgemeinen Relativitätstheorie.” In: Annalen der Physik 354.7 (1916),
pp. 770–822 (cit. on pp. 145, 175).

[36] A. Einstein. “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von
in ruhenden Flüssigkeiten suspendierten Teilchen.” In: Annalen der Physik 322 (1905), pp. 549–560
(cit. on p. 26).

[37] C.-G. Esseen. “On the Liapounoff limit of error in the theory of probability.” In: Ark. Mat. Astr. Fysik

28A.9 (1942), pp. 1–19 (cit. on p. 65).

[38] Euclid and R. Fitzpatrick. Euclid’s Elements. Ed. by J. Heiberg. Trans. by R. Fitzpatrick. Richard
Fitzpatrick, 2009, p. 545 (cit. on p. 6).

[39] W. Feller. An Introduction to Probability Theory and Its Applications. 2nd. Vol. 2. John Wiley & Sons,
Inc., 1971 (cit. on p. 65).

[40] R. Fletcher. “A new approach to variable metric algorithms.” In: The Computer Journal 13.3 (1970),
p. 317 (cit. on pp. 11, 47).

[41] R. Fletcher and M. Powell. “A rapidly convergent descent method for minimization.” In: The Computer

Journal 6.2 (1963), pp. 163–168 (cit. on p. 47).

[42] R. Fletcher and C. Reeves. “Function minimization by conjugate gradients.” In: The Computer Journal

7.2 (1964), pp. 149–154 (cit. on pp. 48, 100).

[43] A. George and W. Powell. “Adaptive stepsizes for recursive estimation with applications in approx-
imate dynamic programming.” In: Machine Learning 65.1 (2006), pp. 167–198 (cit. on p. 99).

[44] D. Goldfarb. “A family of variable metric updates derived by variational means.” In: Math. Comp.

24.109 (1970), pp. 23–26 (cit. on pp. 11, 47).

[45] G. Golub and C. Van Loan. Matrix computations. Johns Hopkins Univ Pr, 1996 (cit. on p. 158).

[46] J. González, Z. Dai, P. Hennig, and N. D. Lawrence. “Batch Bayesian Optimization via Local Penal-
ization.” In: ArXiv e-prints (May 2015). arXiv: 1505.08052 [stat.ML] (cit. on p. 64).

[47] J. González, M. Osborne, and N. D. Lawrence. “GLASSES: Relieving The Myopia Of Bayesian
Optimisation.” In: ArXiv e-prints (Oct. 2015). arXiv: 1510.06299 [stat.ML] (cit. on p. 64).

[48] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org.
MIT Press, 2016 (cit. on pp. 30, 33, 34, 36, 77, 78, 121).

[49] J. Greenstadt. “Variations on variable-metric methods.” In: Math. Comp 24 (1970), pp. 1–22 (cit. on
p. 47).

[50] A. Grigorievskiy and J. Karhunen. “Gaussian Process Kernels for Popular State-Space Time Series
Models.” In: ArXiv e-prints (Oct. 2016). arXiv: 1610.08074 [stat.ML] (cit. on p. 27).

[51] A. Grigorievskiy, N. Lawrence, and S. Särkkä. “Parallelizable sparse inverse formulation Gaussian
processes (SpInGP).” In: ArXiv e-prints (Oct. 2016). arXiv: 1610.08035 [stat.ML] (cit. on p. 27).

[52] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. “Result Analysis of the NIPS 2003 Feature Selection
Challenge.” In: Advances in Neural Information Processing Systems 17. Ed. by L. K. Saul, Y. Weiss, and
L. Bottou. MIT Press, 2005, pp. 545–552 (cit. on p. 112).

http://arxiv.org/abs/1505.08052
http://arxiv.org/abs/1510.06299
http://www.deeplearningbook.org
http://arxiv.org/abs/1610.08074
http://arxiv.org/abs/1610.08035

234 | BIBLIOGRAPHY

[53] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I – Nonstiff Problems.
Springer, 1987 (cit. on p. 114).

[54] J. Hartikainen and S. Särkkä. “Kalman filtering and smoothing solutions to temporal Gaussian
process regression models.” In: IEEE International Workshop on Machine Learning for Signal Processing

(MLSP), 2010. 2010, pp. 379–384 (cit. on p. 27).

[55] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition.” In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778 (cit. on
p. 78).

[56] P. Hennig. “Probabilistic Interpretation of Linear Solvers.” In: SIAM J on Optimization 25.1 (2015),
pp. 210–233 (cit. on pp. 9, 11, 12, 58, 59, 145, 151, 152, 154–156, 158).

[57] P. Hennig and M. Kiefel. “Quasi-Newton methods – a new direction.” In: International Conference on

Machine Learning (ICML). 2012 (cit. on pp. 9, 11, 146).

[58] P. Hennig, M. Osborne, and M. Girolami. “Probabilistic numerics and uncertainty in computations.”
In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 471.2179
(2015) (cit. on pp. 9, 57, 170).

[59] P. Hennig and C. Schuler. “Entropy Search for Information-Efficient Global Optimization.” In: Journal

of Machine Learning Research 13 (June 2012), pp. 1809–1837 (cit. on p. 64).

[60] J. Hensman, M. Rattray, and N. Lawrence. “Fast variational inference in the conjugate exponential
family.” In: Advances in Neural Information Processing Systems (NIPS 25). 2012, pp. 2888–2896 (cit. on
p. 99).

[61] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. “Predictive Entropy Search for
Efficient Global Optimization of Black-box Functions.” In: Advances in Neural Information Processing

Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger.
Curran Associates, Inc., 2014, pp. 918–926. url: http://papers.nips.cc/paper/5324-predictive-
entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf (cit. on
p. 64).

[62] M. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear systems.” In: Journal

of Research of the National Bureau of Standards 49.6 (1952), pp. 409–436 (cit. on p. 47).

[63] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. “Improving
neural networks by preventing co-adaptation of feature detectors.” In: ArXiv e-prints (July 2012).
arXiv: 1207.0580 (cit. on p. 34).

[64] G. Hinton. “A Practical Guide to Training Restricted Boltzmann Machines.” In: Neural Networks:

Tricks of the Trade: Second Edition. Ed. by G. Montavon, G. B. Orr, and K.-R. Müller. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 599–619. isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-
35289-8_32. url: http://dx.doi.org/10.1007/978-3-642-35289-8_32 (cit. on p. 121).

[65] G. Hinton and T. Sejnowski. “Optimal Perceptual Inference.” In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (1983) (cit. on p. 30).

[66] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural Comput. 9.8 (Nov. 1997),
pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url: http://dx.doi.org/10.
1162/neco.1997.9.8.1735 (cit. on p. 30).

http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
http://arxiv.org/abs/1207.0580
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY | 235

[67] M. Hoffman, D. Blei, C. Wang, and J. Paisley. “Stochastic variational inference.” In: Journal of Machine

Learning Research 14.1 (2013), pp. 1303–1347 (cit. on pp. 99, 123).

[68] J. J. Hopfield. “Neural networks and physical systems with emergent collective computational
abilities.” In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–2558. eprint: http:
//www.pnas.org/content/79/8/2554.full.pdf. url: http://www.pnas.org/content/79/8/
2554.abstract (cit. on p. 30).

[69] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential model-based optimization for general
algorithm configuration.” In: International Conference on Learning and Intelligent Optimization. Springer.
2011, pp. 507–523 (cit. on p. 31).

[70] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift.” In: CoRR abs/1502.03167 (2015). url: http://arxiv.org/abs/1502.03167
(cit. on p. 34).

[71] D. Jones, M. Schonlau, and W. Welch. “Efficient global optimization of expensive black-box func-
tions.” In: Journal of Global Optimization 13.4 (1998), pp. 455–492 (cit. on pp. 64, 104).

[72] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems.” In: Journal of Fluids

Engineering 82.1 (1960), pp. 35–45 (cit. on p. 23).

[73] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1991 (cit. on pp. 20, 24,
26).

[74] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” In: CoRR abs/1412.6980 (2014)
(cit. on pp. 11, 51).

[75] A. Kolmogorov. “Grundbegriffe der Wahrscheinlichkeitsrechnung.” In: Ergebnisse der Mathematik

und ihrer Grenzgebiete 2 (1933) (cit. on p. 17).

[76] A. Krizhevsky and G. Hinton. “Learning multiple layers of features from tiny images.” In: (2009).
url: https://www.cs.toronto.edu/~kriz/cifar.html (cit. on pp. 112, 123).

[77] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks.” In: Advances in Neural Information Processing Systems (NIPS). Vol. 25. 2012, pp. 1097–
1105 (cit. on pp. 35, 78).

[78] A. Krogh and J. A. Hertz. “A simple weight decay can improve generalization.” In: Advances in

Neural Information Processing Systems (NIPS). Vol. 4. 1991, pp. 950–957 (cit. on pp. 34, 78).

[79] H. Kushner. “A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve
in the Presence of Noise.” In: Transactions of ASME, Series D, Journal of Basic Engineering 86 (1964),
pp. 97–106 (cit. on pp. 63, 64).

[80] P. Laplace. “Mémoire sur la probabilité des causes par les évènemens.” In: Mémoires de mathématique

et de physique presentés à l’Académie royale des sciences, par divers savans, et lûs dans ses assemblées 6 (1774),
pp. 621–656 (cit. on p. 17).

[81] Y. LeCun, L. Bottou, G. Orr, and K. Müller. “Efficient BackProp.” In: Lecture notes in Computer Science

(1998), pp. 9–50 (cit. on pp. 32, 36).

[82] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on pp. 83, 112).

http://www.pnas.org/content/79/8/2554.full.pdf
http://www.pnas.org/content/79/8/2554.full.pdf
http://www.pnas.org/content/79/8/2554.abstract
http://www.pnas.org/content/79/8/2554.abstract
http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~kriz/cifar.html

236 | BIBLIOGRAPHY

[83] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. “Object Recognition with Gradient-Based Learning.”
In: Shape, Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 319–345. isbn: 978-3-540-46805-9. doi: 10.1007/3-540-46805-6_19. url: https://doi.
org/10.1007/3-540-46805-6_19 (cit. on p. 30).

[84] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization.” In: ArXiv e-prints (Mar. 2016). arXiv:1603.06560
[cs.LG] (cit. on p. 31).

[85] C. van Loan. “The ubiquitous Kronecker product.” In: J of Computational and Applied Mathematics 123
(2000), pp. 85–100 (cit. on pp. 59, 175).

[86] D. Maclaurin, D. Duvenaud, and R. P. Adams. Early Stopping is Nonparametric Variational Inference.
Tech. rep. arXiv:1504.01344 [stat.ML]. 2015 (cit. on p. 79).

[87] D. Maclaurin, D. Duvenaud, and R. P. Adams. “Early Stopping is Nonparametric Variational Infer-
ence.” In: ArXiv e-prints stat.ML (1504.01344 2015) (cit. on p. 35).

[88] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig. Early Stopping without a Validation Set. 2017. eprint:
arXiv:1703.09580 (cit. on pp. 13, 77).

[89] M. Mahsereci and P. Hennig. “Probabilistic Line Searches for Stochastic Optimization.” In: Advances

in Neural Information Processing Systems (NIPS). Vol. 28. 2015, pp. 181–189 (cit. on pp. 13, 52, 99, 113).

[90] M. Mahsereci and P. Hennig. “Probabilistic Line Searches for Stochastic Optimization.” In: Journal of

Machine Learning Research 18.119 (2017), pp. 1–59. url: http://jmlr.org/papers/v18/17-049.html
(cit. on pp. 13, 52, 69, 99).

[91] J. Martens. “Deep learning via Hessian-free optimization.” In: International Conference on Machine

Learning (ICML). 2010 (cit. on pp. 52, 112).

[92] J. Martens. “New insights and perspectives on the natural gradient method.” In: ArXiv e-prints (Dec.
2014). arXiv: 1412.1193 [cs.LG] (cit. on p. 43).

[93] J. Močkus. “On Bayesian Methods for Seeking the Extremum.” In: Optimization Techniques IFIP

Technical Conference Novosibirsk, July 1–7, 1974. Ed. by G. I. Marchuk. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1975, pp. 400–404. isbn: 978-3-540-37497-8. doi: 10.1007/3-540-07165-2_55.
url: https://doi.org/10.1007/3-540-07165-2_55 (cit. on p. 63).

[94] N. Morgan and H. Bourlard. “Generalization and parameter estimation in feedforward nets: Some
experiments.” In: Proceedings of the 2nd International Conference on Neural Information Processing Systems.
MIT Press. 1989, pp. 630–637 (cit. on pp. 35, 78).

[95] P. Moritz, R. Nishihara, and M. I. Jordan. “A Linearly-Convergent Stochastic L-BFGS Algorithm.”
In: ArXiv e-prints (Aug. 2015). arXiv: 1508.02087 [math.OC] (cit. on p. 52).

[96] L. Nazareth. “A relationship between the BFGS and conjugate gradient algorithms and its implica-
tions for new algorithms.” In: SIAM J Numerical Analysis 16.5 (1979), pp. 794–800 (cit. on p. 48).

[97] Y. Nesterov. “A method of solving a convex programming problem with convergence rate O(1/sqr(k)).”
In: Soviet Mathematics Doklady 27 (1983), pp. 372–376 (cit. on p. 40).

[98] I. Newton. Philosophiæ naturalis principia mathematica. Ed. by C. R. 3rd. Innys, 1726 (cit. on p. 42).

[99] J. Nocedal. “Updating quasi-Newton matrices with limited storage.” In: Math. Comp. 35.151 (1980),
pp. 773–782 (cit. on p. 161).

https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
arXiv:1703.09580
http://jmlr.org/papers/v18/17-049.html
http://arxiv.org/abs/1412.1193
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/3-540-07165-2_55
http://arxiv.org/abs/1508.02087

BIBLIOGRAPHY | 237

[100] J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, 1999 (cit. on pp. 10, 36, 37, 45, 47,
52, 53, 100).

[101] A. O’Hagan. “Some Bayesian Numerical Analysis.” In: Bayesian Statistics 4 (1992), pp. 345–363 (cit. on
p. 9).

[102] B. Pearlmutter. “Fast exact multiplication by the Hessian.” In: Neural Computation 6.1 (1994), pp. 147–
160 (cit. on p. 52).

[103] H. Poincaré. Calcul des probabilités. Paris: Gauthier-Villars, 1896 (cit. on p. 9).

[104] G. Pólya. “Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momenten-
problem.” In: Mathematische Zeitschrift, Band 15 Band 15 (1922) (cit. on p. 65).

[105] B. T. Polyak. “Some methods of speeding up the convergence of iteration methods.” In: U.S.S.R.

Comput. Math. Math. Phys. 4 (5 1964), pp. 1–17 (cit. on pp. 11, 40).

[106] M. Powell. “A new algorithm for unconstrained optimization.” In: Nonlinear Programming. Ed. by
O. L. Mangasarian and K. Ritter. AP, 1970 (cit. on p. 47).

[107] L. Prechelt. “Early Stopping — But When?” In: Neural Networks: Tricks of the Trade: Second Edition.
Ed. by G. Montavon, G. B. Orr, and K.-R. Müller. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 53–67. isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_5 (cit. on pp. 35, 78).

[108] R. Rajesh, W. Chong, D. Blei, and E. Xing. “An Adaptive Learning Rate for Stochastic Variational
Inference.” In: 30th International Conference on Machine Learning (ICML). 2013, pp. 298–306 (cit. on
p. 100).

[109] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT, 2006 (cit. on pp. 20, 21,
102, 103).

[110] H. E. Rauch, C. Striebel, and F. Tung. “Maximum likelihood estimates of linear dynamic systems.”
In: AIAA journal 3.8 (1965), pp. 1445–1450 (cit. on p. 26).

[111] R. Reed. “Pruning algorithms-a survey.” In: IEEE transactions on Neural Networks 4.5 (1993), pp. 740–
747 (cit. on pp. 35, 78).

[112] W. Davidon. Variable metric method for minimization. Tech. rep. Argonne National Laboratories, Ill.,
1959 (cit. on pp. 46, 47).

[113] H. Robbins and S. Monro. “A stochastic approximation method.” In: The Annals of Mathematical

Statistics 22.3 (Sept. 1951), pp. 400–407 (cit. on pp. 7, 11, 49).

[114] F. Rosenblatt. “The Perceptron–A Perceiving and Recognizing Automaton.” In: Cornell Aeronautical

Laboratory Report 85-460-1 (1957) (cit. on p. 30).

[115] N. Roux and A. Fitzgibbon. “A fast natural Newton method.” In: 27th International Conference on

Machine Learning (ICML). 2010, pp. 623–630 (cit. on p. 100).

[116] D. Rumelhart, G. Hinton, and R. Williams. “Learning representations by back-propagating errors.”
In: Nature 323.6088 (1986), pp. 533–536 (cit. on pp. 11, 32, 40).

[117] S. Särkkä. Bayesian filtering and smoothing. Cambridge University Press, 2013 (cit. on pp. 22, 25).

[118] S. Särkkä. “Recursive Bayesian Inference on Stochastic Differential Equations.” PhD thesis. Helsinki
University of Technology, 2006 (cit. on p. 24).

[119] T. Schaul, S. Zhang, and Y. LeCun. “No more pesky learning rates.” In: 30th International Conference

on Machine Learning (ICML-13). 2013, pp. 343–351 (cit. on p. 100).

https://doi.org/10.1007/978-3-642-35289-8_5

238 | BIBLIOGRAPHY

[120] N. Schraudolph. “Fast curvature matrix-vector products for second-order gradient descent.” In:
Neural Computation 14.7 (2002), pp. 1723–1738 (cit. on p. 52).

[121] A. Shah, A. Wilson, and Z. Ghahramani. “Student-t Processes as Alternatives to Gaussian Processes.”
In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics. Ed. by
S. Kaski and J. Corander. Vol. 33. Proceedings of Machine Learning Research. Reykjavik, Iceland:
PMLR, Apr. 2014, pp. 877–885. url: http://proceedings.mlr.press/v33/shah14.html (cit. on
pp. 63, 65).

[122] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the Human Out of the
Loop: A Review of Bayesian Optimization.” In: Proceedings of the IEEE 104.1 (2016), pp. 148–175. doi:
10.1109/JPROC.2015.2494218. url: https://doi.org/10.1109/JPROC.2015.2494218 (cit. on
p. 64).

[123] D. Shanno. “Conditioning of quasi-Newton methods for function minimization.” In: Math. Comp.

24.111 (1970), pp. 647–656 (cit. on pp. 11, 47).

[124] J. Sietsma and R. J. Dow. “Creating artificial neural networks that generalize.” In: Neural networks

4.1 (1991), pp. 67–79 (cit. on pp. 35, 78).

[125] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition".” In: CoRR abs/1409.1556 (2014) (cit. on p. 78).

[126] J. Skilling. “Bayesian solution of ordinary differential equations.” In: Maximum Entropy and Bayesian

Methods, Seattle (1991) (cit. on p. 9).

[127] J. Snoek, H. Larochelle, and R. P. Adams. “Practical Bayesian Optimization of Machine Learning
Algorithms.” In: Advances in Neural Information Processing Systems (NIPS). 2012 (cit. on p. 31).

[128] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, and
R. Adams. “Scalable Bayesian Optimization Using Deep Neural Networks.” In: Proceedings of the

32nd International Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceed-
ings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 2171–2180. url: http:
//proceedings.mlr.press/v37/snoek15.html (cit. on p. 65).

[129] A. Solin and S. Särkkä. “Explicit link between periodic covariance functions and state space models.”
In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS

2014). Vol. 33. JMLR Workshop and Conference Proceedings. 2014, pp. 904–912 (cit. on p. 27).

[130] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. “Gaussian Process Optimization in the Bandit
Setting: No Regret and Experimental Design.” In: International Conference on Machine Learning (ICML).
2010 (cit. on pp. 64, 104).

[131] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting.” In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html (cit. on p. 34).

[132] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. “On the importance of initialization and momentum
in deep learning.” In: Proceedings of the 30th International Conference on Machine Learning (ICML-13).
Vol. 28. JMLR Workshop and Conference Proceedings, 2013 (cit. on p. 112).

[133] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich. “Going deeper with convolutions.” In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2015 (cit. on p. 78).

http://proceedings.mlr.press/v33/shah14.html
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
http://proceedings.mlr.press/v37/snoek15.html
http://proceedings.mlr.press/v37/snoek15.html
http://jmlr.org/papers/v15/srivastava14a.html

BIBLIOGRAPHY | 239

[134] R. Tibshirani. “Regression shrinkage and selection via the lasso.” In: Journal of the Royal Statistical

Society. Series B (Methodological) (1996), pp. 267–288 (cit. on pp. 34, 78).

[135] T. Tieleman and G. Hinton. RMSprop Gradient Optimization. 2015. url: http://www.cs.toronto.
edu/%5C~tijmen/csc321/slides/lecture%5C_slides%5C_lec6.pdf (cit. on pp. 51, 91).

[136] C. Van Loan and N. Pitsianis. “Approximation with Kronecker Products.” In: Linear Algebra for Large

Scale and Real Time Applications. Kluwer Publications, 1993, pp. 293–314 (cit. on p. 175).

[137] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. “Extracting and composing robust features
with denoising autoencoders.” In: Proceedings of the 25th International Conference on Machine Learning

(ICML). ACM. 2008, pp. 1096–1103 (cit. on pp. 35, 78).

[138] G. Wahba. Spline models for observational data. CBMS-NSF Regional Conferences series in applied
mathematics 59. SIAM, 1990 (cit. on p. 102).

[139] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. “Regularization of Neural Networks using
DropConnect.” In: Proceedings of the 30th International Conference on Machine Learning. Ed. by S.
Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia,
USA: PMLR, June 2013, pp. 1058–1066. url: http://proceedings.mlr.press/v28/wan13.html
(cit. on p. 34).

[140] W. H. Wolberg, W. N. Street, and O. L. Mangasarian. UCI Machine Learning Repository: Breast Cancer

Wisconsin (Diagnostic) Data Set. Jan. 2011. url: http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic) (cit. on pp. 83, 112).

[141] P. Wolfe. “Convergence conditions for ascent methods.” In: SIAM Review (1969), pp. 226–235 (cit. on
p. 53).

[142] J. Wu, M. Poloczek, A. G. Wilson, and P. I. Frazier. “Bayesian Optimization with Gradients.” In:
ArXiv e-prints (Mar. 2017). arXiv: 1703.04389 [stat.ML] (cit. on p. 64).

[143] M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method.” In: CoRR abs/1212.5701 (2012)
(cit. on p. 51).

[144] T. Zhang. “Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent
Algorithms.” In: Twenty-first International Conference on Machine Learning (ICML 2004). 2004 (cit. on
p. 99).

[145] P. Zhao and T. Zhang. “Stochastic Optimization with Importance Sampling.” In: ArXiv e-prints (Jan.
2014). arXiv: 1401.2753 [stat.ML] (cit. on p. 35).

[146] R. Zhao, W. B. Haskell, and V. Y. F. Tan. “Stochastic L-BFGS: Improved Convergence Rates and
Practical Acceleration Strategies.” In: ArXiv e-prints (Mar. 2017). arXiv: 1704.00116 [math.OC] (cit.
on p. 52).

http://www.cs.toronto.edu/%5C~tijmen/csc321/slides/lecture%5C_slides%5C_lec6.pdf
http://www.cs.toronto.edu/%5C~tijmen/csc321/slides/lecture%5C_slides%5C_lec6.pdf
http://proceedings.mlr.press/v28/wan13.html
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://arxiv.org/abs/1703.04389
http://arxiv.org/abs/1401.2753
http://arxiv.org/abs/1704.00116

Colophon
This document was typeset with LATEX, using a blend of classicthesis
developed by André Miede and tufte-latex, which is based on Ed-
ward Tufte’s Beautiful Evidence. The design was mostly inspired by the
PhD thesis of Edgar D. Klenske who followed Aaron Turon, Christian
A. Larsson. Most of the graphics in this thesis were generated using
pgfplots and pgf/tikz.

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Algorithms
	Acronyms
	Notation
	Prologue
	0 Introduction

	I Preliminaries
	1 Gaussian Process Regression
	1.1 Probability Calculus
	1.2 Gaussian Distributions
	1.3 Continuous Indexing—Gaussian Processes
	1.4 Wiener Processes & Kalman Filters

	2 Empirical Risk Minimization
	2.1 Risk and Empirical Risk
	2.2 Artificial Neural Networks
	2.3 Iterative Optimization Routines
	2.4 Uncertain Gradients
	2.5 Line Searches

	3 Quadratic Problems & Probabilistic Linear Solvers
	3.1 Gaussian Inference on Positive Definite Matrices
	3.2 Kronecker Algebra

	4 Miscellaneous
	4.1 Bayesian Optimization
	4.2 Central Limit Theorem

	II Overfitting, Generalization & Early-Stopping
	5 Local Distributions of Losses and Gradients
	5.1 Likelihood for Losses and Gradients
	5.2 Variance-Estimation from Mini-Batches

	6 Early-Stopping Without a Validation Set
	6.1 Overfitting, Regularization and Early-Stopping
	6.2 When to Stop?—A Criterion Based on Gradient Statistics
	6.3 Experiments
	6.4 Comparison to rmsprop
	6.5 Conclusion and Outlook

	III Automated Step Size Adaptation
	7 Probabilistic Line Searches
	7.1 Motivation
	7.2 From Classic to Probabilistic Line Searches
	7.3 Lightweight BayesOpt for Candidate Selection
	7.4 Probabilistic Wolfe Conditions for Termination
	7.5 Experiments
	7.6 Conclusion and Outlook

	IV Kalman Filtering for Stochastic Optimization
	8 First-Order Filter for Gradients
	8.1 A Model for Once-Differentiable Functions
	8.2 Diagonal Approximations
	8.3 Experiments
	8.4 Conclusion and Outlook

	9 Second-Order Filter for Hessian Elements
	9.1 A Model for Twice-Differentiable Functions
	9.2 Recovering Classic Quasi-Newton Methods
	9.3 Towards a Fast Solver: Low-Rank Approximations
	9.4 Experiments
	9.5 Conclusion and Outlook

	Epilogue
	10 Conclusions and Outlook

	Appendix
	A Kronecker Algebra
	A.1 Kronecker Products
	A.2 Symmetric Kronecker Products
	A.3 Anti-Symmetric Kronecker Products

	B Derivation of Filtering Equations for Optimization
	B.1 Hyper-Parameter Adaptation for First-Order Filter
	B.2 Second-Order Filter (Non-symmetric)
	B.3 Second-Order Filter (Symmetric)
	B.4 Low-Rank Approximation (Second-Order Filter, Symmetric)

	C Additional Experimental Results for probLS
	C.1 Noise Sensitivity
	C.2 Hyper-parameter Sensitivity
	C.3 Noise Estimation

	D Detailed Pseudocode of probLS
	E Bibliography

