
ELSEVIER Theoretical Computer Science 187 (1997) 179-202

Theoretical
Computer Science

On the Walk

Beatrice Amrhein, Oliver Gloor, Wolfgang Kiichlin*

Wilhelm Schickard Institute ,fbr Computw Scimcr, Unirrersity of’ Tiihingm, Gerwlan~

Abstract

The Griibner Walk is a basis conversion method proposed by Collart, Kalkbrener, and Mall.
It converts a given Griibner basis G of a (possibly positive dimensional) polynomial ideal I
to a Griibner basis G’ of I with respect to another term order. The target Griibner basis is
approached in several steps (the Walk), each performing a simpler Griibner basis computation.
We address a host of questions associated with this method: alternative ways of presenting the
main algorithm, algorithmic variations and refinements, implementation techniques, promising
applications, and its practical performance, including a comparison with the FGLM conversion
method. Our results show that the Walk has the potential to become a key tool for computing
and manipulating ideal bases and solving systems of equations.

1. Introduction

Given any presentation of a polynomial ideal I by a system of polynomials, and

given an admissible term ordering <<, Buchberger’s famous algorithm [5,6,8] computes

a canonical representation for I, the Griibner Basis G(f, <). Basis comersion methods

solve the Grijbner basis computation problem G(I, <) for the special case that / is

already presented by a GrGbner basis with respect to another term ordering <.

The main interest in basis conversion today stems from applications in solving sys-

tems of polynomial equations. The form and size of a Grtibner basis, and the time

for its computation, depend heavily on the term ordering <<. Unfortunately, the lexi-

cographic term orders as well as similar ones that enable the elimination of variables

(and hence can be used for polynomial system solving) are “slow” term orders, i.e.,

they usually lead to particularly long computations.

Basis conversion methods are a promising development to ease this situation. They

allow us to compute a lexicographic Grijbner basis via a total degree basis as a stepping-

stone, followed by basis conversion. Thus Buchberger’s general algorithm is applied

only for a “fast” order, and the “slow” order is approached by a more specialized basis

* E-mail: {amrhein, gloor, kuechlin}@informatik.uni-tuebingen.de; http://www-sr.informatik.uni-tuebingexde.

0304-3975/97/$17.00 @ 1997PElsevier Science B.V. All rights reserved

PII SO304-3975(97)00064-9

180 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

conversion. Empirical data show that both parts usually take about the same time, so

that speedups of several orders of magnitude can be reaped (cf. Section 5).

A few different basis conversion methods have been suggested by now, among them

the so-called FGLM method [121, the Hilbert function approach [141, and the Grobner

Walk by Collart, Kalkbrener, and Mall [9]. The idea of basis conversion can be traced

back at least to 1969, when Buchberger [6] sketched a method, similar in spirit to

FGLM, for the special case of “constructing the roots of the polynomial ideal” in the

zero-dimensional case (cf. Section 6). For further historical pointers and references the

reader is referred to [9].

The Griibner Walk conversion method is particularly interesting because it is inher-

ently independent of the dimension of the ideal. The algorithm takes as input two term

orders <, <<, and the (reduced) Grobner basis G(I, <). It constructs a finite number

of term orders <= <o,. , +,, = << and bases Gi,. . , G,, such that Gk is a Griibner

basis of I with respect to +. As Gk+i lies in the neighborhood of Gk, i.e., the cor-

responding cones of the Grobner Fan [21] of I are adjacent, Gk+i is computed from

Gk with relative ease (cf. Section 2).

The purpose of this paper is to present a first application report of the Griibner Walk,

in order to gauge its potential impact. We report empirical results from system solving,

including a comparison with Buchberger’s algorithm and a comparison with the FGLM

basis conversion method, and timings from the implicitization of Bezier surfaces. Mean-

ingful results on non-trivial applications need a high quality implementation, which in

turn must rest on solid theoretical foundations. In particular, it is necessary to cast the

abstract algorithm into a concrete form which is practically efficient, and it is necessary

to develop know-how about the time consumption of, and implementation techniques

for, its constituent parts. We therefore present an implementor’s view of the algorithm,

and we discuss practically important algorithmic variations and refinements as well as

implementation techniques. In practice, these combined efforts have yielded up to 3

orders of magnitude speedup over our first naive implementation.

Our PARSACS GR~BNER WALK is implemented in C within the purely sequential

PARSAC-S subset of the PARSAC system framework. PARSAC [191 is a parallel Computer

Algebra library which has its origins in the SACLIB package [4], but the SACLIB code is

now being phased out. PARSAC-S is a sequential subset, whose code has however the

potential to be executed and parallelized within the full PARSAC system. For this paper,

all code was executed purely sequentially (no threads of control).

This paper summarizes and extends two earlier papers [2,3], reflecting important

milestones in our installation. Our first implementation [2] was written using SACLIB

[4] and some functions of the GR~BNER package [25]. It already confirmed the key

results obtained by the first experimental implementation [9] on top of MATHEMATICA.

While for small examples the walk sometimes presented a little overhead, for larger

examples a lexicographic Grobner basis could often be computed one to two orders of

magnitude faster with this implementation via a total degree basis followed by a walk.

In [3], we introduced improvements such as path perturbation, interreduction, inte-

gral weight vectors, and special initial Griibner basis computation. As a consequence,

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 181

we achieved another order of magnitude speedup, and we obtained important insight

into the interference of these techniques. We also compared the Walk to FGLM and

found it to be generally faster, especially on larger examples.

In this paper, we introduce further algorithmic improvements, and we have phased

out the GR~BNER code in our implementation. Our timings are still taken with the proven

SACLIB integer arithmetic, but we expect well over a factor of two speedup from moving

to Gnu MP in the immediate future. Still, our empirical results already contain many

examples where a lexicographic Grobner basis could be computed in a few seconds

by walking, but failed to terminate within an hour conventionally (cf. Section 5).

Besides the original prototype implementation [9] we are aware of only one other

implementation of the Walk to date [23], within the MAGMA system. The empirical

results reported in [23] are in general accordance with ours.

The remainder of the paper is organized as follows. In Section 2 we give an alter-

native presentation of the Grobner Walk algorithm from an implementor’s perspective.

In Section 3 we introduce a number of related practically important algorithmic vari-

ations. They address the problem of finding the computationally easiest path for the

Walk by path pevturbution. Section 4 presents significant implementation techniques

such as integral weight vectors and special initial Griibner basis computation. Sec-

tion 5 presents a table of timings relevant for systems solving, including a comparison

with conventional lexicographic Griibner basis computation. Section 6 gives a short

comparison with the FGLM method, including a table of timings. Section 7 outlines

the important applications of implicitization and inverse kinematics mentioned in [l 11;

for the implicitization problem we present an algorithmic short-cut and first empirical

timings. Section 8 describes sources of parallelism in the algorithm. We finish with

a conclusion in Section 9.

2. The algorithm

We now present the essential part of Griibner Walk theory [9] from an algorithmic

point of view.

2.1. Weight vectors and orderings

Throughout this paper let R = K[x 1,. . . ,x,1 be a polynomial ring over an arbitrary

field K, and let I be an ideal. The ideal generated by a set of polynomials G&R is

denoted by (G). For an admissible term ordering <, in+(f) is the head monomial of

a polynomial f, and

in+(G) := {in+(g) 1 g E G}.

By G(Z, 4) we denote a Grijbner basis of the ideal Z with respect to 4. A rational

weight vector w is an element of

{(VI,..., V,)EQ”IVi20 for i=l,...,n}.

182 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

For a monomial t = cxp’ . . .x,‘” we define its w-degree by

dey,,(t) := jJ eiV;.

ikl

A polynomial is w-homogeneous if all its monomials have the same w-degree. Ev-

ery polynomial f can be written as f = f, + . . + fr with j o-homogeneous and

the f; sorted by descending o-degrees. fi consists of all monomials with maximum

o-degree and is called the initial form of f, denoted by in,(f). in,(G) is the set

{%Ls) Ig E (3. A weight vector o is compatible with a term ordering + on G, if

for each polynomial y = ml + . . . + m, E G ordered in descending order with respect

to 4, cleg,(mI)3dey,(mi) holds for all 1 <i<s. We say that the initial form of g

degenerates with respect to o if dey,(ml) = deey,(mz).

Following [24], a regular H x n matrix A over Q+ determines a term ordering 4 by

t -x Y :w $
i=i (’

‘i degAi(t)=dey,,(u) A degA,(t)<degAr(r).
j=l)

In other words, the rows A; of matrix A contain weight vectors oi = Ai, and t 4 Y

is determined by comparing the wi-degrees of t and r until the first inequality is

found. Furthermore, A can be any m x n matrix of rank n. We denote the ordering 3

determined by A with O(A), and use 0(o,A) for the ordering determined first by cc)

and then by the weight vectors of A.
Vice versa, given a term order -x, there always exists a matrix A that determines <

~41.

Example. -qex = t(A) and +tdeg = O(B) where

A=

1 0 . . . 0 0

0 1 . . . 0 0
.

0 0 ‘.. 1 0

0 0 . . . 0 1 I> B=

1 1 . . . 1 1 1

1 0 ,.. 0 00

0 1 . . . 0 00
.

0 0 . . . 100

0 0 . . . 0 1 0 I
For the walk, we assume that we are given a Grobner basis G(I, <) with respect to

the start order <. Our aim is to compute the Grobner basis of G(I,<) with respect

to the target order <<. First, we determine the respective order matrices A and B with

G(A) = < and O(B) = <<. o and r are the first rows of A and B and they are compatible

(on R) with < and <, respectively. The path of our walk is along the line segment

tsr, where we denote the occurring intermediate weight vectors by

~=:C!& ,..., ok ,..., C&,:=7.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 183

To obtain a uniform designation, we introduce the following notation:

+J := O(A) = C(a,A) = <

-Xi := C(o,,B)= P(a,B)

+k := P(ok,B)

-&I := P(w,, B) = P(z, B) = C(B) = <<

During the walk, we successively compute the (reduced) Griibner bases of I with

respect to the orderings +, k = 1,. . . , m. These are called the intermediute Grobner

bases G(Z, +k), which form the stepping-stones for the walk.

In the first step, we keep the first vector cr of the start order matrix and replace

the rest by the target order matrix. In the algorithm, this first step is performed in the

same way as the subsequent steps, which affects only few initials because the ordering

comparison is by the a-degree first. (In fact, the first step is trivial if we start inside

a cone.)

In the subsequent steps, row c is gradually changed into r. All steps in the Walk

are performed in the following way.

2.2. One step

Given the Grobner basis G(I, <k-l) and the weight vector C&, we take one step

from wk-, to wk. ’ We first determine in,, (G(Z, -+_I)) (cf. Step 8 in Figs. 1 and 2).

This is a Grobner basis of (ino,(with respect to -+-I, as cc)k is compatible with

+k-1 on G(Z, +-I). By applying Buchberger’s algorithm in Step 0, we compute

a reduced Griibner basis G((&,, (I)), +k) = {ml , . . . , m,} = M. This is usually a very

short task, as most of the initials in in,,, (G(Z, +_I)) consist of only one monomial.

By abuse of language, we sometimes call this basis of initials an initial Griibner

basis.

We remark that every S-polynomial of two o-homogeneous polynomials is

o-homogeneous. Furthermore, every reduction of an w-homogeneous polynomial by

an w-homogeneous polynomial results in an w-homogeneous polynomial.

In the lifting Step 0, we construct the new intermediate Grobner basis G(Z, +k).

For that, we reduce each polynomial mi E A4 = {ml,. . . , m,} = G((in,,, (I)), +k) by the

Grobner basis G((in,,j, (I)), +/;_I) = z&, (G(Z, -$_I)) and obtain a representation

’ wk is the jirst weight vector on the path wk- 1 T which causes the degeneration of any other of the initial

forms in the reduced GrBbner basis G(I, +-I). Obviously, wk is compatible with +k_l on G(I, +kPl).

184 B. Amrhein et al. I Theoretical Computer Science I87 (1997) 179-202

G(I,<k-l) - -i;;o;;esz;K- --c GU, +k)

take initials
with reSpeCt t0 uk

I

Q 0

1

lift

i%k (W, <k-l)) compute 0

= G((&,(I)), +k-1) Grijbner basis
c G((&,V)), 4

Fig. I. Step k of the Cr(ibner Walk.

Grabner-Walk

Input:

output:

Orders < = U(A) and < = U(B)
G c Q[zl, , z,]: reduced Grijbner Basis with respect to <
starting weight vector 0 (first row of matrix A)
target weight vector 7 (first row of matrix B)

G: Griibner Basis with respect to <

+,4: current and next order
w: current weight vector

0 w = 0; 4 = (7(A); 4’ = O(a,B);
0 G, = initials(G, WI; // Take initials of G
8 G; = sort(G,, ++I ; // Sort initials according to new order
0 G,+ = init_gb(G:, <+); // Compute Griibner Basis of initials
0 G,+ = interreduce(G:, 4); // Interreduce G:
6 G = lift (G,‘, 4, G,, G, 4 ; // Lift G,+ to a full Gri5bner B. wt. 4

0 G = interreduce(G, ++I; // Interreduce G
0 if (w = r) return(G); // Stop if target order reached

0 t = determine_bordercw, T, G); // Determine the next parameter

if (undefined(t) 1 return(G) ; // No further conversion needed

w = (l-t)*w + t*7; // Determine the next border

@ < = 4+: -c+ = O(w.Bl; Goto 8:

Fig. 2. The Gr6bner Walk algorithm.

with gj E G(I, <k_ 1). Because of the above remark, all polynomials mi, i = 1,. . . , s,

are ok-homogeneous. Therefore, the polynomials hij in the representation of mi are

wk-homogeneous as well. Moreover, as mi and each summand hijin,,(gj) have the

same ok-degree, all dij := h,gj - hijin,,,(gj) contain only monomials of a smaller ok-

degree than that of mi. Therefore, we obtain

mi = & hjinctjA (gj) = 2 h,g,j - 2 d*j = in,,
j=l j=l j=l

In the lifting step, we replace all occurrences of polynomials ino, in the represen-

tation of mi (Eq. (1)) by the full polynomials gj and obtain the set of polynomials

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 185

F:={fi,...,,f,} with

J; := & hijgj.
j=l

(3)

It remains to be shown that F is a Grijbner basis of I with respect to +k, or

(in+(Z)) = (in+(F)). As (by definition) CL& is compatible with +k on R, it follows

that

which is equal to (i+(M)), as M is a Grobner basis of (in,,, (I)) with respect to +k.

Replacing the polynomials m; by their representation (1) and applying Eq. (2) we

obtain

Since Ok is compatible with -$ (On R), this is equal to

and we finally obtained (i+(Z)) C (in+,(F)). As F C I, F is a Griibner basis of I

with respect to +.

Since M is a minimal Grobner basis of (&,(Z)) (M is even reduced), F is a minimal

Griibner basis as well. By performing an interreduction in Step 0, we obtain a reduced

Griibner basis of I.

To finish this step of the walk, it remains to determine the next weight vector in

Step 0, that is, the point on the path where some (other) initial forms of the reduced

Grobner basis G(Z, -+) degenerate. To detect a change in the initial forms, we deter-

mine the first weight vector w(t) := ok + t(r - ok), 0 <t 6 1, on the directed path c,,+r

with the following property.

t = min({s I +7,,dPl) = ~eg,&4~ &kcoj(pl > # &!I,&%)~

Y=PI + ... +Pn,YEG(6 +k)}n[O,11).

This can be done by the calculation of one scalar product in Q” and one rational quo-

tient per monomial. Thus, if t is defined, it is a positive rational number. Furthermore,

if there is no t with 0 <t d 1, then in+(G) = in<<(G) and we already determined the

final Grobner basis; if t = 1 is the minimum, then the next conversion is the last step

of the walk.

In this way, we successively compute the Grljbner bases and weight vectors

G(L <)=(-?I, +o),w,W, +I) ,..., o,,G(Z, -h)=G(Z,<).

186 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

2.3. Termination of the algorithm

For the termination of the algorithm we need some further definitions [21,9,3]. Let

G CR be a reduced Grijbner basis of I with respect to a term ordering 4. As we

mentioned before, we can always find an order matrix A with + = (?(A). Furthermore,

we can choose a weight vector w = AI such that none of the initial forms of gi E G

degenerate. Then, there is even a neighborhood C C Q” of w such that for all o’ E C,

w’ is compatible with + on G as well. So, the leading monomials of G(Z, -x) remain the

same in the whole neighborhood C. Therefore, G(Z, +) = G(Z, Qo’, A)) for all ok’ in C.

By C,(Z) we determine the set of weight vectors o which lead to the same reduced

Grobner basis as 4. More precisely, for a term order 4, we denote by C,(Z) the

topological closure of

{c~ 1 (r) a weight vector, (in,(l)) = (inOl(I))}.

This is a convex cone in Q” with nonempty interior. The set

F(Z)= {C,(Z) 1 4 a term order}

is called the Griibner Fun of I [21].

On the walk, we only have to take a step when we cross into a new cone, that

is, when one (or more) of the initials in the Griibner basis of Z degenerate with

respect to the upcoming weight vector o(t). By a result from [21], the Grijbner fan of

a polynomial ideal has finite cardinality, and hence the number of steps is finite.

3. Algorithmic variations: path perturbation

Experience shows that among the many paths from CJ to r (more precisely: their

respective cones) in a Griibner Fan, some may be computationally much faster, often

by one to two orders of magnitude. Path finding is therefore an important issue in

practice. Path Perturbation is a common principle for finding computationally efficient

paths which we explore in a number of variations.

Whenever the path leaves a cone of the Grobner Fan, some of the head monomials

of the Grobner basis with respect to the weight vector w become initial forms (true

polynomials). Adjacent cones meet in faces, i.e., surfaces or edges in three dimen-

sional Fans. At points of such intersections of several cones, either several monomials

in a polynomial have the same maximal weight and become the initial form, or sev-

eral polynomials have initial forms containing more than one monomial. Hence, the

initial forms become larger. Especially in a complicated fan, meeting-points where sev-

eral cones adjoin are frequent. Moreover, if the walk moves along the intersection of

two or even more cones (i.e., along a surface in three-dimensional fans), there are

monomials which keep the same maximal weight, and therefore remain in the initial

form of a polynomial on this line. Anyway, both cases cause the initial forms to be

unnecessarily heavy during the Walk.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 187

Direct Walks

Fig. 3. A slice of a Griibner Fan

3. I. Global puth perturbation

We can avoid walking through meeting-points or along arbitrary faces of cones if we

slightly perturb the starting point (the starting weight vector cr) and the end-point (the

target weight vector z) of the Walk, making sure we stay in their cones. Then, the path

passes through a sequence of maximally adjacent cones. The initial forms are shorter

and the individual tasks of converting their Grijbner bases from -$_I to -$ likewise

become much smaller. However, we may have to compute more Grobner bases since

we may have to walk through more cones on the perturbed path.

Fig. 3 shows a slice of a sample fan of an ideal in three variables (x, y,z) as

intersection with the plane x + y + z = 1. Path segment @I goes through a common

edge of three cones (a point in the slice), path segment @runs along a surface of two

cones (a line in the slice).

3.2. Computation of perturbed weight vectors

As already pointed out, with each ordering 3 we can easily associate a regular

n x n-matrix A over Q+ that determines this ordering. Obviously, we can even choose

A over N by multiplying each row with the least common multiple of the denominators

of this row. The cone C+ of a reduced Grobner basis G with respect to -X contains

the first vector Al of A. Now, if we perturb this vector slightly by &AI, we remain in

C+, provided that e is sufficiently small. This is assured if l/s > tdeg(p) * max(A2) for

each p in G, where

tdeg(p):=max

However, if Al is at a vertex of the fan’s slice (i.e., an edge and hence a one-

dimensional face of the cone), Al +&AZ is in general at an edge in the slice (i.e.,

a two-dimensional face of the cone).

To reach a face of dimension at least three, we can perturb by the third vector as

well, resulting in Al + &A2 + c2A3. Provided l/c> tdeg(p) * (max(A2) + max(As)) for

each p in G, we move to a location that is contained in a three-dimensional open set

of the cone.

188 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

LO)

Fig. 4. First, second, and third degree perturbation

For n variables, we can extend this procedure up to any k <n and obtain the perturbed

vector

of degree k (see Fig. 4). It is in a face of dimension at least k of the cone. For k = 1

we obtain the unperturbed weight vector. If k = n, we obtain a maximally perturbed

weight vector that lies within the cone (and hence belongs to only one cone).

Given a reduced Griibner basis with respect to a start ordering, an E satisfying the

conditions for the perturbation of the start vector can easily be determined. However,

to obtain a perturbed target vector, we have to guess such an E and check the validity

at the end of the Walk. Note that the algorithm remains correct even if the E is invalid.

In this case we only did not reach the target ordering yet and have to walk further

(closer to the unperturbed target).

The perturbation degrees of the start and target vector are a priori independent and

can be combined in any way. However, if we perturb the starting vector by degree k,

then during the Walk we usually2 omit vectors on faces of dimensions k’ <k - 1, as

long as the chosen e is valid. As the last step can cross a meeting point of several

cones, it is usually useful to perturb the target vector, too.

The sequence of cones on the path is determined by the (larger of the) perturbation

degrees of the start and target vectors. We will speak of a direct puth/ walk to indi-

cate no perturbation and of a muximally perturbed path/ wulk to indicate maximally

perturbed start and target vectors.

Experience shows that in general a small perturbation degree leads to fewer steps

with larger initial forms, whereas a large perturbation degree leads to more steps with

* It may happen that the degree is lowered if the path direction coincides with one of the perturbation

directions or a linear combination thereof.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 189

Fig. 5. The Evasive Walk.

smaller initial forms. The advantage of the maximally perturbed path is that the initial

Grobner basis computations take very little time. The main disadvantages are that very

large weight vectors may occur (especially if there are many variables) and that the

walk may consist of many more steps.

To overcome this dilemma, we need to perturb the path only slightly, so that only the

weight vectors causing many large initials are avoided. One solution is the perturbation

of start and target vectors by small degrees larger than one. Another solution is to use

perturbation only where necessary.

3.3. Local path perturbation: the Evasive Walk

With global perturbation we decide statically, before the start of the walk, on the

perturbation degree for the entire walk. However, often only very few vectors belong

to many cones, and we would like to perturb the path only near these vectors and not

as a whole. That is, we need a perturbation that is adaptive to the local situation.

Whenever a path approaches a border of a cone (weight vector w), we may first

measure its complexity by counting the number and size of the initial forms at w.

Depending on this number, we may either proceed on the path, or we may choose

a path evading this border by a local perturbation (cf. Fig. 5). To walk on the bypass,

we perturb o once with the order of the actual cone (this is the local start vector) and

once with the order of the next cone (this is the local target vector). We thus replace

one giant step by several smaller ones.

This method, called the Evasive Walk, has not been implemented yet.

3.4. The Fractal Walk

As mentioned in [9], the initial Griibner basis computation can be performed by any

basis conversion algorithm, as the initials in,(G) form a Grobner basis. The idea of

the Fractal Walk is to apply a walk recursively to this basis conversion.

Taking initials with respect to o once again does not shorten the polynomials in

in,(G) any further. The idea is now to perturb o into w’ in the hope that in,! (in&G))

190 B. Amrhein e! al. I Theoretical Computer Science 187 (1997) 179-202

contains shorter polynomials than in,(G). In other words, we want to walk on a

perturbed path, starting with Griibner basis in,,(in,(G)), and finishing with a result

which is equal to the result of the initial Grijbner basis computation we wish to avoid.

In contrast to the Evasive Walk, the path is on a “lower” level (in a “tunnel”)

because it runs in (inJ G)) rather than in I = (G). As the stepping-stones during

a fractal walk are ideal bases of (in,,](G)), we avoid the lifting to bases of the

full ideal I = (G). Hence the interreductions after lifting should become substantially

simpler.

This could be viewed at first as an algorithmic optimization of the Evasive Walk.

However, the method can be applied recursively with increasing levels of perturbation.

In each step, the higher the level of perturbation, the shorter the initials of the Grobner

bases. Obviously, we obtain the same number of steps as we would obtain with a nor-

mal walk on a maximally perturbed path. However, the interreductions become much

smaller on each level. As a price, we have the additional overhead of taking initials

and lifting the initial Griibner basis on each level.

The Fractal Walk has not been implemented yet. It exhibits similarities with the

Griibner Stripping Algorithm [lo] which deserve further investigation.

4. Implementation techniques

We have observed performance increases by one to two orders of magnitude as

a result of refining our implementation. There are two sets of problems: first, imple-

mentation techniques for the walk proper, and, second, implementation techniques for

the special class of Griibner basis computations occurring during the walk. For the

latter, we shall see that the distribution of computation time in Buchberger’s algorithm

is significantly different on initial forms, and we have the new situation that hundreds

of Grobner basis computations may be needed in quick succession.

Besides the prototype implementation of the Walk [9], we are only aware of one

other report on an implementation [23].

4.1. Integral polynomials

Most of our implementation is independent of the particular choice of the coefficient

field K, but all our examples are chosen over R = Q[xl,. .,x,1, hence K = Q.

Since polynomial arithmetic with coefficients in Z is much faster than with coeffi-

cients in Q, we do not store the polynomials in manic form, but convert them to integral

polynomials. It is common knowledge that this leads to significant speedups, typically

of a factor around 5, for Buchberger’s algorithm. Then, the reduction of a polynomial’s

tail becomes more complex, as we may have to multiply all coefficients with a cofactor

in order to be able to perform a reduction step.

During the walk, it does not much affect the computation of the Griibner bases of the

initials as most of the initials are monomials and hence their coefficients can be nor-

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 191

Fig. 6. The Zigzag Walk.

malized. However, using integral polynomials is rather important for the interreduction

of the intermediate Grijbner bases.

4.2. Weight vectors

Given the ordering O(o,A), every comparison of two monomials involves costly

rational arithmetic with the rational weight vector o. In particular, the higher the per-

turbation degree has been chosen, the longer the representation of the rational numbers

in the weight vectors may become. Therefore, it is important to make the comparisons

as efficient as possible.

4.2.1. Integral weight vectors: the Zigzag Walk

Neither the algorithm nor the implementation requires the walk to stay on the hyper-

plane C xi = 1. 3 As only the direction of the weight vectors is needed, we may scale

them to integral vectors. Then all comparisons become much cheaper, mainly because

their computation does not consume heap space any more.

The first step for this modification of the implementation is to choose an integral

starting vector and an integral target vector. Moreover, all intermediate vectors can be

chosen integral as well. From the geometric point of view, the walk is then on a zigzag

course in the plane E through starting point, target point, and the zero of the fan (see

Fig. 6). Its projection onto the plane xxi = 1 gives the original walk, which also lies

on plane E.

4.2.2. Storing the weights

As reported in [23], it is worth to store the weights of the monomials. However,

all computations with initials involve only c+homogenous polynomials and therefore

we simply have to omit the computations of the weights for the comparisons between

monomials. (Only for sorting the set of initials in Steps 0, 0, and 0, the weight

of the leading monomials have to be computed.) Thus, we compute and store the

weights during the lifting step and use the weights for the interreduction, after which

3 In fact, the Grlibner fan can be regarded as an object in projective space.

192 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

we delete the weights again (as afterwards the weight vector and hence the weights

change).

4.3. Specializing Buchberger’s algorithm for initial forms

A closer analysis of the initial forms that occur in the Griibner basis computation

suggested an adaptation for this special case. We need to tailor Buchberger’s algorithm

to this unusual situation, because we wish to perform a possibly long sequence of such

computations.

In a conventional implementation of Buchberger’s algorithm, the reduction of

S-polynomials is the most time consuming part. Therefore, it is rather unimportant

how efficiently the pairs are created, and it is profitable to apply very sophisticated

deletion criteria even if relatively few pairs are removed.

In our case, in particular in the perturbed walk, most of the initial forms are mono-

mials. In fact, in our examples typically only one or two initials out of 60 or more

polynomials are not monomials. In this situation, the following easy observation as-

sumes some practical importance.

Monomial criterion: The critical pair of two monomials is unnecessary, because its
S-polynomial is equal to zero.

Moreover, initial forms are by their very nature relatively short, and hence the cor-

responding S-polynomials are relatively short and their reduction is relatively cheap.

Therefore, the other parts of the algorithm, and in particular the creation of pairs,

become much more important. Hence, all key decisions in configuring Buchberger’s

algorithm have to be re-evaluated.

4.3.1. Creating pairs and applying criteria
In order to implement the monomial criterion, we maintain two lists of polynomials,

one with p monomials only and one with q true polynomials. This allows us to avoid

on the order of p2 operations when creating the pairs.

Buchberger’s first criterion (the product criterion) can also be applied very fast,

because it uses only local data of the two parent polynomials.

For the second criterion (the chain criterion) [7], however, one has to search the

whole basis for a suitable third polynomial. We found that in our average case it is

cheaper to reduce an S-polynomial of initial forms than to search the whole basis.

Therefore, we omit the chain criterion because it takes too much time.

4.3.2. Selection strategies
Experience shows that Griibner bases of two maximally adjacent cones (as we deal

with in the perturbed walk) are very similar. The computation of the initial Griibner

basis usually adds only one or two new polynomials to the basis. As most of the

S-polynomials reduce to zero in one step, it is not worth spending time on sophisticated

selection strategies.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 193

4.3.3. Reduction
Whenever we can apply a reducer that consists of one monomial only, the reduction

step amounts to a removal of the respective monomial in the polynomial that is reduced.

Therefore, it is worth applying reductions by monomials first.

5. Empirical results

We observed the run times displayed in Table 1 on examples of the PoSSo Library

[22]. All times are in seconds on one 90MHz HyperSPARC4 processor of a SUN-10

under Solaris 2.4/2.5. Our implementation uses some software modules of the PARSAC

framework [l, 191, but it is completely sequential (no threads of control). Timings of

some examples with different combinations of our algorithmic variations and imple-

mentation techniques can be found in [3]. Reference timings are for version 4 of the

GB system [131. LEXICO and SUGAR refer to the respective options of GB; speedup is

computed as SuGAR/(Grevlex + Walk).

S.I. Where does the time go?

A closer investigation of the run-times yields a few valuable guidelines for setting

up the Walk. More information on this question can be found in [3].

In almost all cases, the computation of the initial Grobner bases and the interreduc-

tion of the intermediate Grobner bases account for more than 90% of the time. On

a direct walk, most of the time is spent in initial Griibner bases computations and little

in interreductions. In a perturbed walk, most of the time is spent in interreductions

and little in initial Griibner bases computations. If the polynomials of the intermediate

Table 1

Timings for system solving

GB

LEXICO SUGAR GREVLEX

PARSAC-S

Grevlex Walk

Speedup

amborg

caprasse

CEISSOU

Cohn-2

hieta- I
jhdh

jhdh.inf

katsura5

vermeer

186s

5288 s

>lh

>lh

466 s

>Ih

>lh

>lh

>lh

>Ih

112s 0.23 s

3174s 0.23 s

>lh 59.0 s

>lh 12.6 s

2x0 s 0.7 s

>Ih 1 147.0 s

>Ih 18.5 s

rlh 14.3 s

>Ih 13.4 s

>lh 1.2 s

0.32 s

0.18 s

28.0 s

16.9 s

0.6 s

46.0 s

43.0 s

10.0s

5.1 s

0.1 s

0.4 s

1.0 s

0.6 s

46.5 s

73.0 s

3.9 s

33.4 s

0.2 s

4.8 s

0.2 s

156

2645

>I26

>57

4

> 72

>47

>353

>360

> 12000

4 Roughly equivalent to a 50 MHz SuperSPARC

194 B. Amrhein et al. I Theoretical Computer Science I87 (1997) 179-202

basis consist of several thousands of monomials, it happens that the lifting step needs

more than 10% of the time; in this case, the interreduction accounts for more than

80% of the time. Overall, perturbed walks have many more steps but nevertheless are

substantially faster than direct walks.

Therefore, interreduction is a very significant factor in the run-time, and the ques-

tion arises what effect its omission would have on the duration of the walk [3]. The

general experience is the following: Reduced intermediate bases lead to fewer steps

in the walk. The extra (superfluous) steps occur when monomials which are reducible

lead to changes in initial forms. On smaller examples it may be worth omitting the

interreduction; on larger examples the interreductions tend to save more time than they

cost.

6. Comparison with FGLM

For zero-dimensional ideals the Grobner Walk can be compared with the FGLM basis

conversion method as presented in [121. There are ways to lift this restriction of FGLM

in special cases, but there is reasonable doubt as to their practical significance [20].

The fundamental idea seems to have been already sketched by Buchberger [6] for

the special case of constructing a triangular polynomial system for the representation

of the roots of the ideal. We paraphrase from the German original: We determine

successiuely for all [x:1, k = 0, 1, . . , their representation as a linear combination of

the elements of R/I (by reduction to normal form in the given Griibner basis). We

also find the jrst k = ml for which [xf] linearly depends on [l], [xi], . . . , [x:-‘I. Thus

we find a polynomial of degree m - 1 with pl([xl]) = 0. Now we form the residue

classes of the power products emerging from the multiplication of l,xi,...,xr’-’ by

x2,x;, . until we find for some residue class [x;‘x;] a dependency on earlier residue

classes which can be written as JJ~([x~], [x2]) = 0, and so on.

The method thus enumerates R/I (which is bounded because the ideal is zero-

dimensional) and uses the given Grijbner basis for computation in R/I. If the ideal

is not zero-dimensional, some other means for bounding the process must be found.

Thus the complexity of the method grows with the dimension of R/I. The conversion

to the new Grobner basis always needs about the same computational effort, regardless

whether we start with a basis in its neigborhood or not. 5

Table 2 of timings gives a rough idea of the relative speeds of the FGLM method

and the Grobner Walk. It is based on our own implementation of FGLM, which may

not be tuned to the same degree as our implementation of the Walk, but we attempted

a reasonable comparison. For details of the examples see the Appendix and [3].

5 Of course the computations in R/f still depend on the basis.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 195

Table 2

Timings of Walk vs. FGLM

Walk FGLM Walk FGLM

Exl grev + lex

Ex2 grev + lex

Ex3 grev + lex

s6 grev - lex

s7 grev - lex

15.3 s

119.8 s

71.6 s

15.8 s

164.9 s

113.4 s

523.4 s

677.9 s

55.1 s

739.4 s

Exl tot + lex

Ex2 tot + lex

Ex3 tot + lex

s6 tot + lex

s7 tot i lex

15.1 s 143.0 s

119.6 s 481.4 s

71.4 s 912.8 s

5.7 s 55.0 s

64.1 s 769.1 s

7. Applications

7.1. Implicitization in computer graphics

In geometric modeling, the problem of converting parametrically defined varieties

into their implicit form is of great importance [151. The parametric representation of

a surface is most suitable for rendering it on an output device. It is however ill suited

for the computation of intersections, for which the implicit representation is more

amenable. As mentioned in [9], the Griibner Walk should be an attractive tool for

the conversion. In the following, after giving a short outline of the theory involved

(cf. [16, 17]), we introduce an algorithmic improvement called Sudden Death, and we

present a first collection of empirical results.

Given rational functions p1/q1,. . , pn/qn in tl , . . . , tm, defining the parametric equa-

tions

XI =Pl(tl,...,tm)/91(tl,...,tm)

&I = Pn(tl,. . ., ~m)/qn(tl,‘~.>tm)

how can we find (polynomial) equations in xi,. . ,x,, that define the same variety? The

basic idea is to eliminate the variables tl, . . . , t,,, from the equations above. In general,

this can be achieved by computing the elimination ideal

({ 41x*-PI ,...> y.,,-P~,(IJ,i)z-l})“K,x i,..., x,,

in the polynomial ring K[xi, . . . ,x,,, tl ,...,bdl.
If all of the qi are equal to 1, we can leave out the last polynomial and deter-

mine the elimination ideal I n K[xi, . . ,x,] where I is the ideal ({xl - pl (tl, . . , t,), . . . ,

xn - pn(tl,...,tm))).
In the case of a polynomial parameterization, the set {xi - ~1,. . . , x, - pn} already

forms a Grobner basis with respect to every term order < = O(a, A) with

o=(l)..., l,o)...) 0).
-+

n m

196 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

Table 3

Timings for implicitization

Example Buchberger Walk Sudden death

Ex4 >2 h 43.1 s 17.8 s

Ex5 >lO h 433 s 265 s

Ex6 2676 s 158 s

Ex7 >l h 76.1 s 49.9 s

Ex8 3639 s 122 s

Ex9 >I h 153 s 68.3 s

With the Grijbner Walk algorithm, we can then successively transform this set into

a Grobner basis using the target vector r, where

r=(O)...) O,l,...) 1).
VV

n m

We can improve the method by short-cuts if we know the number and shape of poly-

nomials we are looking for. In the usual three-dimensional case, where we look for

an implicit representation of a surface, we start with three polynomials xi -pi (tt, t2),

x2 - pz(tl, $),x3 -p3(tl,t2). Then we can finish our walk as soon as we have found

an (irreducible) polynomial which only depends on xi, x2, and x3. Usually, this poly-

nomial occurs quite early during the walk, which means we can stop in sudden death

long before we reach the last cone of our path.

The timings in Table 3 compare the different methods on examples presenting Bezier

surfaces. 6 The second column shows the timings for Buchberger’s algorithm; the soft-

ware is the sequential derivate of our PARSAC installation [l]. The third column shows

the timings for the maximally perturbed walk from the starting cone of (1, 1, 1, 0,O)
to the target cone of (0, 0, 0, l,l). The last column shows the timings we obtained

when we stopped the walk after finding the (irreducible) polynomial in three variables.

With this method, we compute the jrst Grobner basis on our walk with respect to an

elimination ordering. This method cannot be simulated by any other basis conversion

algorithm we are aware of, as we only know the target ordering after the fact that we

found the result.

7.2. Inverse kinematics in robotics

Given the configuration of a robot (i.e., the lengths 11,. . . , 1, of the arm segments and

the angles 1.91,. . . , 19~ in the joints), the Forward Kinematics Problem is to determine

the position (x,y,z) of the hand (effector). In fact, the coordinates x, y, and z can be

represented as polynomials in Ii,. . , I, and cos(‘Lpi), sin(r9i), . . . ,cos(dt), sin(tit). Thus,

forward kinematics is essentially the evaluation of polynomials for a particular setting

of Ii,. . , I, and 191,. . . ,19~.

6 Our source for the examples was [18].

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 191

The inverse problem is more complex: given the position (x, y,z) of the hand, we

want to determine whether it is possible to place the hand of the robot at that point.

If it is possible, we wish to find all angles r91, . . , tit and lengths of the prismatic joints

II,..., 1,1 that will satisfy this Inverse Kinematics Problem.

In algebraic terms, given the polynomial equations

y = P2(11 ,...,Ir,CI,SI,...,Ct,St)

z = P3(ll ,...,lr,Cl,Si,...,Ct,S1)

c+-s:

we want to solve for cl,. . . , ct, and Ii,. . . , I,.!. Obviously, this can be done using Griibner

bases [111. However, the given equations already form a Grobner basis with respect

to any ordering with

x,y,z>q ,..., Cj, BSI,..., St,11 ,..., 1rf

Hence, we can directly apply basis conversion.

7.3. Searching jbr ideal members

Sometimes we are interested in searching for ideal members with a given property P,

rather than computing a Griibner Basis. We briefly sketch a general framework for

searching which is based on the Walk. The previous examples of searching for implicit

polynomials and of inverse kinematics polynomials fit into this framework, as does

searching for reducible polynomials in a system solving context.

We use the Walk to convert the ideal presentation into a form in which polynomials

with some property P are likely, or certain, to occur. Once such an ideal member is

found, the Walk may continue, or stop in sudden-death as in implicitization, or even

change direction and follow a new target ordering.

Suppose we want to perform an operation F on (some) elements of the ideal I. We

know, for example from the asymptotic complexity of F, that it is preferable to run F

only on polynomials with property P. We also know that such polynomials are likely,

or certain, to occur in G(I, <), for some <. We may then use the walk to massage

the ideal representation in the right direction, i.e., we walk down a complexity slope

w.r.t. F, towards G(Z, <).

In a system solving context, F may be any operation for splitting the problem, such

as factoring or g.c.d. computations (cf. [26]). These operations are much cheaper on

198 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

polynomials with few variables; some practically fast algorithms have exponential com-

plexity in the number of variables. Therefore, we may approach some G(I, <) with

an elimination ordering < and try F only on polynomials in few variables. More pre-

cisely, we may make a run for the (nearest) border of the fan, choosing a first target

vector of the form (1,. . , I, 0,l . . . ,I). In the zero-dimensional case, we are certain to

obtain a univariate polynomial. But with the Grobner Walk we can apply this method

also in the nonzero dimensional case, as we will always obtain polynomials with fewer

variables on which F runs much faster. As soon as F has split some ideal mem-

ber(s), we may split the entire problem and proceed with several walks, one for each

fragment.

8. Parallelization

Since our sequential implementation is already within the PARSAC framework, we

have a migration path towards practical parallelism on networks of multiprocessor

workstations [19]. A combination with our parallel Grobner basis algorithm [I] will

then yield a parallel equation solver. In a system solving context (cf. Table I), about

half the run-time is now consumed by the Walk. ’ Since Buchberger’s algorithm (the

first half) can be speeded up substantially by parallelization [l], it is interesting to

attack the Walk (the second half) likewise. We will restrict ourselves here to a few

fundamental observations and reserve a thorough treatment for the future.

Our parallel speedups for Buchberger’s algorithm are due to parallel reductions of S-

polynomials, which are rather insignificant in the specialized Buchberger algorithm for

initial forms. Therefore we do not expect much gain from attacking the initial Grobner

basis computations. However, we may parallelize the interreductions after lifting, which

account for the lion’s share of time in large perturbed walks.

Parallel work occurs at a higher granularity when we split a problem (cf. Section 7.3)

and the fragments are walked to their destinations concurrently.

Work parallelism such as this generates speedups by performing a given amount of

work in parallel, and is therefore limited to at most linear speedups. In contrast, search

parallelism may exhibit super-linear speedups.

A typical source of such parallelism is indicated in Section 7.3. We may pursue

several searches in parallel, and stop as soon as the first walk reached the target. We

may also employ a searching party of several searching walks concurrently to look for,

and act upon, desirable ideal members, such as univariate polynomials in x, y, . . , .

In practice, a big challenge for the parallelization will be to find the best configura-

tions among all algorithmic and implementation options for the parallel implementation,

and to achieve significant speedups over the best sequential configuration.

‘We expect the share of the Walk to increase on larger examples.

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 199

9. Conclusions

Our installation of the Griibner Walk has yielded speedups of 2-4 orders of magni-

tude for many examples of system solving (cf. Section 5). For the Computer Graphics

application of implicitization, the Walk allowed the computation of examples which

were unreachable by Buchberger’s algorithm alone (cf. Section 7).

Among its competitors “FGLM” and “Hilbert driven Buchberger”, the Walk stands

out as the method which places no additional restrictions whatsoever on the input,

be it the dimension of the ideal or the shape of the polynomials in the presentation.

Our comparison with FGLM (cf. Section 6) has shown that the Walk is an order of

magnitude faster in our implementation and on our examples. A conservative conclusion

may be that the Walk is no slower than FGLM, but free of any restrictions.

The theoretical foundation of the Walk has proved to be sufficiently broad to acco-

modate the variations which an implementation and successful applications require. It is

possible to improve the speed of a naive implementation by l-3 orders of magnitude

by the theoretical and practical methods described in Sections 3 and 4 of this paper.

For the Computer Graphics application, the special sudden death variation yielded an

extra speedup of an order of magnitude on larger examples.

We have also outlined sources of parallelism in the Walk algorithm which give hope

for further very substantial speedups with super-linear components on existing parallel

computers.

Based on these findings we conclude that the Grijbner Walk will become an essential

component in applications of Griibner bases; conversely, it is scarce imaginable that

real world applications can afford to not include some kind of basis conversion at least

as powerful as the Griibner Walk.

Acknowledgements

We are above all indebted to Sttphane Collart, Michael Kalkbrener, and Daniel Mall

for sharing their work with us at a very early stage, including many helpful discussions

and suggestions, such as an independent suggestion for path perturbation. We wish to

thank Bruno Buchberger and Wolfgang Windsteiger for making their GR~BNER pack-

age publicly available; it helped us considerably in setting up our first versions of the

PARSAC-S WALK. We are grateful to Reinhard Klein for providing us with a choice of

interesting examples from Computer Graphics, including the Bezier surfaces. This work

is based upon research supported by grant Ku 96612-l from Deutsche Forschungsge-

meinschaft.

200

Appendix

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

Example

Exl

Ex2

Ex3

s6

s7

Variables

x<y<z

x<y<z

x<y<z

x6 <x5 <x4

<x3 <x2 <Xl

x7 <x6 <x5 <x4

<x3 <x2 <Xl

Polynomials

xy3 + y4 + yz2 - z3 - 2Xz3,

2x2y+x3y+2xy2z,

2 - 3x2 y + 2x3 y + yz3

x + 3xy3 + y4 + yz2,

-x22 + 2y3z + z2 + 2yz2 + 3xyz2,

3x3 + xy2 + yz2 - 2xz3

x2+y4+x3z+yz-2Xz3,

x2 y2 + y3z + z3 + 3 yz3,

y4 -x22 + 2y2z - 2xyz2

h6x2 + 2X5x3 +X4’ + X; + XI,

b6x3 + 2X5x4 + 2X2X, +X2,

2x6x4 + x: + 2X3X, +X3 +X;,

2x6x5 + b4xI f X4 + 2X3X2,

$ + 2X5x1 +X5 + &4X2 + Xf,

h6xl +x6 f h5x2 + 2X4X3

~7X2+~6x3+h5_Xq+X;+Xl,

~7x3+~6x4+x52+2x2x, +X2,

~7X4+~6x5+h3X, +X3+X&

2X7x5 + xi + h4~1 f ~4 + 2~3x2,

~7X6+~5xI$X5+~4X2+X~,

x; + 2X6x1 + x6 + h5x2 $2X4X3,

h7xI + x7 + k6x2 + 2X5X3 + X4’

Example Btzier surfaces in parametric form

Ex4 x=u+l4-2v-2u2v+211212

y= -6u+2v+v2-5v3+2uv2-4u2v2

Z= -2+2u2+6v-3u2v2

Ex5 x=3-2u+2u2 -2u3 -v+uv+2u203

y=6u+5u2-u3+v+~v+v2

z= -2+3u-uv+2uv2
Ex6 x=2~~v-~v~+61111~

y=3u2+3Uv-U2v$41130+212

z= -uv+4u2v-3u3v+v2

Ex7 x=3-3u-3u2+4u3-9v+2u2v2

y = 6u2 - 3u3 + 3uv - du2v + 2u3v2

z = 3u2 + 3u3 - 9uv + 2u3v2

B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

Example Bkzier surfaces in parametric form

Ex8 x=2-6u+6u2+6v+u2v-33u3v-2v2

y=3-9u+u~-3u3+3v2+9uv2

z = 9u2 - 9u3 - u2v + 2u3 v + uw

Ex9 x=2u-2U2+U3-2uv+U2v

y=u-4~~+3v-2uv+~~v-6v~+~~~+3v~-uv~

z=3-5u+~~-2v+~v~

201

A Blzier surface of degree m x n with parameters bi,j E 6J3, i = 0,. . . , m, j = 0,. . . ,n,

is of the form [181

f(u,V)=il:i:bij 9 r ~‘Vj(l-~)~-‘(l-V)~-j~

i=O j=(l 00

The other examples originate from the PoSSo [22] examples list.

References

[I] B. Amrhein, 0. Gloor, W. Kiichlin, A case study of multi-threaded Griibner basis completion, in: Y.N.

Lakshman (Ed.), ISSAC’96, Zurich, Switzerland, ACM Press, New York, 1996, pp. 95-102.

[2] B. Amrhein, 0. Gloor, W. Kilchlin, How fast does the Walk run?, in: A. Car&e, L.R. Oudin (Eds.),

5th Rhine Workshop on Computer Algebra, Saint-Louis, France, 1996, ISL, pp. 8.1-8.9.

[3] B. Amrhein, 0. Gloor, W. Kiichlin, Walking faster, in: J. Calmet, C. Limongelli (Eds.), DISC0’96,

Karlsruhe, Germany, Lecture Notes in Computer Science, vol. 1128, Springer, Berlin, 1996, pp.

150-161.

[4] Buchberger, Collins, Encamacion, Hong, Johnson, Krandick, Loos, Mandache, Neubacher, Vielhaber,

SACLIB User’s Guide, 1993. On-line software documentation.

[5] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem

nulldimensionalen Polynomideal, Ph.D. thesis, Universitit Innsbruck, 1965.

[6] B. Buchberger, Ein algorithmisches Kriterium fir die Losbarkeit eines algebraischen Gleichungssystems,

Aequationes Math. 4 (3) (1970) 374-383.

[7] B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Grobner-Bases,

in: E.W. Ng (Ed.), EUROSAM’79, Marseille, France, Lecture Notes in Computer Science, vol. 72,

Springer, Berlin, 1979, pp. 3-21.

[8] B. Buchberger, Griibner bases: an algorithmic method in polynomial ideal theory, in: N.K. Bose (Ed.),

Recent Trends in Multidimensional Systems Theory, Reidel, Dordrecht, 1985, chap. 6.

[9] S. Collart, M. Kalkbrener, D. Mall, Converting bases with the Griibner Walk, J. Symbol. Comput. 1997,

to print.

[IO] S. Collart, D. Mall, The idea1 structure of Grijbner base computations, Preprint, 1994.

[I I] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics,

Springer, Berlin, 1992.

[l2] J. Faugere, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional Griibner bases by

change of ordering, J. Symbol. Comput. 16 (1993) 329-344.

[131 J.C. Faugere, Resolution des systemes d’equations algebriques, Ph.D. thesis, Universite Paris 6, 1994.

[l4] C. Traverso, Hilbert functions and the Buchberger algorithm, J. Symbolic Comput. 22(4) (1996)

355-376.

[15] C. Hoffmann, Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, Los Altos, CA,

1989.

[16] M. Kalkbrener, Implicitization of rational curves and surfaces, in: S. Sakata (Ed.), AAECC-8, Lecture

Notes in Computer Science, vol. 508, Tokyo, Japan, Springer, Berlin, 1990, pp. 249-259.

202 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202

[17] M. Kalkbrener, Implicitization by Griibner basis conversion, in: IMACS’95, Albuquerque, NM, 1995.

http://math.unm.edu/ACA/1995/Proceedings.

[181 R. Klein, Netzgenerierung impliziter und parametrischer Kurven und F&hen in einem objektorientierten

System, Ph.D. Thesis, Eberhard-Karls-Universitiit, Tubingen, 1995.

[19] W.W. Kiichlin, PARSAC-2: Parallel computer algebra on the desk-top, in: J. Fleischer, J. Grabmeier,

F. Hehl, W. Kiichlin (Eds.), Computer Algebra in Science and Engineering, World Scientific, Singapore,

1995, pp. 24-43.

[20] S. Licciardi, T. Mora, lmplicitization of hypersurfaces and curves by the Primbasissatz and basis

conversion, in: J. von zur Gathen, M. Gieshrecht (Eds.), ISSAC’94, Oxford, England, ACM Press,

New York, 1994, pp. 191-196.

[21] T. Mora, L. Robbiano, The Griibner Fan of an ideal, J. Symbol. Comput. 6 (1988) 183-208.

[22] PoSSo, Polynomial systems library, ftp: posso.dm.unipi.it.

[23] A. Steel, The Magma Grijbner Walk, 1996, Preprint.

[24] V. Weispfenning, Admissible orders and linear forms, ACM Sigsam Bull. 21 (2) (1987) 16-18.

[25] W. Windsteiger, B. Buchberger, GRGBNER: A Library for computing Griibner Bases based on SACLIB,

Manual for Version 2.0, 1993.

[26] D.Y.Y. Yun, On algorithms for solving systems of polynomial equations, ACM Sigsam Bull. 27 (1973)

19925.

