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Abstract 

The Griibner Walk is a basis conversion method proposed by Collart, Kalkbrener, and Mall. 
It converts a given Griibner basis G of a (possibly positive dimensional) polynomial ideal I 
to a Griibner basis G’ of I with respect to another term order. The target Griibner basis is 
approached in several steps (the Walk), each performing a simpler Griibner basis computation. 
We address a host of questions associated with this method: alternative ways of presenting the 
main algorithm, algorithmic variations and refinements, implementation techniques, promising 
applications, and its practical performance, including a comparison with the FGLM conversion 
method. Our results show that the Walk has the potential to become a key tool for computing 
and manipulating ideal bases and solving systems of equations. 

1. Introduction 

Given any presentation of a polynomial ideal I by a system of polynomials, and 

given an admissible term ordering <<, Buchberger’s famous algorithm [5,6,8] computes 

a canonical representation for I, the Griibner Basis G(f, <). Basis comersion methods 

solve the Grijbner basis computation problem G(I, <) for the special case that / is 

already presented by a GrGbner basis with respect to another term ordering <. 

The main interest in basis conversion today stems from applications in solving sys- 

tems of polynomial equations. The form and size of a Grtibner basis, and the time 

for its computation, depend heavily on the term ordering <<. Unfortunately, the lexi- 

cographic term orders as well as similar ones that enable the elimination of variables 

(and hence can be used for polynomial system solving) are “slow” term orders, i.e., 

they usually lead to particularly long computations. 

Basis conversion methods are a promising development to ease this situation. They 

allow us to compute a lexicographic Grijbner basis via a total degree basis as a stepping- 

stone, followed by basis conversion. Thus Buchberger’s general algorithm is applied 

only for a “fast” order, and the “slow” order is approached by a more specialized basis 
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conversion. Empirical data show that both parts usually take about the same time, so 

that speedups of several orders of magnitude can be reaped (cf. Section 5). 

A few different basis conversion methods have been suggested by now, among them 

the so-called FGLM method [ 121, the Hilbert function approach [ 141, and the Grobner 

Walk by Collart, Kalkbrener, and Mall [9]. The idea of basis conversion can be traced 

back at least to 1969, when Buchberger [6] sketched a method, similar in spirit to 

FGLM, for the special case of “constructing the roots of the polynomial ideal” in the 

zero-dimensional case (cf. Section 6). For further historical pointers and references the 

reader is referred to [9]. 

The Griibner Walk conversion method is particularly interesting because it is inher- 

ently independent of the dimension of the ideal. The algorithm takes as input two term 

orders <, <<, and the (reduced) Grobner basis G(I, < ). It constructs a finite number 

of term orders <= <o,. , +,, = << and bases Gi,. . , G,, such that Gk is a Griibner 

basis of I with respect to +. As Gk+i lies in the neighborhood of Gk, i.e., the cor- 

responding cones of the Grobner Fan [21] of I are adjacent, Gk+i is computed from 

Gk with relative ease (cf. Section 2). 

The purpose of this paper is to present a first application report of the Griibner Walk, 

in order to gauge its potential impact. We report empirical results from system solving, 

including a comparison with Buchberger’s algorithm and a comparison with the FGLM 

basis conversion method, and timings from the implicitization of Bezier surfaces. Mean- 

ingful results on non-trivial applications need a high quality implementation, which in 

turn must rest on solid theoretical foundations. In particular, it is necessary to cast the 

abstract algorithm into a concrete form which is practically efficient, and it is necessary 

to develop know-how about the time consumption of, and implementation techniques 

for, its constituent parts. We therefore present an implementor’s view of the algorithm, 

and we discuss practically important algorithmic variations and refinements as well as 

implementation techniques. In practice, these combined efforts have yielded up to 3 

orders of magnitude speedup over our first naive implementation. 

Our PARSACS GR~BNER WALK is implemented in C within the purely sequential 

PARSAC-S subset of the PARSAC system framework. PARSAC [ 191 is a parallel Computer 

Algebra library which has its origins in the SACLIB package [4], but the SACLIB code is 

now being phased out. PARSAC-S is a sequential subset, whose code has however the 

potential to be executed and parallelized within the full PARSAC system. For this paper, 

all code was executed purely sequentially (no threads of control). 

This paper summarizes and extends two earlier papers [2,3], reflecting important 

milestones in our installation. Our first implementation [2] was written using SACLIB 

[4] and some functions of the GR~BNER package [25]. It already confirmed the key 

results obtained by the first experimental implementation [9] on top of MATHEMATICA. 

While for small examples the walk sometimes presented a little overhead, for larger 

examples a lexicographic Grobner basis could often be computed one to two orders of 

magnitude faster with this implementation via a total degree basis followed by a walk. 

In [3], we introduced improvements such as path perturbation, interreduction, inte- 

gral weight vectors, and special initial Griibner basis computation. As a consequence, 
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we achieved another order of magnitude speedup, and we obtained important insight 

into the interference of these techniques. We also compared the Walk to FGLM and 

found it to be generally faster, especially on larger examples. 

In this paper, we introduce further algorithmic improvements, and we have phased 

out the GR~BNER code in our implementation. Our timings are still taken with the proven 

SACLIB integer arithmetic, but we expect well over a factor of two speedup from moving 

to Gnu MP in the immediate future. Still, our empirical results already contain many 

examples where a lexicographic Grobner basis could be computed in a few seconds 

by walking, but failed to terminate within an hour conventionally (cf. Section 5). 

Besides the original prototype implementation [9] we are aware of only one other 

implementation of the Walk to date [23], within the MAGMA system. The empirical 

results reported in [23] are in general accordance with ours. 

The remainder of the paper is organized as follows. In Section 2 we give an alter- 

native presentation of the Grobner Walk algorithm from an implementor’s perspective. 

In Section 3 we introduce a number of related practically important algorithmic vari- 

ations. They address the problem of finding the computationally easiest path for the 

Walk by path pevturbution. Section 4 presents significant implementation techniques 

such as integral weight vectors and special initial Griibner basis computation. Sec- 

tion 5 presents a table of timings relevant for systems solving, including a comparison 

with conventional lexicographic Griibner basis computation. Section 6 gives a short 

comparison with the FGLM method, including a table of timings. Section 7 outlines 

the important applications of implicitization and inverse kinematics mentioned in [l 11; 

for the implicitization problem we present an algorithmic short-cut and first empirical 

timings. Section 8 describes sources of parallelism in the algorithm. We finish with 

a conclusion in Section 9. 

2. The algorithm 

We now present the essential part of Griibner Walk theory [9] from an algorithmic 

point of view. 

2.1. Weight vectors and orderings 

Throughout this paper let R = K[x 1,. . . ,x,1 be a polynomial ring over an arbitrary 

field K, and let I be an ideal. The ideal generated by a set of polynomials G&R is 

denoted by (G). For an admissible term ordering <, in+(f) is the head monomial of 

a polynomial f, and 

in+(G) := {in+(g) 1 g E G}. 

By G(Z, 4) we denote a Grijbner basis of the ideal Z with respect to 4. A rational 

weight vector w is an element of 

{(VI,..., V,)EQ”IVi20 for i=l,...,n}. 
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For a monomial t = cxp’ . . .x,‘” we define its w-degree by 

dey,,(t) := jJ eiV;. 

ikl 

A polynomial is w-homogeneous if all its monomials have the same w-degree. Ev- 

ery polynomial f can be written as f = f, + . . + fr with j o-homogeneous and 

the f; sorted by descending o-degrees. fi consists of all monomials with maximum 

o-degree and is called the initial form of f, denoted by in,( f ). in,(G) is the set 

{%Ls) Ig E (3. A weight vector o is compatible with a term ordering + on G, if 

for each polynomial y = ml + . . . + m, E G ordered in descending order with respect 

to 4, cleg,(mI)3dey,(mi) holds for all 1 <i<s. We say that the initial form of g 

degenerates with respect to o if dey,(ml ) = deey,(mz). 

Following [24], a regular H x n matrix A over Q+ determines a term ordering 4 by 

t -x Y :w $ 
i=i (’ 

‘i degAi(t)=dey,,(u) A degA,(t)<degAr(r). 
j=l ) 

In other words, the rows A; of matrix A contain weight vectors oi = Ai, and t 4 Y 

is determined by comparing the wi-degrees of t and r until the first inequality is 

found. Furthermore, A can be any m x n matrix of rank n. We denote the ordering 3 

determined by A with O(A), and use 0(o,A) for the ordering determined first by cc) 

and then by the weight vectors of A. 
Vice versa, given a term order -x, there always exists a matrix A that determines < 

~41. 

Example. -qex = t(A) and +tdeg = O(B) where 

A= 

1 0 . . . 0 0 

0 1 . . . 0 0 
. . . . . . . . . . . . 

0 0 ‘.. 1 0 

0 0 . . . 0 1 I> B= 

1 1 . . . 1 1 1 

1 0 ,.. 0 00 

0 1 . . . 0 00 
. . . . . . . . . . . . . . . . . 

0 0 . . . 100 

0 0 . . . 0 1 0 I 
For the walk, we assume that we are given a Grobner basis G(I, <) with respect to 

the start order <. Our aim is to compute the Grobner basis of G(I,<) with respect 

to the target order <<. First, we determine the respective order matrices A and B with 

G(A) = < and O(B) = <<. o and r are the first rows of A and B and they are compatible 

(on R) with < and <, respectively. The path of our walk is along the line segment 

tsr, where we denote the occurring intermediate weight vectors by 

~=:C!& ,..., ok ,..., C&,:=7. 
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To obtain a uniform designation, we introduce the following notation: 

+J := O(A) = C(a,A) = < 

-Xi := C(o,,B)= P(a,B) 

+k := P(ok,B) 

-&I := P(w,, B) = P(z, B) = C(B) = << 

During the walk, we successively compute the (reduced) Griibner bases of I with 

respect to the orderings +, k = 1,. . . , m. These are called the intermediute Grobner 

bases G(Z, +k ), which form the stepping-stones for the walk. 

In the first step, we keep the first vector cr of the start order matrix and replace 

the rest by the target order matrix. In the algorithm, this first step is performed in the 

same way as the subsequent steps, which affects only few initials because the ordering 

comparison is by the a-degree first. (In fact, the first step is trivial if we start inside 

a cone.) 

In the subsequent steps, row c is gradually changed into r. All steps in the Walk 

are performed in the following way. 

2.2. One step 

Given the Grobner basis G(I, <k-l) and the weight vector C&, we take one step 

from wk-, to wk. ’ We first determine in,, (G(Z, -+_I )) (cf. Step 8 in Figs. 1 and 2). 

This is a Grobner basis of (ino,( with respect to -+-I, as cc)k is compatible with 

+k-1 on G(Z, +-I). By applying Buchberger’s algorithm in Step 0, we compute 

a reduced Griibner basis G( (&,, (I)), +k ) = {ml , . . . , m,} = M. This is usually a very 

short task, as most of the initials in in,,, (G(Z, +_I )) consist of only one monomial. 

By abuse of language, we sometimes call this basis of initials an initial Griibner 

basis. 

We remark that every S-polynomial of two o-homogeneous polynomials is 

o-homogeneous. Furthermore, every reduction of an w-homogeneous polynomial by 

an w-homogeneous polynomial results in an w-homogeneous polynomial. 

In the lifting Step 0, we construct the new intermediate Grobner basis G(Z, +k). 

For that, we reduce each polynomial mi E A4 = {ml,. . . , m,} = G( (in,,, (I)), +k) by the 

Grobner basis G( (in,,j, (I)), +/;_I ) = z&, (G(Z, -$_I )) and obtain a representation 

’ wk is the jirst weight vector on the path wk- 1 T which causes the degeneration of any other of the initial 

forms in the reduced GrBbner basis G(I, +-I ). Obviously, wk is compatible with +k_l on G(I, +kPl ). 
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G(I,<k-l) - -i;;o;;esz;K- --c GU, +k) 

take initials 
with reSpeCt t0 uk 

I 

Q 0 

1 

lift 

i%k (W, <k-l)) compute 0 

= G((&,(I)), +k-1) Grijbner basis 
c G((&,V)), 4 

Fig. I. Step k of the Cr(ibner Walk. 

Grabner-Walk 

Input: 

output: 

Orders < = U(A) and < = U(B) 
G c Q[zl, , z,]: reduced Grijbner Basis with respect to < 
starting weight vector 0 (first row of matrix A) 
target weight vector 7 (first row of matrix B) 

G: Griibner Basis with respect to < 

+,4: current and next order 
w: current weight vector 

0 w = 0; 4 = (7(A); 4’ = O(a,B); 
0 G, = initials(G, WI; // Take initials of G 
8 G; = sort(G,, ++I ; // Sort initials according to new order 
0 G,+ = init_gb(G:, <+); // Compute Griibner Basis of initials 
0 G,+ = interreduce(G:, 4); // Interreduce G: 
6 G = lift (G,‘, 4, G,, G, 4 ; // Lift G,+ to a full Gri5bner B. wt. 4 

0 G = interreduce(G, ++I; // Interreduce G 
0 if ( w = r ) return(G); // Stop if target order reached 

0 t = determine_bordercw, T, G); // Determine the next parameter 

if ( undefined(t) 1 return(G) ; // No further conversion needed 

w = (l-t)*w + t*7; // Determine the next border 

@ < = 4+: -c+ = O(w.Bl; Goto 8: 

Fig. 2. The Gr6bner Walk algorithm. 

with gj E G(I, <k_ 1). Because of the above remark, all polynomials mi, i = 1,. . . , s, 

are ok-homogeneous. Therefore, the polynomials hij in the representation of mi are 

wk-homogeneous as well. Moreover, as mi and each summand hijin,,(gj) have the 

same ok-degree, all dij := h,gj - hijin,,,(gj) contain only monomials of a smaller ok- 

degree than that of mi. Therefore, we obtain 

mi = & hjinctjA (gj ) = 2 h,g,j - 2 d*j = in,, 
j=l j=l j=l 

In the lifting step, we replace all occurrences of polynomials ino, in the represen- 

tation of mi (Eq. (1)) by the full polynomials gj and obtain the set of polynomials 



B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 185 

F:={fi,...,,f,} with 

J; := & hijgj. 
j=l 

(3) 

It remains to be shown that F is a Grijbner basis of I with respect to +k, or 

(in+(Z)) = (in+(F)). As (by definition) CL& is compatible with +k on R, it follows 

that 

which is equal to (i+(M)), as M is a Grobner basis of (in,,, (I)) with respect to +k. 

Replacing the polynomials m; by their representation (1) and applying Eq. (2) we 

obtain 

Since Ok is compatible with -$ (On R), this is equal to 

and we finally obtained (i+(Z)) C (in+,(F)). As F C I, F is a Griibner basis of I 

with respect to +. 

Since M is a minimal Grobner basis of (&,(Z)) (M is even reduced), F is a minimal 

Griibner basis as well. By performing an interreduction in Step 0, we obtain a reduced 

Griibner basis of I. 

To finish this step of the walk, it remains to determine the next weight vector in 

Step 0, that is, the point on the path where some (other) initial forms of the reduced 

Grobner basis G(Z, -+) degenerate. To detect a change in the initial forms, we deter- 

mine the first weight vector w(t) := ok + t(r - ok), 0 <t 6 1, on the directed path c,,+r 

with the following property. 

t = min({s I +7,,dPl) = ~eg,&4~ &kcoj(pl > # &!I,&%)~ 

Y=PI + ... +Pn,YEG(6 +k)}n[O,11). 

This can be done by the calculation of one scalar product in Q” and one rational quo- 

tient per monomial. Thus, if t is defined, it is a positive rational number. Furthermore, 

if there is no t with 0 <t d 1, then in+(G) = in<<(G) and we already determined the 

final Grobner basis; if t = 1 is the minimum, then the next conversion is the last step 

of the walk. 

In this way, we successively compute the Grljbner bases and weight vectors 

G(L <)=(-?I, +o),w,W, +I) ,..., o,,G(Z, -h)=G(Z,<). 
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2.3. Termination of the algorithm 

For the termination of the algorithm we need some further definitions [21,9,3]. Let 

G CR be a reduced Grijbner basis of I with respect to a term ordering 4. As we 

mentioned before, we can always find an order matrix A with + = (?(A). Furthermore, 

we can choose a weight vector w = AI such that none of the initial forms of gi E G 

degenerate. Then, there is even a neighborhood C C Q” of w such that for all o’ E C, 

w’ is compatible with + on G as well. So, the leading monomials of G(Z, -x) remain the 

same in the whole neighborhood C. Therefore, G(Z, +) = G(Z, Qo’, A)) for all ok’ in C. 

By C,(Z) we determine the set of weight vectors o which lead to the same reduced 

Grobner basis as 4. More precisely, for a term order 4, we denote by C,(Z) the 

topological closure of 

{c~ 1 (r) a weight vector, (in,(l)) = (inOl(I))}. 

This is a convex cone in Q” with nonempty interior. The set 

F(Z)= {C,(Z) 1 4 a term order} 

is called the Griibner Fun of I [21]. 

On the walk, we only have to take a step when we cross into a new cone, that 

is, when one (or more) of the initials in the Griibner basis of Z degenerate with 

respect to the upcoming weight vector o(t). By a result from [21], the Grijbner fan of 

a polynomial ideal has finite cardinality, and hence the number of steps is finite. 

3. Algorithmic variations: path perturbation 

Experience shows that among the many paths from CJ to r (more precisely: their 

respective cones) in a Griibner Fan, some may be computationally much faster, often 

by one to two orders of magnitude. Path finding is therefore an important issue in 

practice. Path Perturbation is a common principle for finding computationally efficient 

paths which we explore in a number of variations. 

Whenever the path leaves a cone of the Grobner Fan, some of the head monomials 

of the Grobner basis with respect to the weight vector w become initial forms (true 

polynomials). Adjacent cones meet in faces, i.e., surfaces or edges in three dimen- 

sional Fans. At points of such intersections of several cones, either several monomials 

in a polynomial have the same maximal weight and become the initial form, or sev- 

eral polynomials have initial forms containing more than one monomial. Hence, the 

initial forms become larger. Especially in a complicated fan, meeting-points where sev- 

eral cones adjoin are frequent. Moreover, if the walk moves along the intersection of 

two or even more cones (i.e., along a surface in three-dimensional fans), there are 

monomials which keep the same maximal weight, and therefore remain in the initial 

form of a polynomial on this line. Anyway, both cases cause the initial forms to be 

unnecessarily heavy during the Walk. 
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Direct Walks 

Fig. 3. A slice of a Griibner Fan 

3. I. Global puth perturbation 

We can avoid walking through meeting-points or along arbitrary faces of cones if we 

slightly perturb the starting point (the starting weight vector cr) and the end-point (the 

target weight vector z) of the Walk, making sure we stay in their cones. Then, the path 

passes through a sequence of maximally adjacent cones. The initial forms are shorter 

and the individual tasks of converting their Grijbner bases from -$_I to -$ likewise 

become much smaller. However, we may have to compute more Grobner bases since 

we may have to walk through more cones on the perturbed path. 

Fig. 3 shows a slice of a sample fan of an ideal in three variables (x, y,z) as 

intersection with the plane x + y + z = 1. Path segment @I goes through a common 

edge of three cones (a point in the slice), path segment @runs along a surface of two 

cones (a line in the slice). 

3.2. Computation of perturbed weight vectors 

As already pointed out, with each ordering 3 we can easily associate a regular 

n x n-matrix A over Q+ that determines this ordering. Obviously, we can even choose 

A over N by multiplying each row with the least common multiple of the denominators 

of this row. The cone C+ of a reduced Grobner basis G with respect to -X contains 

the first vector Al of A. Now, if we perturb this vector slightly by &AI, we remain in 

C+, provided that e is sufficiently small. This is assured if l/s > tdeg(p) * max(A2) for 

each p in G, where 

tdeg(p):=max 

However, if Al is at a vertex of the fan’s slice (i.e., an edge and hence a one- 

dimensional face of the cone), Al +&AZ is in general at an edge in the slice (i.e., 

a two-dimensional face of the cone). 

To reach a face of dimension at least three, we can perturb by the third vector as 

well, resulting in Al + &A2 + c2A3. Provided l/c> tdeg(p) * (max(A2) + max(As)) for 

each p in G, we move to a location that is contained in a three-dimensional open set 

of the cone. 
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LO) 

Fig. 4. First, second, and third degree perturbation 

For n variables, we can extend this procedure up to any k <n and obtain the perturbed 

vector 

of degree k (see Fig. 4). It is in a face of dimension at least k of the cone. For k = 1 

we obtain the unperturbed weight vector. If k = n, we obtain a maximally perturbed 

weight vector that lies within the cone (and hence belongs to only one cone). 

Given a reduced Griibner basis with respect to a start ordering, an E satisfying the 

conditions for the perturbation of the start vector can easily be determined. However, 

to obtain a perturbed target vector, we have to guess such an E and check the validity 

at the end of the Walk. Note that the algorithm remains correct even if the E is invalid. 

In this case we only did not reach the target ordering yet and have to walk further 

(closer to the unperturbed target). 

The perturbation degrees of the start and target vector are a priori independent and 

can be combined in any way. However, if we perturb the starting vector by degree k, 

then during the Walk we usually2 omit vectors on faces of dimensions k’ <k - 1, as 

long as the chosen e is valid. As the last step can cross a meeting point of several 

cones, it is usually useful to perturb the target vector, too. 

The sequence of cones on the path is determined by the (larger of the) perturbation 

degrees of the start and target vectors. We will speak of a direct puth/ walk to indi- 

cate no perturbation and of a muximally perturbed path/ wulk to indicate maximally 

perturbed start and target vectors. 

Experience shows that in general a small perturbation degree leads to fewer steps 

with larger initial forms, whereas a large perturbation degree leads to more steps with 

* It may happen that the degree is lowered if the path direction coincides with one of the perturbation 

directions or a linear combination thereof. 
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Fig. 5. The Evasive Walk. 

smaller initial forms. The advantage of the maximally perturbed path is that the initial 

Grobner basis computations take very little time. The main disadvantages are that very 

large weight vectors may occur (especially if there are many variables) and that the 

walk may consist of many more steps. 

To overcome this dilemma, we need to perturb the path only slightly, so that only the 

weight vectors causing many large initials are avoided. One solution is the perturbation 

of start and target vectors by small degrees larger than one. Another solution is to use 

perturbation only where necessary. 

3.3. Local path perturbation: the Evasive Walk 

With global perturbation we decide statically, before the start of the walk, on the 

perturbation degree for the entire walk. However, often only very few vectors belong 

to many cones, and we would like to perturb the path only near these vectors and not 

as a whole. That is, we need a perturbation that is adaptive to the local situation. 

Whenever a path approaches a border of a cone (weight vector w), we may first 

measure its complexity by counting the number and size of the initial forms at w. 

Depending on this number, we may either proceed on the path, or we may choose 

a path evading this border by a local perturbation (cf. Fig. 5). To walk on the bypass, 

we perturb o once with the order of the actual cone (this is the local start vector) and 

once with the order of the next cone (this is the local target vector). We thus replace 

one giant step by several smaller ones. 

This method, called the Evasive Walk, has not been implemented yet. 

3.4. The Fractal Walk 

As mentioned in [9], the initial Griibner basis computation can be performed by any 

basis conversion algorithm, as the initials in,(G) form a Grobner basis. The idea of 

the Fractal Walk is to apply a walk recursively to this basis conversion. 

Taking initials with respect to o once again does not shorten the polynomials in 

in,(G) any further. The idea is now to perturb o into w’ in the hope that in,! (in&G)) 
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contains shorter polynomials than in,(G). In other words, we want to walk on a 

perturbed path, starting with Griibner basis in,,(in,(G)), and finishing with a result 

which is equal to the result of the initial Grijbner basis computation we wish to avoid. 

In contrast to the Evasive Walk, the path is on a “lower” level (in a “tunnel”) 

because it runs in (inJ G)) rather than in I = (G). As the stepping-stones during 

a fractal walk are ideal bases of (in,,](G)), we avoid the lifting to bases of the 

full ideal I = (G). Hence the interreductions after lifting should become substantially 

simpler. 

This could be viewed at first as an algorithmic optimization of the Evasive Walk. 

However, the method can be applied recursively with increasing levels of perturbation. 

In each step, the higher the level of perturbation, the shorter the initials of the Grobner 

bases. Obviously, we obtain the same number of steps as we would obtain with a nor- 

mal walk on a maximally perturbed path. However, the interreductions become much 

smaller on each level. As a price, we have the additional overhead of taking initials 

and lifting the initial Griibner basis on each level. 

The Fractal Walk has not been implemented yet. It exhibits similarities with the 

Griibner Stripping Algorithm [lo] which deserve further investigation. 

4. Implementation techniques 

We have observed performance increases by one to two orders of magnitude as 

a result of refining our implementation. There are two sets of problems: first, imple- 

mentation techniques for the walk proper, and, second, implementation techniques for 

the special class of Griibner basis computations occurring during the walk. For the 

latter, we shall see that the distribution of computation time in Buchberger’s algorithm 

is significantly different on initial forms, and we have the new situation that hundreds 

of Grobner basis computations may be needed in quick succession. 

Besides the prototype implementation of the Walk [9], we are only aware of one 

other report on an implementation [23]. 

4.1. Integral polynomials 

Most of our implementation is independent of the particular choice of the coefficient 

field K, but all our examples are chosen over R = Q[xl,. .,x,1, hence K = Q. 

Since polynomial arithmetic with coefficients in Z is much faster than with coeffi- 

cients in Q, we do not store the polynomials in manic form, but convert them to integral 

polynomials. It is common knowledge that this leads to significant speedups, typically 

of a factor around 5, for Buchberger’s algorithm. Then, the reduction of a polynomial’s 

tail becomes more complex, as we may have to multiply all coefficients with a cofactor 

in order to be able to perform a reduction step. 

During the walk, it does not much affect the computation of the Griibner bases of the 

initials as most of the initials are monomials and hence their coefficients can be nor- 
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Fig. 6. The Zigzag Walk. 

malized. However, using integral polynomials is rather important for the interreduction 

of the intermediate Grijbner bases. 

4.2. Weight vectors 

Given the ordering O(o,A), every comparison of two monomials involves costly 

rational arithmetic with the rational weight vector o. In particular, the higher the per- 

turbation degree has been chosen, the longer the representation of the rational numbers 

in the weight vectors may become. Therefore, it is important to make the comparisons 

as efficient as possible. 

4.2.1. Integral weight vectors: the Zigzag Walk 

Neither the algorithm nor the implementation requires the walk to stay on the hyper- 

plane C xi = 1. 3 As only the direction of the weight vectors is needed, we may scale 

them to integral vectors. Then all comparisons become much cheaper, mainly because 

their computation does not consume heap space any more. 

The first step for this modification of the implementation is to choose an integral 

starting vector and an integral target vector. Moreover, all intermediate vectors can be 

chosen integral as well. From the geometric point of view, the walk is then on a zigzag 

course in the plane E through starting point, target point, and the zero of the fan (see 

Fig. 6). Its projection onto the plane xxi = 1 gives the original walk, which also lies 

on plane E. 

4.2.2. Storing the weights 

As reported in [23], it is worth to store the weights of the monomials. However, 

all computations with initials involve only c+homogenous polynomials and therefore 

we simply have to omit the computations of the weights for the comparisons between 

monomials. (Only for sorting the set of initials in Steps 0, 0, and 0, the weight 

of the leading monomials have to be computed.) Thus, we compute and store the 

weights during the lifting step and use the weights for the interreduction, after which 

3 In fact, the Grlibner fan can be regarded as an object in projective space. 
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we delete the weights again (as afterwards the weight vector and hence the weights 

change). 

4.3. Specializing Buchberger’s algorithm for initial forms 

A closer analysis of the initial forms that occur in the Griibner basis computation 

suggested an adaptation for this special case. We need to tailor Buchberger’s algorithm 

to this unusual situation, because we wish to perform a possibly long sequence of such 

computations. 

In a conventional implementation of Buchberger’s algorithm, the reduction of 

S-polynomials is the most time consuming part. Therefore, it is rather unimportant 

how efficiently the pairs are created, and it is profitable to apply very sophisticated 

deletion criteria even if relatively few pairs are removed. 

In our case, in particular in the perturbed walk, most of the initial forms are mono- 

mials. In fact, in our examples typically only one or two initials out of 60 or more 

polynomials are not monomials. In this situation, the following easy observation as- 

sumes some practical importance. 

Monomial criterion: The critical pair of two monomials is unnecessary, because its 
S-polynomial is equal to zero. 

Moreover, initial forms are by their very nature relatively short, and hence the cor- 

responding S-polynomials are relatively short and their reduction is relatively cheap. 

Therefore, the other parts of the algorithm, and in particular the creation of pairs, 

become much more important. Hence, all key decisions in configuring Buchberger’s 

algorithm have to be re-evaluated. 

4.3.1. Creating pairs and applying criteria 
In order to implement the monomial criterion, we maintain two lists of polynomials, 

one with p monomials only and one with q true polynomials. This allows us to avoid 

on the order of p2 operations when creating the pairs. 

Buchberger’s first criterion (the product criterion) can also be applied very fast, 

because it uses only local data of the two parent polynomials. 

For the second criterion (the chain criterion) [7], however, one has to search the 

whole basis for a suitable third polynomial. We found that in our average case it is 

cheaper to reduce an S-polynomial of initial forms than to search the whole basis. 

Therefore, we omit the chain criterion because it takes too much time. 

4.3.2. Selection strategies 
Experience shows that Griibner bases of two maximally adjacent cones (as we deal 

with in the perturbed walk) are very similar. The computation of the initial Griibner 

basis usually adds only one or two new polynomials to the basis. As most of the 

S-polynomials reduce to zero in one step, it is not worth spending time on sophisticated 

selection strategies. 
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4.3.3. Reduction 
Whenever we can apply a reducer that consists of one monomial only, the reduction 

step amounts to a removal of the respective monomial in the polynomial that is reduced. 

Therefore, it is worth applying reductions by monomials first. 

5. Empirical results 

We observed the run times displayed in Table 1 on examples of the PoSSo Library 

[22]. All times are in seconds on one 90MHz HyperSPARC4 processor of a SUN-10 

under Solaris 2.4/2.5. Our implementation uses some software modules of the PARSAC 

framework [l, 191, but it is completely sequential (no threads of control). Timings of 

some examples with different combinations of our algorithmic variations and imple- 

mentation techniques can be found in [3]. Reference timings are for version 4 of the 

GB system [ 131. LEXICO and SUGAR refer to the respective options of GB; speedup is 

computed as SuGAR/(Grevlex + Walk). 

S.I. Where does the time go? 

A closer investigation of the run-times yields a few valuable guidelines for setting 

up the Walk. More information on this question can be found in [3]. 

In almost all cases, the computation of the initial Grobner bases and the interreduc- 

tion of the intermediate Grobner bases account for more than 90% of the time. On 

a direct walk, most of the time is spent in initial Griibner bases computations and little 

in interreductions. In a perturbed walk, most of the time is spent in interreductions 

and little in initial Griibner bases computations. If the polynomials of the intermediate 

Table 1 

Timings for system solving 

GB 

LEXICO SUGAR GREVLEX 

PARSAC-S 

Grevlex Walk 

Speedup 

amborg 

caprasse 

CEISSOU 

Cohn-2 

hieta- I 
jhdh 

jhdh.inf 

katsura5 

vermeer 

186s 

5288 s 

>lh 

>lh 

466 s 

>Ih 

>lh 

>lh 

>lh 

>Ih 

112s 0.23 s 

3174s 0.23 s 

>lh 59.0 s 

>lh 12.6 s 

2x0 s 0.7 s 

>Ih 1 147.0 s 

>Ih 18.5 s 

rlh 14.3 s 

>Ih 13.4 s 

>lh 1.2 s 

0.32 s 

0.18 s 

28.0 s 

16.9 s 

0.6 s 

46.0 s 

43.0 s 

10.0s 

5.1 s 

0.1 s 

0.4 s 

1.0 s 

0.6 s 

46.5 s 

73.0 s 

3.9 s 

33.4 s 

0.2 s 

4.8 s 

0.2 s 

156 

2645 

>I26 

>57 

4 

> 72 

>47 

>353 

>360 

> 12000 

4 Roughly equivalent to a 50 MHz SuperSPARC 
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basis consist of several thousands of monomials, it happens that the lifting step needs 

more than 10% of the time; in this case, the interreduction accounts for more than 

80% of the time. Overall, perturbed walks have many more steps but nevertheless are 

substantially faster than direct walks. 

Therefore, interreduction is a very significant factor in the run-time, and the ques- 

tion arises what effect its omission would have on the duration of the walk [3]. The 

general experience is the following: Reduced intermediate bases lead to fewer steps 

in the walk. The extra (superfluous) steps occur when monomials which are reducible 

lead to changes in initial forms. On smaller examples it may be worth omitting the 

interreduction; on larger examples the interreductions tend to save more time than they 

cost. 

6. Comparison with FGLM 

For zero-dimensional ideals the Grobner Walk can be compared with the FGLM basis 

conversion method as presented in [ 121. There are ways to lift this restriction of FGLM 

in special cases, but there is reasonable doubt as to their practical significance [20]. 

The fundamental idea seems to have been already sketched by Buchberger [6] for 

the special case of constructing a triangular polynomial system for the representation 

of the roots of the ideal. We paraphrase from the German original: We determine 

successiuely for all [x:1, k = 0, 1, . . , their representation as a linear combination of 

the elements of R/I (by reduction to normal form in the given Griibner basis). We 

also find the jrst k = ml for which [xf] linearly depends on [l], [xi], . . . , [x:-‘I. Thus 

we find a polynomial of degree m - 1 with pl([xl]) = 0. Now we form the residue 

classes of the power products emerging from the multiplication of l,xi,...,xr’-’ by 

x2,x;, . until we find for some residue class [x;‘x;] a dependency on earlier residue 

classes which can be written as JJ~([x~], [x2]) = 0, and so on. 

The method thus enumerates R/I (which is bounded because the ideal is zero- 

dimensional) and uses the given Grijbner basis for computation in R/I. If the ideal 

is not zero-dimensional, some other means for bounding the process must be found. 

Thus the complexity of the method grows with the dimension of R/I. The conversion 

to the new Grobner basis always needs about the same computational effort, regardless 

whether we start with a basis in its neigborhood or not. 5 

Table 2 of timings gives a rough idea of the relative speeds of the FGLM method 

and the Grobner Walk. It is based on our own implementation of FGLM, which may 

not be tuned to the same degree as our implementation of the Walk, but we attempted 

a reasonable comparison. For details of the examples see the Appendix and [3]. 

5 Of course the computations in R/f still depend on the basis. 
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Table 2 

Timings of Walk vs. FGLM 

Walk FGLM Walk FGLM 

Exl grev + lex 

Ex2 grev + lex 

Ex3 grev + lex 

s6 grev - lex 

s7 grev - lex 

15.3 s 

119.8 s 

71.6 s 

15.8 s 

164.9 s 

113.4 s 

523.4 s 

677.9 s 

55.1 s 

739.4 s 

Exl tot + lex 

Ex2 tot + lex 

Ex3 tot + lex 

s6 tot + lex 

s7 tot i lex 

15.1 s 143.0 s 

119.6 s 481.4 s 

71.4 s 912.8 s 

5.7 s 55.0 s 

64.1 s 769.1 s 

7. Applications 

7.1. Implicitization in computer graphics 

In geometric modeling, the problem of converting parametrically defined varieties 

into their implicit form is of great importance [ 151. The parametric representation of 

a surface is most suitable for rendering it on an output device. It is however ill suited 

for the computation of intersections, for which the implicit representation is more 

amenable. As mentioned in [9], the Griibner Walk should be an attractive tool for 

the conversion. In the following, after giving a short outline of the theory involved 

(cf. [ 16, 17]), we introduce an algorithmic improvement called Sudden Death, and we 

present a first collection of empirical results. 

Given rational functions p1/q1,. . , pn/qn in tl , . . . , tm, defining the parametric equa- 

tions 

XI =Pl(tl,...,tm)/91(tl,...,tm) 

&I = Pn(tl,. . ., ~m)/qn(tl,‘~.>tm) 

how can we find (polynomial) equations in xi,. . ,x,, that define the same variety? The 

basic idea is to eliminate the variables tl, . . . , t,,, from the equations above. In general, 

this can be achieved by computing the elimination ideal 

({ 41x*-PI ,...> y.,,-P~,(IJ,i)z-l})“K,x i,..., x,, 

in the polynomial ring K[xi, . . . ,x,,, tl ,...,bdl. 
If all of the qi are equal to 1, we can leave out the last polynomial and deter- 

mine the elimination ideal I n K[xi, . . ,x,] where I is the ideal ({xl - pl (tl, . . , t,), . . . , 

xn - pn(tl,...,tm))). 
In the case of a polynomial parameterization, the set {xi - ~1,. . . , x, - pn} already 

forms a Grobner basis with respect to every term order < = O(a, A) with 

o=(l)..., l,o )...) 0). 
-+ 

n m 



196 B. Amrhein et al. I Theoretical Computer Science 187 (1997) 179-202 

Table 3 

Timings for implicitization 

Example Buchberger Walk Sudden death 

Ex4 >2 h 43.1 s 17.8 s 

Ex5 >lO h 433 s 265 s 

Ex6 2676 s 158 s 

Ex7 >l h 76.1 s 49.9 s 

Ex8 3639 s 122 s 

Ex9 >I h 153 s 68.3 s 

With the Grijbner Walk algorithm, we can then successively transform this set into 

a Grobner basis using the target vector r, where 

r=(O )...) O,l,...) 1). 
VV 

n m 

We can improve the method by short-cuts if we know the number and shape of poly- 

nomials we are looking for. In the usual three-dimensional case, where we look for 

an implicit representation of a surface, we start with three polynomials xi -pi (tt, t2), 

x2 - pz(tl, $),x3 -p3(tl,t2). Then we can finish our walk as soon as we have found 

an (irreducible) polynomial which only depends on xi, x2, and x3. Usually, this poly- 

nomial occurs quite early during the walk, which means we can stop in sudden death 

long before we reach the last cone of our path. 

The timings in Table 3 compare the different methods on examples presenting Bezier 

surfaces. 6 The second column shows the timings for Buchberger’s algorithm; the soft- 

ware is the sequential derivate of our PARSAC installation [l]. The third column shows 

the timings for the maximally perturbed walk from the starting cone of ( 1, 1, 1, 0,O) 
to the target cone of (0, 0, 0, l,l). The last column shows the timings we obtained 

when we stopped the walk after finding the (irreducible) polynomial in three variables. 

With this method, we compute the jrst Grobner basis on our walk with respect to an 

elimination ordering. This method cannot be simulated by any other basis conversion 

algorithm we are aware of, as we only know the target ordering after the fact that we 

found the result. 

7.2. Inverse kinematics in robotics 

Given the configuration of a robot (i.e., the lengths 11,. . . , 1, of the arm segments and 

the angles 1.91,. . . , 19~ in the joints), the Forward Kinematics Problem is to determine 

the position (x,y,z) of the hand (effector). In fact, the coordinates x, y, and z can be 

represented as polynomials in Ii,. . , I, and cos(‘Lpi), sin(r9i), . . . ,cos(dt), sin(tit). Thus, 

forward kinematics is essentially the evaluation of polynomials for a particular setting 

of Ii,. . , I, and 191,. . . ,19~. 

6 Our source for the examples was [18]. 
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The inverse problem is more complex: given the position (x, y,z) of the hand, we 

want to determine whether it is possible to place the hand of the robot at that point. 

If it is possible, we wish to find all angles r91, . . , tit and lengths of the prismatic joints 

II,..., 1,1 that will satisfy this Inverse Kinematics Problem. 

In algebraic terms, given the polynomial equations 

y = P2(11 ,...,Ir,CI,SI,...,Ct,St) 

z = P3(ll ,...,lr,Cl,Si,...,Ct,S1) 

c+-s: 

we want to solve for cl,. . . , ct, and Ii,. . . , I,.!. Obviously, this can be done using Griibner 

bases [ 111. However, the given equations already form a Grobner basis with respect 

to any ordering with 

x,y,z>q ,..., Cj, BSI,..., St,11 ,..., 1rf 

Hence, we can directly apply basis conversion. 

7.3. Searching jbr ideal members 

Sometimes we are interested in searching for ideal members with a given property P, 

rather than computing a Griibner Basis. We briefly sketch a general framework for 

searching which is based on the Walk. The previous examples of searching for implicit 

polynomials and of inverse kinematics polynomials fit into this framework, as does 

searching for reducible polynomials in a system solving context. 

We use the Walk to convert the ideal presentation into a form in which polynomials 

with some property P are likely, or certain, to occur. Once such an ideal member is 

found, the Walk may continue, or stop in sudden-death as in implicitization, or even 

change direction and follow a new target ordering. 

Suppose we want to perform an operation F on (some) elements of the ideal I. We 

know, for example from the asymptotic complexity of F, that it is preferable to run F 

only on polynomials with property P. We also know that such polynomials are likely, 

or certain, to occur in G(I, <), for some <. We may then use the walk to massage 

the ideal representation in the right direction, i.e., we walk down a complexity slope 

w.r.t. F, towards G(Z, < ). 

In a system solving context, F may be any operation for splitting the problem, such 

as factoring or g.c.d. computations (cf. [26]). These operations are much cheaper on 
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polynomials with few variables; some practically fast algorithms have exponential com- 

plexity in the number of variables. Therefore, we may approach some G(I, <) with 

an elimination ordering < and try F only on polynomials in few variables. More pre- 

cisely, we may make a run for the (nearest) border of the fan, choosing a first target 

vector of the form (1,. . , I, 0,l . . . ,I). In the zero-dimensional case, we are certain to 

obtain a univariate polynomial. But with the Grobner Walk we can apply this method 

also in the nonzero dimensional case, as we will always obtain polynomials with fewer 

variables on which F runs much faster. As soon as F has split some ideal mem- 

ber(s), we may split the entire problem and proceed with several walks, one for each 

fragment. 

8. Parallelization 

Since our sequential implementation is already within the PARSAC framework, we 

have a migration path towards practical parallelism on networks of multiprocessor 

workstations [19]. A combination with our parallel Grobner basis algorithm [I] will 

then yield a parallel equation solver. In a system solving context (cf. Table I), about 

half the run-time is now consumed by the Walk. ’ Since Buchberger’s algorithm (the 

first half) can be speeded up substantially by parallelization [l], it is interesting to 

attack the Walk (the second half) likewise. We will restrict ourselves here to a few 

fundamental observations and reserve a thorough treatment for the future. 

Our parallel speedups for Buchberger’s algorithm are due to parallel reductions of S- 

polynomials, which are rather insignificant in the specialized Buchberger algorithm for 

initial forms. Therefore we do not expect much gain from attacking the initial Grobner 

basis computations. However, we may parallelize the interreductions after lifting, which 

account for the lion’s share of time in large perturbed walks. 

Parallel work occurs at a higher granularity when we split a problem (cf. Section 7.3) 

and the fragments are walked to their destinations concurrently. 

Work parallelism such as this generates speedups by performing a given amount of 

work in parallel, and is therefore limited to at most linear speedups. In contrast, search 

parallelism may exhibit super-linear speedups. 

A typical source of such parallelism is indicated in Section 7.3. We may pursue 

several searches in parallel, and stop as soon as the first walk reached the target. We 

may also employ a searching party of several searching walks concurrently to look for, 

and act upon, desirable ideal members, such as univariate polynomials in x, y, . . , . 

In practice, a big challenge for the parallelization will be to find the best configura- 

tions among all algorithmic and implementation options for the parallel implementation, 

and to achieve significant speedups over the best sequential configuration. 

‘We expect the share of the Walk to increase on larger examples. 
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9. Conclusions 

Our installation of the Griibner Walk has yielded speedups of 2-4 orders of magni- 

tude for many examples of system solving (cf. Section 5). For the Computer Graphics 

application of implicitization, the Walk allowed the computation of examples which 

were unreachable by Buchberger’s algorithm alone (cf. Section 7). 

Among its competitors “FGLM” and “Hilbert driven Buchberger”, the Walk stands 

out as the method which places no additional restrictions whatsoever on the input, 

be it the dimension of the ideal or the shape of the polynomials in the presentation. 

Our comparison with FGLM (cf. Section 6) has shown that the Walk is an order of 

magnitude faster in our implementation and on our examples. A conservative conclusion 

may be that the Walk is no slower than FGLM, but free of any restrictions. 

The theoretical foundation of the Walk has proved to be sufficiently broad to acco- 

modate the variations which an implementation and successful applications require. It is 

possible to improve the speed of a naive implementation by l-3 orders of magnitude 

by the theoretical and practical methods described in Sections 3 and 4 of this paper. 

For the Computer Graphics application, the special sudden death variation yielded an 

extra speedup of an order of magnitude on larger examples. 

We have also outlined sources of parallelism in the Walk algorithm which give hope 

for further very substantial speedups with super-linear components on existing parallel 

computers. 

Based on these findings we conclude that the Grijbner Walk will become an essential 

component in applications of Griibner bases; conversely, it is scarce imaginable that 

real world applications can afford to not include some kind of basis conversion at least 

as powerful as the Griibner Walk. 
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Example 

Exl 

Ex2 

Ex3 

s6 

s7 

Variables 

x<y<z 

x<y<z 

x<y<z 

x6 <x5 <x4 

<x3 <x2 <Xl 

x7 <x6 <x5 <x4 

<x3 <x2 <Xl 

Polynomials 

xy3 + y4 + yz2 - z3 - 2Xz3, 

2x2y+x3y+2xy2z, 

2 - 3x2 y + 2x3 y + yz3 

x + 3xy3 + y4 + yz2, 

-x22 + 2y3z + z2 + 2yz2 + 3xyz2, 

3x3 + xy2 + yz2 - 2xz3 

x2+y4+x3z+yz-2Xz3, 

x2 y2 + y3z + z3 + 3 yz3, 

y4 -x22 + 2y2z - 2xyz2 

h6x2 + 2X5x3 +X4’ + X; + XI, 

b6x3 + 2X5x4 + 2X2X, +X2, 

2x6x4 + x: + 2X3X, +X3 +X;, 

2x6x5 + b4xI f X4 + 2X3X2, 

$ + 2X5x1 +X5 + &4X2 + Xf, 

h6xl +x6 f h5x2 + 2X4X3 

~7X2+~6x3+h5_Xq+X;+Xl, 

~7x3+~6x4+x52+2x2x, +X2, 

~7X4+~6x5+h3X, +X3+X& 

2X7x5 + xi + h4~1 f ~4 + 2~3x2, 

~7X6+~5xI$X5+~4X2+X~, 

x; + 2X6x1 + x6 + h5x2 $2X4X3, 

h7xI + x7 + k6x2 + 2X5X3 + X4’ 

Example Btzier surfaces in parametric form 

Ex4 x=u+l4-2v-2u2v+211212 

y= -6u+2v+v2-5v3+2uv2-4u2v2 

Z= -2+2u2+6v-3u2v2 

Ex5 x=3-2u+2u2 -2u3 -v+uv+2u203 

y=6u+5u2-u3+v+~v+v2 

z= -2+3u-uv+2uv2 
Ex6 x=2~~v-~v~+61111~ 

y=3u2+3Uv-U2v$41130+212 

z= -uv+4u2v-3u3v+v2 

Ex7 x=3-3u-3u2+4u3-9v+2u2v2 

y = 6u2 - 3u3 + 3uv - du2v + 2u3v2 

z = 3u2 + 3u3 - 9uv + 2u3v2 
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Example Bkzier surfaces in parametric form 

Ex8 x=2-6u+6u2+6v+u2v-33u3v-2v2 

y=3-9u+u~-3u3+3v2+9uv2 

z = 9u2 - 9u3 - u2v + 2u3 v + uw 

Ex9 x=2u-2U2+U3-2uv+U2v 

y=u-4~~+3v-2uv+~~v-6v~+~~~+3v~-uv~ 

z=3-5u+~~-2v+~v~ 

201 

A Blzier surface of degree m x n with parameters bi,j E 6J3, i = 0,. . . , m, j = 0,. . . ,n, 

is of the form [ 181 

f(u,V)=il:i:bij 9 r ~‘Vj(l-~)~-‘(l-V)~-j~ 

i=O j=(l 00 

The other examples originate from the PoSSo [22] examples list. 
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