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ANALYTICAL SOLUTIONS FOR FIRST 
ORDER SORPTIVE UPTAKE OR 
DESORPTION KINETICS 
	

1. EQUILIBRATION TIME PERIODS IN FILM 
DIFFUSION CONTROLLED MASS TRANSFER 

The	 simplest	 case	 for	 sorption	or	desorption	kinetics	 (and	which	often	 is	not	 the	 appropriate	
model)	is	diffusion	of	a	solute	through	a	stagnant	boundary	layer,	i.e.	a	water	film,	as	shown	in	Fig.	
1	with	concentration	gradients	for	the	desorption	case	for	the	finite	and	infinite	bath	boundary	
condition.	The	finite	bath	is	the	most	common	case	in	the	lab	since	sorption/desorption	kinetics	
are	conducted	 in	bottles	 (vials)	with	a	 finite	volume	of	water.	 Infinite	bath	conditions	may	be	
encountered	during	remediation,	e.g.	when	contaminated	particles	are	permanently	purged	with	
clean	water	keeping	the	concentration	outside	of	the	particles	close	to	zero	(as	if	they	were	in	an	
infinitely	large	volume	of	clean	water).	

	
	
Fig.	1.1:	Aqueous	concentrations	(Cw)	for	film	diffusion	(d:	film	
thickness)	 during	 desorption	 –	 red	 and	 green	 gradients	 are	
initial	and	intermediate	concentrations,	horizontal	dashed	lines	
denote	final	or	equilibrium	concentration	(Cw,eq);	top:	finite	bath	
-	 loss	 of	 solute	 from	 the	 solid	 phase	 resulting	 in	 increasing	
aqueous	 concentrations	 until	 equilibrium	 is	 reached;	 middle:	
infinite	 bath	 -	 concentration	 in	 water	 is	 always	 zero	 (infinite	
amount	 of	 water);	 bottom:	 strong	 sorption	 -	 stable	
concentrations	at	the	solid/water	interface	e.g.	during	mineral	
dissolution	 (no	 or	 relatively	 little	 solute	mass	 is	 desorbed	 or	
dissolved	and	goes	into	the	aqueous	phase	until	equilibration)	
or	small	amounts	of	water	 (low	 liquid-to-solid	ratio).	The	 flux	
density	through	the	aqueous	boundary	layer	is	given	by	Fick’s	1st	
law:	F	=	-	Daq/d	(C’w	-	Cw)	
	
	
	
	

In	order	to	illustrate	the	interplay	of	the	different	parameters	(specific	surface	area,	grain	size,	
distribution	coefficients)	in	the	following	the	analytical	solutions	for	film	diffusion	limited	transfer	
kinetics	are	derived	(also	called	“first	order”).	Initially	all	the	solute	is	either	associated	with	the	
particles	(desorption)	or	in	the	water	(sorption).	If	a	certain	mass	of	solids	is	in	contact	with	a	
limited	 volume	 of	 water	 (e.g.	 laboratory	 batch	 experiments	 with	 bottles	 or	 during	 pre-
equilibration	in	a	column	test)	the	approach	to	equilibrium	of	a	solute	(initially	in	the	water	or	
associated/sorbed	to	the	solids)	depends	on	the	mass	of	sorbent	or	solids	(md)	and	the	volume	of	
water	(Vw)	in	the	system.	The	mass	balance	in	such	a	system	expressed	by	the	respective	rates	is:		
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	 𝑉!
𝜕𝐶!
𝜕𝑡

= −	𝑚"
𝜕𝐶#
𝜕𝑡
	 (1.1)	

Thus,	the	mass	gained	(or	lost)	in	the	water	equals	the	mass	lost	(or	gained)	from	the	solids.	If	we	
introduce	the	liquid	solid	ratio	LS	(=	Vw/md)	we	get:	

	 𝐿𝑆
𝜕𝐶!
𝜕𝑡

= −
𝜕𝐶#
𝜕𝑡
	 (1.2)	

After	a	certain	time,	equilibrium	between	concentrations	in	the	solids	and	water	will	be	obtained:	

	 𝐶#,%& = 𝐾"	𝐶!,%& 	 (1.3)	

where	Kd	denotes	the	distribution	coefficient	[l	kg-1].	Kd/LS	(=	Kd	md/Vw)	denotes	the	ratio	of	the	
mass	 sorbed	 to	 the	 particles	 (Ms,eq)	 to	 the	 mass	 of	 solute	 in	 water	 (Mw,eq)	 under	 equilibrium	
conditions	(=	Ms,eq/Mw,eq	=	Cw,eq	Kd	md	/	Cw,eq	Vw	=	Kd	md	/	Vw).	If	we	assume	uniform	concentrations	
inside	the	particles	and	completely	mixed	conditions	in	aqueous	phase	separated	by	an	external	
mass	 transfer	 resistance	 (i.e.	diffusion	 in	 the	water	 film	surrounding	each	particle)	 then	mass	
transfer	follows	Fick’s	first	law:	

	
𝜕𝐶!
𝜕𝑡

=
𝐷(&
𝛿

3	𝑚"

𝑟	ρ	𝑉!
(𝐶!) − 𝐶!) = 𝑘	𝐴*(𝐶!) − 𝐶!)		 (1.4)	

∂Cw/∂t	 indicates	a	flux	per	volume	(of	water);	r,	r	and	d	denote	radius	and	bulk	density	of	the	
particle	and	the	film	thickness	for	mass	transfer,	respectively.	k	(=	Daq/d)	and	Ao	(=	md	3/(	Vw	r	r))	
are	the	mass	transfer	coefficient	[m	s-1]	and	the	specific	surface	area	per	unit	volume	of	water	[	
m2	m-3	=	m-1];	the	total	particle	surface	area	is	obtained	from	the	volume	of	the	particles	(md/r)	
divided	by	the	volume	of	one	sphere	(=	number	of	spherical	particles)	times	the	surface	area	of	a	
sphere.	Note,	the	term	3/(r	r)	denotes	the	specific	surface	area	per	dry	mass	of	the	particles	e.g.	
in	m2	g-1.	C’w	is	the	unknown	concentration	at	the	particle/water	interface	where	local	equilibrium	
conditions	apply	(C’w	=	Cs/Kd);	Cw	is	the	concentration	in	bulk	water	at	a	given	time.	
Eq.	1.4	may	be	easily	solved	depending	on	the	boundary	conditions.	We	distinguish	two	cases:	the	
finite	bath,	i.e.	particles	suspended	in	a	limited	volume	of	water	(e.g.	in	a	bottle	in	the	lab),	and	
the	 infinite	bath	where	particles	are	 in	 infinite	volume	of	water	(e.g.	 in	the	ocean).	Generally,	
infinite	bath	boundary	conditions	are	easier	to	solve	because	C’w	is	known	and	fixed.	
	
Infinite	bath	boundary	conditions.	Imagine	a	particle	loaded	arrives	in	the	ocean	(or	a	clean	
particle	arrives	in	the	ocean	and	takes	up	a	solute	from	the	water).	For	desorption	in	the	infinite	
bath	Cw	is	fixed	(=	0)	it	makes	sense	to	monitor	Cs.	Note,	the	concentration	difference	is	positive	
and	this	results	in	a	negative	flux	(the	particles	are	losing)	and	thus	we	get	Cw	=	0	and	C’w	=	Cs/Kd:	

	
𝜕𝐶#
𝜕𝑡

= −
𝐷(&
𝛿

3
ρ	𝑟

(𝐶!) − 0) = −𝑘
3
ρ	𝑟 6

𝐶#
𝐾"

− 07 = −
𝑘
𝐾"
	
3
ρ	𝑟

𝐶#	 (1.5)	

Upon	integration	Eq.	1.5	yields	the	following	analytical	solutions	for	desorption	and	sorption:	

	
8
𝜕𝐶#
𝐶#

+!

+!,#

= 8−
𝑘
𝐾"

	3
ρ	𝑟	

𝜕𝑡
,

-

		

ln(𝐶#) − ln;𝐶#,*< = ln =
𝐶#
𝐶#,*

> = −
𝑘
𝐾"

3
ρ	𝑟

𝑡	

(1.6)	
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𝐶#
𝐶#,*

= exp 6−
𝑘
𝐾"

3
ρ	𝑟

𝑡7	

for	sorption	Cw,eq	would	be	fixed	(other	way	around):	

𝜕𝐶#
𝜕𝑡

= −
𝐷(&
𝛿

	3
ρ	𝑟	

;𝐶!) − 𝐶!,%&< = −𝑘
	3
ρ	𝑟	 6

𝐶#
𝐾"

−
𝐶#,%&
𝐾"

7 = −
𝑘
𝐾"

	3
ρ	𝑟	

;𝐶# − 𝐶#,%&<	

8
𝜕𝐶#

𝐶# − 𝐶#,%&

+!

-

= 8−
𝑘
𝐾"

3
ρ	𝑟	

𝜕𝑡
,

-

		

ln;𝐶# − 𝐶#,%&< − ln;0 − 𝐶#,%&< = ln=−
𝐶#
𝐶#,%&

+ 1> = −
𝑘
𝐾"

3
ρ	𝑟

𝑡	

𝐶#
𝐶#,%&

= 1 − exp 6−
𝑘
𝐾"

3
ρ	𝑟	

𝑡7	

	

=>	 for	 film	diffusion	 in	 the	 infinite	bath,	desorption/sorption	 time	 scales	 increase	with	
increasing	Kd	

	
Finite	 bath	 (batch	 system).	 In	 a	 limited	 volume	 of	 water	 (in	 a	 “bottle”)	 the	 unknown	
concentration	at	the	interface	C’w	in	eq.	1.4	can	be	calculated	assuming	mass	conservation	in	the	
system.	C’w	is	in	equilibrium	with	the	concentration	in	the	solids,	Cs,	which	is	obtained	from	the	
total	mass	in	the	system	(for	desorption	=	initial	mass	in	the	solids	Cs,o	md;	for	sorption	=	initial	
mass	 in	 the	water	Cw,o	Vw)	minus	 the	actual	mass	 in	 the	water	Cw	 Vw.	Note,	under	equilibrium	
conditions	the	total	mass	in	the	system	is	given	by	the	sum	present	in	the	water	and	the	solids	
(Cs,eq	md	+	Cw,eq	Vw),	following	mass	conservation:		

	
𝐶!) =

𝐶#
𝐾"

=
𝐶#,%& 	𝑚" + 𝐶!,%&𝑉! − 𝐶!𝑉!

𝐾" 	𝑚"
=	

𝐶!,%& +
𝐶!,%&𝑉!
𝐾" 	𝑚"

−
𝐶!𝑉!
𝐾" 	𝑚"

= 𝐶!,%& 61 +
𝑉!

𝐾" 	𝑚"
7 −

𝐶!𝑉!
𝐾" 	𝑚"

	
(1.7)	

The	concentration	difference	then	is:		

	 𝐶!) − 𝐶! = 𝐶!,%& 61 +
𝑉!

𝐾" 	𝑚"
7 −

𝐶!𝑉!
𝐾" 	𝑚"

− 𝐶! = 61 +
𝑉!

𝐾" 	𝑚"
7 ;𝐶!,%& − 𝐶!<	 (1.8)	

Thus	eq.	1.4	becomes:	

	 𝜕𝐶!
𝜕𝑡

= 𝑘	𝐴* 61 +
𝑉!

𝐾" 	𝑚"
7 (𝐶!,%& − 𝐶!)		

(1.9)	

which	upon	integration	yields	the	following	analytical	solution	for	the	initial	condition	Cw(t	=	0)	=	0	
(desorption):	

	
8

𝜕𝐶!
𝐶!,%& − 𝐶!

+$

-

= 8𝑘	𝐴* 61 +
𝑉!

𝐾" 	𝑚"
7 𝜕𝑡

,

-

		

−ln;𝐶!,%& − 𝐶!< + ln;𝐶!,%&< = −ln=1 −
𝐶!
𝐶!,%&

> = 𝑘	𝐴* 6
𝑉!

𝐾" 	𝑚"
+ 17 𝑡	

(1.10)	
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𝐶!
𝐶!,%&

= 1 − exp 6– 𝑘	𝐴* 61 +
𝑉!

𝐾" 	𝑚"
7 𝑡7	

with	𝐴° =
𝑚" 	3
ρ	𝑟	𝑉!

	

𝐶!
𝐶!,%&

= 1 − exp 6−
𝑘
𝐾"

3	
ρ	𝑟 6

1 + 𝐾"
𝑚"

𝑉!
7 𝑡7	

Since	Vw	is	constant,	Cw	and	Cw,eq	equal	the	mass	which	has	diffused	out	of	the	
sphere	after	some	time	and	after	equilibrium	was	reached:		

𝑀
𝑀%&

= 1 − exp 6−
𝑘
𝐾"

3	
ρ	𝑟 6

1 + 𝐾"
𝑚"

𝑉!
7 𝑡7	

The	advantage	of	the	notation	M/Meq	is	that	it	is	independent	on	the	direction	(sorptive	uptake	or	
desorption)	and	thus	we	will	stick	to	that	in	the	following.	For	sorptive	uptake	it	corresponds	to	
the	relative	concentration	in	the	solids.	In	batch	experiments	often	the	concentration	in	water	is	
monitored	 (see	 Box	 1	 for	 relative	 changes	 in	 concentrations	 in	water).	 Note	 for	 small	md/Vw	
infinite	batch	conditions	are	reached	again	and	eq.	1.10	reduces	to	eq.	1.6.	The	rate	constant	in	Eq.	
1.10	(everything	in	the	argument	of	the	exponential	function	before	the	time)	is	almost	the	same	
as	in	in	eq.	1.6	but	now	we	have	in	addition	the	term	1 + 𝐾"

.%
/$
	which	just	denotes	the	ratio	of	

total	solute	mass	in	the	system	(“capacity”)	to	the	fraction	in	water	(note,	this	corresponds	to	the	
retardation	factor	in	a	porous	media	(=	1 + 𝐾"

0&
1
;	rb	and	n	then	denote	the	dry	bulk	density	and	

the	porosity)).	For	small	solid	to	water	ratios	(md/Vw)	and/or	small	Kd	values	the	rate	constant	in	
eq.	1.10	 is	 the	same	as	 in	 the	 infinite	bath	 (eq.	1.6).	For	 large	solid	 to	water	volumes	 (md/Vw)	
and/or	 large	Kd	 values	 the	 rate	 constant	 becomes	 independent	 on	Kd.	 The	 invers	 of	 the	 rate	
constant	is	a	characteristic	time	which	is	shown	as	a	function	of	Kd	and	LS	in	Fig	2.2.	
	

=>	in	sorption/desorption	 in	the	 finite	bath	(“bottle”)	 film	diffusion	time	scales	become	
independent	on	Kd	if	Kd	values	exceed	LS	and	increase	with	increasing	water	to	solids	ratios	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



ENVIRONMENTAL CHEMISTRY (GRATHWOHL)  C2 FIRST ORDER SORPTION KINETICS 

	 5 

Box 1. Aqueous concentrations in a batch system (bottle) 
If	we	want	 to	 follow	 the	 decrease	 in	 aqueous	 concentrations	 during	 sorptive	 uptake	 experiments	
(which	is	a	frequent	case)	and	following	solution	is	obtained	for	the	initial	Cw(t	=	0)	=	Cw,0:	

!
𝜕𝐶!

𝐶!,#$ − 𝐶!

%!

%!,#

= !𝑘	𝐴& )1 +
𝑉!

𝐾' 	𝑚'
/𝜕𝑡

(

)

		

−ln3𝐶!,#$ − 𝐶!4 + ln3𝐶!,#$ − 𝐶!,)4 = 𝑘	𝐴& )1 +
𝑉!

𝐾' 	𝑚'
/ 𝑡	

𝐶!,#$ − 𝐶!
𝐶!,#$ − 𝐶!,)

= exp )– 𝑘	𝐴& )1 +
𝑉!

𝐾' 	𝑚'
/ 𝑡/	

and	with	𝐴° =
𝑚' 	3
ρ	𝑟	𝑉!

	

𝐶! = 𝐶!,#$ − exp)−
𝑘
𝐾'

3	
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡/ 3𝐶!,#$ − 𝐶!,)4	

normalization	to	𝐶!,#$	leads	to	

𝐶!
𝐶!,#$

= 1 + K*
𝑚'

𝑉!
exp )−

𝑘
𝐾'

3	
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡/	

and	normalization	to	𝐶!,&	yields	

𝐶!
𝐶!,&

=
1

1 + 𝐾'
𝑚'
𝑉!

)1 + 𝐾'
𝑚'

𝑉!
exp )−

𝑘
𝐾'

3	
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡//	

For	large	water	volumes,	we	obtain	again	the	infinite	bath	solution	and	kinetics	slow	down.	For	large	
Kd	(or	md/Vw	),	Kd	drops	out	and	the	change	in	aqueous	becomes	independent	on	sorption	capacity	of	
the	solids;	 this	applies	 if	Cw,eq	 is	 less	than	0.1	of	Cw,0	–	which	may	be	considered	in	sorption	kinetic	
experiments	(Cw,eq	then	may	be	neglected	and	we	get	eq.	1.12).	For	t	=0,	Cw/Cw,eq	denotes	the	total	to	
the	dissolved	mass	(=	1+Kd	md/Vw	)	and	Cw/Cw,o	=	1.	For	t	=	¥	Cw/Cw,eq	becomes	1	and	and	Cw/Cw,o	=	1	
denotes	the	the	fraction	dissolved	(=	1/(1+Kd	md/Vw	)).	
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Box 2. “Apparent” Kd 
Sometimes	 relative	 distribution	 coefficients	 are	 used	 to	 illustrate	 sorption	 kinetics	 in	 batch	
experiments.	The	advantages	that	sorptive	uptake	data	become	independent	on	the	solid	to	liquid	ratio	
at	 least	 at	 early	 time.	 Relative	 distribution	 coefficients	 are	 defined	 as	 the	 ratio	 of	 the	 apparent	
distribution	 coefficient	 Kd,a	 to	 the	 equilibrium	 Kd	 (=	 Kd,a/Kd).	 We	 start	 with	 eq.	 10b	 (note	 that	
concentration	differences	were	changed	by	multiplication	by	-1	in	numerator	and	denominator):	

𝐶! − 𝐶!,#$
𝐶!,) − 𝐶!,#$

= exp)−
𝑘
𝐾'

3
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡/	

realizing	that	(Cw,0	-	Cw,eq)Vw	represents	the	mass	sorbed	under	equilibrium	condition	(Cs,eq	md)	and	(Cw	
-	Cw,eq)Vw	(the	mass	in	the	water	to	be	sorbed)	equals	(Cs,eq	–	Cs)md	leads	to	the	relative	change	of	the	
concentration	in	the	solids:	

𝐶+
𝐶+,#$

= 1 − exp )−
𝑘
𝐾'

3
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡/	

Extending	that	to	relative	Kd’s:	

𝐶+	𝐶!,#$
𝐶+,#$	𝐶!

=	
𝐾',,
𝐾'

=
1 − exp J− 𝑘

𝐾'
3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡K

𝐶!
𝐶!,#$

	

Cw	is	known	from	eq.	1.10b	and	we	get:	

𝐾',,
𝐾'

=
1 − exp J− 𝑘

𝐾'
3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡K

1 − exp J− 𝑘
𝐾'

3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡K )1 −

𝐶!,)
𝐶!,#$

/
	

For	short	time	periods,	we	may	replace	the	numerator	by	the	negative	argument	of	the	exponential	
function	(1-e-x	≈	x)	and	realizing	that	the	exponential	function	in	the	denominator	approaches	unity	at	
early	times	we	get	a	short	term	approximation:		

𝐾',,
𝐾'

≈

𝑘
𝐾'

3	
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡

1 − )1 −
𝐶!,)
𝐶!,#$

/
=

𝑘
𝐾'

3	
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡

𝐶!,)
𝐶!,#$

	

Cw,0	represents	the	total	mass	in	the	system	(Cw,eq	Vw	+	Cs,eq	md)	divided	by	Vw:	

𝐾',,
𝐾'

≈

𝑘
𝐾'

3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡

𝐶!,#$𝑉! + 𝐶+,#$𝑚'
𝐶!,#$𝑉!

=

𝑘
𝐾'

3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡

1 +
𝐶+,#$𝑚'
𝐶!,#$𝑉!

=

𝑘
𝐾'

3
ρ	𝑟 J1 + 𝐾'

𝑚'
𝑉!
K 𝑡

1 + 𝐾'
𝑚'
𝑉!

=
𝑘
𝐾'

3
ρ	𝑟 𝑡	

Therefore	at	early	times	Kd,a/Kd	is	independent	on	the	solids	to	liquid	ratio	(md/Vw).	
…thus	Kd,a	 is	 also	 independent	 on	Kd	 at	 early	 times	 and	 could	 explain	 many	 observations	 on	
accumulation	of	strongly	hydrophobic	compounds	on	organic	particles	in	air	or	biota	in	lakes	which	
e.g.	lack	a	clear	correlation	to	Kow	of	the	compounds	(e.g.	B.	Barbas	et	al.	2018:	Gas/particle	partitioning	
and	 particle	 size	 distribution	 of	 PCDD/Fs	 and	 PCBs	 in	 urban	 ambient	 air.	 Science	 of	 The	 Total	
Environment,	https://doi.org/10.1016/j.scitotenv.2017.12.114).)	
This	result	may	also	be	obtained	from	the	early	time	approximation	of	eq.	1.6:	

𝐶+
𝐶+,#$

=
𝑘
𝐾'

3
ρ	𝑟 𝑡	

using	Cs,eq	=	Cw,eq	Kd:	

𝐶+ =
𝑘
𝐾'

3	
ρ	𝑟 	𝑡	𝐶!,#$	𝐾' 	= 𝑘

3
ρ	𝑟 	𝑡	𝐶!,#$	

https://doi.org/10.1016/j.scitotenv.2017.12.114)
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Thus,	sorptive	uptake	at	early	times	is	independent	on	Kd	(and	thus	the	compound),	which	for	instance	
is	relevant	for	passive	sampler	design	(see	chap.	5).	 Initially	the	sorbent	acts	as	 infinite	sink	for	all	
compounds.	Finally,	this	leads	to	the	apparent	Kd,a:	

𝐾'., =
𝐶+
𝐶!,#$

= 𝑘
3
ρ	𝑟 𝑡	

	 	
Kd,apparent	vs.	Kd	at	equilibrium	after	1,	9,	53	and	213	days	(from	bottom	to	top)	in	a	batch	sorptive	
uptake	mode;	grain	size	=	2	mm,	Sherwood	number	=2	(low	Reynolds	numbers),	Daq	=	7	´	10-10	m2	s-1	
;	LS	=	1000	:	1	l	kg-1	;	similar	plots	would	be	obtained	if	we	plot	Kd,apparent	vs.	Kow,	Koc	or	S.	

	
“Infinite”	sorption	(the	sorbent	takes	or	keeps	it	all).	If	in	the	finite	bath	a	large	fraction	(e.g.,	
>	 90%)	 is	 sorbed	 (uptake	 mode)	 or	 insignificant	 desorption	 during	 release	 occurs	 (infinite	
sorption),	then	Cw’	is	either	zero	all	the	time	or	corresponds	to	the	final	equilibrium	desorption	
(Cw,eq);	in	this	case	Kd	md/Vw	becomes	very	big	and	Kd	drops	out	in	eq.	1.10:		

	
𝑀!

𝑀!,%&
= 1 − exp 6−𝑘

3
ρ	𝑟

𝑚"

𝑉!
𝑡7	 (1.11)	

In	this	case	rates	are	independent	on	Kd.	Relative	concentrations	in	water	then	are,	e.g.:	

	 for	desorption	

𝐶!
𝐶!,%&

= 1 − exp 6−𝑘
3
ρ	𝑟

𝑚"

𝑉!
𝑡7	

And	for	sorptive	uptake	

𝐶!
𝐶!,*

= exp 6−𝑘
3
ρ	𝑟

𝑚"

𝑉!
𝑡7	

(1.12)	

The	 desorption	 case	 describes	 the	 concentration	 increase	 in	 the	 finite	 bath	 for	 dissolution	 of	
minerals	with	a	constant	concentration	at	the	surface.	Note	similarities	to	eq.	1.6	if	in	eq.	1.10	the	
liquid	solid	ratio	(Vw/md)	goes	to	infinity.	

=>	for	large	sorption	capacities	and/or	large	solid/water	ratio	sorption/desorption	time	
scales	for	film	diffusion	are	independent	of	Kd		

1
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In	 general	 sorption/desorption	 kinetics	 especially	 in	 batch	 systems	 depend	 on	 boundary	
conditions	(and	differ	for	film	diffusion,	 intraparticle	diffusion	and	intraparticle	pore	diffusion,	
see	next	chapter)	as	summarized	here:	

	 𝑀
𝑀#$

= 1 − exp )−
𝑘
𝐾'

3	
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/ 𝑡/	

In	the	infinite	bath	(Vw	è	infinity),	the	term	in	parenthesis	drops	out:	

𝑀
𝑀#$

= 1 − exp)−
𝑘
𝐾'

3
ρ	𝑟 𝑡/	

and	time	scales	increase	with	increasing	Kd.	

For	 strong	 sorption	 in	 the	 finite	 bath	 (almost	 everything	 sorbs	 during	 sorptive	
uptake	or	only	little	mass	is	released	in	desorption	(non-depletive)),	Kd	drops	out	
and	is	“replaced”	by	Vw/md:	

𝑀
𝑀#$

= 1 − exp )−𝑘
3
ρ	𝑟

𝑚'

𝑉!
𝑡/	

…	 time	 scales	 now	 increase	 with	 Vw/md.	 Strong	 sorption	 or	 non-depletive	
desorption	is	often	encountered	in	sorption	batch	experiments	and	leaching	tests.		

Note,	this	applies	for	a	homogeneous	sample,	if	only	a	fraction	of	the	solids	(e.g.,	just	
the	 particulate	 organic	 matter)	 participates	 in	 sorption	 desorption,	 then	 md	
decreases	and	time	scales	become	much	longer	(the	volume	of	the	reactive	particles	
and	thus	their	surface	area	is	now	much	smaller	and	thus	mass	transfer	is	slower).	
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Box 3: The fraction dissolved and finite vs. infinite bath conditions 
In	 a	 batch	 experiment	 the	 fraction	 of	 dissolved	 compound	 decreases	 with	 increasing	 sorption	
coefficients	 and	 this	 also	marks	 the	 transition	 from	 infinite	 to	 finite	 bath	 boundary	 conditions	 for	
sorption/desorption	kinetics.		
The	fraction	dissolved	is:	

𝑓'.++ =
𝐶!	𝑉!

𝐶!	𝑉! + 𝐶+	𝑚'
=

1

1 + 𝐶+	𝑚'
𝐶!	𝑉!

=
1

1 + 𝐾'
𝑚'
𝑉!
	

If	Kd	equals	the	liquid	to	solid	ratio	(LS	=	Vw/md),	the	denominator	becomes	2	and	50%	are	dissolved	
and	50%	sorbed.	For	Kd	10	times	larger	than	LS	only	about	9%	are	dissolved	(for	Kd	10	times	smaller	
than	LS	90%	are	already	dissolved).		
Generally,	the	rate	constant	in	a	batch	system	is	(see	eq.	1.10):	

𝜆 =
𝑘
𝐾'

3	
ρ	𝑟 )1 + 𝐾'

𝑚'

𝑉!
/	

If	 Kd	 becomes	 much	 smaller	
than	 LS,	 then	 the	 term	 in	
parenthesis	becomes	1	and	 the	
rate	 constant	 decreases	 with	
increasing	 Kd	 (infinite	 bath).	 If	
Kd	 becomes	 much	 larger	 than	
LS,	 then	 the	 rate	 constant	 be-
comes	 independent	 on	 Kd	 and	
this	 marks	 the	 transition	 from	
the	 infinite	 to	 the	 finite	 bath	
boundary	 conditions.	 The	 rate	
constant	 then	 is	 higher	 than	
under	 infinite	 bath	 conditions	
and	 increases	 with	 decreasing	
LS,	 which	 corresponds	 to	 an	
increasing	specific	surface	area:		

=
𝑚' 	3
𝑉!	ρ	𝑟
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2. CHARACTERISTIC TIMES  

2.1 HOMOGENOUS SYSTEMS 

If	the	argument	of	the	exponential	function	in	eq.	1.10	equals	-1	we	get	1	-	exp(-1)	=	0.6321	and	
63.2%	of	M/Meq	(or	any	relative	concentration)	are	reached.	Thus,	a	simple	characteristic	time	
after	that	equilibrium	is	achieved	to	63.2%	can	be	defined:	

	

𝑡-.34 =
1

𝑘	𝐴* K1 + 𝑉!
𝐾" 	𝑚" 	

L
=

1

𝑘	 3	𝑚"
ρ	𝑟	𝑉!

K1 + 𝑉!
𝐾" 	𝑚" 	

L
=

1

𝑘	 3ρ	𝑟 K
𝑚"
𝑉!

+ 1
𝐾"
L
	

=
1

𝐷(&
𝛿

3
ρ	𝑟	𝐾"

K1 + 𝐾"
𝑚"
𝑉!
L
	

(2.1)	

The	denominator	corresponds	to	the	first	order	rate	constant	–	the	inverse	is	the	characteristic	
time.	In	the	infinite	bath,	the	solids	to	liquid	ratio	(md/Vw)	goes	to	zero	and	the	characteristic	time	
becomes:	

	 𝑡-.34 =
1

𝐷(&
𝛿

3
𝑟	ρ	𝐾"

	 (2.2)	

For	90%	and	99%	equilibration	it	takes	2.3	and	4.6	times	longer	than	for	63%.	Eqs.	2.1	and	2.2	
differ	by	the	factor	1	+	Kd	md/Vw	illustrating	that	tch	in	the	infinite	bath	is	retarded	compared	to	
the	finite	bath	(the	former	takes	1	+	Kd	md/Vw	times	longer).	
If	Kd	and/or	md/Vw	get	large	(infinite	sorbent	–	finite	bath),	then	Kd	drops	out	(and	is	quasi	replaced	
by	Vw/md).		

	 𝑡-.34 =
1

𝐷(&
𝛿

3
𝑟	ρ

𝑚"
𝑉!

	 (2.3)	

While	in	the	finite	bath	the	characteristic	time	tch	becomes	independent	on	Kd	(if	Kd	>>	Vw/md)	in	
the	infinite	bath	tch	always	increases	with	increasing	Kd.	The	term	Kd	md/Vw	denotes	the	ratio	of	
the	mass	sorbed	to	the	solids	and	the	mass	in	solution	after	equilibrium,	which	in	a	typical	sorptive	
uptake	batch	experiment	should	be	larger	than	one	in	order	to	keep	errors	in	the	mass	balance	
calculation	reasonably	low	(the	initial	aqueous	concentration	after	spiking	drops	by	50	%	until	
equilibrium	is	reached).	Therefore,	characteristic	times	in	batch	experiments	often	follow	eq.	2.3	
and	tend	to	be	independent	on	Kd.		
In	consequence,	tch	may	be	vastly	different	depending	on	boundary	conditions	(infinite	bath	vs.	
infinite	sorbent);	the	ratio	of	the	infinite	bath	and	finite	bath	characteristic	times	(eq.	2.2	/	eq.	2.3)	
then	equals:	Kd	md/Vw.		
	

2.2 HETEROGENEOUS SYSTEMS – PARTICLE MIXTURES 

In	 heterogeneous	 systems	 (i.e.	mixtures	 of	 particles	with	 different	 properties	 such	 as	 size	 or	
sorption	capacity)	kinetics	may	get	quite	complicated	as	different	particle	classes	may	compete	
with	each	other	for	the	solute	and	thus	different	boundary	conditions	may	be	experienced	(finite	
vs.	infinite	bath).	A	simple	example	for	assessing	characteristic	times	can	consist	of	a	mixture	of	
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slowly	sorbing	coarse	particles	with	fine	particles	which	are	always	at	equilibrium	with	water;	for	
that	in	eq.	2.1	the	water	volume	(Vw)	has	also	to	account	for	the	mass	in	the	fine	particles:	

	 𝑡-.34 =
1

𝐷(&
𝛿

3
ρ	𝑟5*(6#% 	𝐾",5*(6#%

61 + 𝐾",5*(6#%
𝑚5*(6#%

𝑉! + 𝐾",781% 	𝑚781%
7
	 (2.4)	

For	the	sake	of	simplicity,	we	may	assume	the	same	Kd	for	fine	and	coarse	particles.	If	now	Kd	mfine	
gets	larger	than	Vw,	then	Kd	in	the	parenthesis	drops	out	and	if	furthermore	mcoarse/mfine	is	smaller	
than	one	(which	likely	is	the	case),	then	the	coarse	particles	experience	infinite	bath	conditions	
(eq.	2.2)	and	thus	tch	for	them	becomes	much	bigger	depending	on	Kd.	Equilibration	of	the	coarse	
particles	is	now	(if	the	second	term	in	parenthesis	is	bigger	than	1)	retarded	by	the	factor	(Vw	+	
Kd,fine	mfine)/Vw		=	1	+	Kd,fine	mfine/Vw	compared	to	water	alone.	
If	we	assume,	that	fine	particles	equilibrate	rapidly	in	finite	bath	conditions	according	to	eq.	2.3,	
then	the	ratio	of	tch	for	the	fine/coarse	mixture	becomes	(eq.	2.2/eq.	2.3):	

	
𝑡-.34,5*(6#%
𝑡-.34,781%

=

𝐷(&
𝛿

3
𝑟781% 	ρ

𝑚781%
𝑉!

𝐷(&
𝛿

3
𝑟5*(6#% 	ρ	𝐾",5*(6#%

≈ =
𝑟5*(6#%
𝑟781%

>
9

𝐾",5*(6#%
𝑚781%

𝑉!
	 (2.5)	

Comparing	eq.	2.1.	and	eq.	2.3	leads	to	the	same	result	for	large	Kd,fine	values:	

	

𝑡-.34,5*(6#%
𝑡-.34,781%

=

𝐷(&
𝛿

3
ρ	𝑟781% 	𝐾",781%

K1 + 𝐾",781%
𝑚781%
𝑉!

L

𝐷(&
𝛿

3
𝑟5*(6#% 	ρ	𝐾",5*(6#%

≈ =
𝑟5*(6#%
𝑟781%

>
9 𝐾",5*(6#%
𝐾",781%

61 + 𝐾",781%
𝑚781%

𝑉!
7	

(2.6)	

Squared	radii	come	in	because	for	small	Sherwood	numbers	(e.g.,	approaching	2)	and	d	decreases	
proportionally	with	decreasing	radii	of	the	particles	(this	also	applies	for	intraparticle	diffusion).	
Thus,	already	relatively	small	differences	in	particle	size	can	make	a	big	difference	in	the	dynamics	
of	 equilibration	 kinetics	 in	 heterogeneous	 systems	 as	 already	 illustrated	 by	 Kleineidam	 et	 al.	
(1999);	for	more	details	see	Liu,	et	al.	(2022)	1.	These	considerations	also	apply	to	redistribution	
scenarios,	e.g.,	desorption	from	one	particle	class	and	sorptive	uptake	by	the	other;	this	typically	
applies	for	input	of	contaminated	urban	particles	into	rivers	and	redistribution	of	the	pollutants	
to	“native”	less	polluted	particles	and	for	passive	sampling	in	aqueous	suspensions.		
	

	
1	Liu	et	al.	2022.	First	order	approximation	for	coupled	film	and	intraparticle	pore	diffusion	to	model	
sorption/desorption	batch	experiments.	https://doi.org/10.1016/j.jhazmat.2022.128314	
Kleineidam	et	al.	1999:	Impact	of	grain	scale	heterogeneity	on	slow	sorption	kinetics.	
https://doi.org/10.1002/etc.5620180810	

https://doi.org/10.1016/j.jhazmat.2022.128314
https://doi.org/10.1002/etc.5620180810
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Fig.	2.2:	Characteristic	time	to	reach	63%	of	M/Meq	in	a	batch	experiment	(finite	bath);	grain	size	d	=	
1mm,	Sh	=	2	(see	next	chapter):	LS	(denotes	the	liquid/solid	ratio	(=Vw/md).	For	large	LS	(infinite	bath),	
the	characteristic	time	increases	with	increasing	Kd	while	for	Kd	>>	LS	it	increases	with	increasing	LS	
(infinite	 sorbent);	 for	heterogeneous	 systems	LS	 accounts	 for	Vw	 and	a	 fast	 equilibrating	 (e.g.,	 fine	
particle)	fraction:	Vw	+	Kd,fine	mfine	(instead	of	Vw	alone	we	have	Vw	(1+	Kd,fine	mfine/Vw)).	
	

3. SHERWOOD NUMBERS TO CALCULATE MASS 
TRANSFER COEFFICIENTS (OR FILM d) 

In	 order	 to	 get	 a	 realistic	 estimate	 of	 the	 characteristic	 equilibration	 time	 the	 mass	 transfer	
coefficient	(k	=	Daq/d)	has	to	be	known,	which	depends	on	the	thickness	of	the	aqueous	boundary	
layer	d	(see	Fig.	1).	d	is	a	function	of	the	viscous	forces	in	the	liquid	(e.g.	water).	In	batch	systems,	
it	depends	on	shaking	frequency	and	intensity,	in	percolation	on	the	flow	velocity	of	the	water.	d	
can	 be	 estimated	 from	 empirical	 Sherwood	 numbers	 (Sh)	 which	 describe	 how	 k	 depends	 on	
diffusion	coefficients,	grain	size	(d)	and	δ:	

	 Sh =
𝑘	𝑑
𝐷(&

=
𝑑
𝛿
	⇒	 𝛿 =

𝑑
Sh
	 (3.1)	

In	a	first	approximation	δ	may	be	estimated	by	introducing	the	mean	square	displacement	(as	
used	for	the	short	term	approximation	of	diffusion	into	a	sphere	at	the	end	of	this	chapter):	

	 𝛿 ≈ Qp	𝐷(& 	𝑡5 ≈ Rp	𝐷(&
𝑑
𝑣(
	 (3.2)	

where	tc	denotes	the	unknown	contact	time	of	the	water	with	the	particle	(the	surface	“renewal”	
time”)	which	may	be	proportional	to	d/va	(va	is	the	velocity	of	water	relative	to	the	particle,	i.e.	
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the	advective	velocity	in	a	packed	bed,	the	relative	velocity	in	stirred	or	turbulent	systems).	With	
this,	Sh	becomes	a	function	of	the	Peclet	number	(Pe):	

	

Sh =
𝑑

Tp	𝐷(&
𝑑
𝑣(

= 0.56	R
𝑑	𝑣(
𝐷(&

= 0.56	√Pe	

Sh ∝ R𝑣(
𝑑
𝐷(&

=	
velocity

mass	transfer	coefficient
= R

𝑣(
𝑑
𝑑9

𝐷(&
=	

diffusion	time	scale
advection	time	scale

	

(3.3)	

Since	 contact	 times	 (characteristic	 lengths	 and	 relative	 velocities)	 are	 not	 well	 known	 (and	
presumably	in	average	much	shorter	than	d/va),	empirical	relationships	are	used	to	correlate	Sh	
and	Pe.	Liu	et	al.	(2014)	report	a	factor	of	0.1	instead	of	0.56	in	eq.	3.3	for	laminar	flow	in	a	packed	
bed;	also	the	exponent	may	be	slightly	different	form	½	(Fig.	2.1).	The	mass	transfer	coefficient	k	
then	increases	with	increasing	diffusion	coefficients	and	velocity	and	decreasing	grain	size	(c	here	
is	an	empirical	constant):	

	 𝑘 ≈ 𝑐R
𝐷(&	𝑣
𝑑

	 (3.4)	

The	characteristic	time	then	becomes:	

	 𝑡-.34 =
𝐾"ρ	𝑑

6	𝑐T
𝐷(&	𝑣
𝑑

=
𝐾"ρ	𝑑4/9

6	𝑐Q𝐷(&	𝑣
	 (3.5)	

and	thus	increases	with	d3/2.		
	
	
	
Fig.	 2.1:	 Relationship	 between	 mass	
transfer	 (Sherwood	 number)	 and	 flow	
conditions	 (Peclet	 number)	 for	 com-
pounds	 with	 different	 molecular	
diffusion	coefficients	inn	water	(from	Liu	
et	al.,	2014).	Sh	=	k	d/Daq	and	Pe	=	v	d/Daq.		
	
	
	
	
	
	
	

In	 real	 cases	 and	 especially	 turbulent	 systems	mixing	 it	 is	more	 complicated	 (e.g.	 the	 relative	
velocity	increases	with	distance	from	the	surface	of	the	particle);	for	instance,	if	one	assumes	that	
the	flow	velocity	itself	becomes	a	function	of	the	film	thickness	(e.g.	normalized	to	the	grain	size:	
v	d/d),	then	Sh	depends	on	the	3rd	root	of	Pe.	As	lower	limit	for	Sh	often	2	is	reported,	which	can	
be	derived	for	a	sphere	in	stagnant	water	(or	a	small	particle	moving	with	the	velocity	of	water)	
because	the	surface	area	available	for	diffusion	increases	with	the	distance	squared	and	thus,	the	
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maximum	film	 thickness	equals	 the	radius	of	 the	sphere.	Therefore,	empirical	 relationships	of	
following	form	are	used	(which	also	account	for	the	viscosity,	see	Table	3.1):	

	 Sh = 2 + 𝑐	Re;/9	Sc;/4	 (3.6)	

where	c	is	an	empirical	constant	around	0.5.	For	packed	beds	with	porosities	of	0.4	-	0.5	(e.g.	flow	
in	porous	media),	where	water	flows	around	the	spheres,	Fitzer	et	al.	(1995)	report:	

	 Sh = 1.9	Re;/9	Sc;/4	 (3.7)	

Peclet	 (Pe),	 Schmidt	 (Sc)	 and	 Reynolds	 (Re)	 numbers	 are	 explained	 in	 Table	 3.1.	 How	mass	
transfer	coefficients	and	thus	characteristic	times	scale	with	grain	size,	diffusion	coefficients	or	
velocity	depends	on	the	empirical	relationship	chosen	as	shown	in	Table	3.2.	Characteristic	times	
for	instance	increase	with	increasing	grain	size,	but	depending	on	the	Sherwood	relationship	with	
d3/2,	d5/3	or	d2.	
	
	

Box 3.1. Sh for diffusion from a “stagnant”sphere 
Consider	diffusion	from	a	sphere	(surface	area:	4	p	d2)	with	a	radius	of	rsp	(=	d/2)	into	an	infinite	
space	we	get	for	the	total	flux	(Dm	is	the	molecular	diffusion	coefficient):		

𝐹(&( = 𝐷/ 	
𝑑𝐶
𝑑𝑟 	4	𝜋	𝑟

0	

The	flux	has	to	be	the	same	at	all	distances	from	the	surface	of	the	sphere.	Integration	yields:	

!
𝐹(&(	𝑑𝑟
4	𝜋	𝑟0	

1

2$%
= ! 𝐷/𝑑𝐶	

%&

%$%
	

𝐹(&(
4	𝜋 U

1
𝑟+3

−
1
𝑟1
V = 𝐷/3𝐶1 − 𝐶+34	

𝐹(&( =
𝐷/

) 1𝑟+3
/
4	𝜋3𝐶1 − 𝐶+34	

If	this	is	normalized	to	the	surface	area	of	the	sphere,	then	we	get	the	flux	density	(which	decreases	
with	radial	distance	from	the	surface):	

𝐹 =
𝐷/

4	𝜋	𝑟+30 )
1
𝑟+3
/
4	𝜋	3𝐶1 − 𝐶+34	

𝐹 =
𝐷/
𝑟+3

	3𝐶1 − 𝐶+34 = −
𝐷/
𝑑/2	3𝐶1 − 𝐶+34	

Thus,	the	film	thickness	at	maximum	becomes	d/2	(=	rsp)	and	the	smallest	Sherwood	number	is	2.	

	
	
	
	
	
	
	
	
	



ENVIRONMENTAL CHEMISTRY (GRATHWOHL)  C2 FIRST ORDER SORPTION KINETICS 

	 15 

Table	3.1:	Dimensionless	numbers	used	for	calculation	of	mass	transfer	coefficients		

Dimensionless	Number	
(Group)	

Physical	Meaning	 Used	for	

Sherwood	number	

Sh =
𝑘	𝑑
𝐷 	

corresponds	 to	 Nusselt	
number	in	heat	transfer	

𝑚𝑎𝑠𝑠	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑟𝑎𝑡𝑒
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 	

or	
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐	𝑙𝑒𝑛𝑔𝑡ℎ	(𝑑)

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑙𝑎𝑦𝑒𝑟	𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠	(𝛿)	

Calculation	of	the	mass	
transfer	coefficient:	

k	=	D/d	[m/s])	

Schmidt	number	

Sc =
𝜈
𝐷	

corresponds	to	Prandtl	
number	in	heat	transfer	

𝑣𝑖𝑠𝑐𝑜𝑢𝑠	𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟	𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	

or	
ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐	𝑙𝑎𝑦𝑒𝑟

𝑚𝑎𝑠𝑠	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑙𝑎𝑦𝑒𝑟	

Ratio	of	kinematic	
viscosity	𝜈	*	[m2	s-1]	and	
diffusion	coefficient	

Reynolds	number	

Re =
𝑑	𝑣!
𝜈 	

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙	𝑓𝑜𝑟𝑐𝑒𝑠
𝑣𝑖𝑠𝑐𝑜𝑢𝑠	𝑓𝑜𝑟𝑐𝑒𝑠 	

Above	2300	changes	
from	laminar	flow	to	

turbulent	flow	

Peclet	number	

Pe =
𝑑	𝑣!
𝐷 = Re	 × 	Sc	

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒	𝑓𝑙𝑢𝑥𝑒𝑠
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒	𝑓𝑙𝑢𝑥𝑒𝑠 𝑜r	

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛	

Relevance	of	advection	
compared	to	diffusion	

  *the kinematic viscosity is the dynamic viscosity  h [Pa·s or N·s m-2 or kg/(m·s)] divided by the density ρ [kg m-3] (ν = h/ρ)  
	
Table	3.2:	Mass	transfer	coefficients	and	characteristic	times	for	different	Sherwood	relationships		

Sherwood	number	

Sh =
𝑘	𝑑
𝐷 	

Mass	transfer	coefficient	

𝑘 =
Sh	𝐷
𝑑 	

Characteristic	time*	

𝑡).45 =
𝐾' 	ρ	𝑑
6	𝑘 	

= c	√Pe = 𝑐_
𝑑	𝑣,
𝐷 	 = 𝑐_

𝑑	𝑣,
𝐷

𝐷
𝑑 = 𝑐_

𝐷	𝑣,
𝑑 	 =

𝐾' 	ρ	𝑑

6	𝑐a𝐷	𝑣,𝑑

=
𝐾' 	ρ	𝑑5/0	
6	𝑐	b𝐷	𝑣,

	

= c	Pe7/5 = 𝑐	 )
𝑑	𝑣,
𝐷 /

7/5

	 = 𝑐 )
𝑑	𝑣,
𝐷 /

7/5 𝐷
𝑑 = 𝑐

𝐷0/5	𝑣,
7/5

𝑑0/5 	 =
𝐾' 	ρ	𝑑8/5	
6	𝑐	𝐷0/5	𝑣,

7/5	

= c	Re7/0	Sc7/5

= 𝑐	 )
𝑑	𝑣,
𝜈 /

7/0

J
𝜈
𝐷K

7/5
	

= 𝑐	 )
𝑑	𝑣,
𝜈 /

7/0

J
𝜈
𝐷K

7/5 𝐷
𝑑 = 𝑐

	𝐷0/5	𝑣,
7/0

𝑑7/0	𝜈7/4 	
=
𝐾' 	ρ	𝜈7/4	𝑑5/0	
6	𝑐	𝐷0/5	𝑣,

7/0 	

= 2	 = 2
𝐷
𝑑 	 =

𝐾' 	ρ	𝑑0

6	2	𝐷 	

c	is	an	empirical	constant	
*in	batch	systems	(finite	bath)	the	characteristic	times	are	divided	by	1	+	Kd	md	/Vw	(then	large	Kd’s	drop	
out)	and	thus	are	shorter	
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4. FILM DIFFUSION WITH FIXED SURFACE MASS 
TRANSFER RESISTANCE 

Analogous	to	the	first	chapter	we	can	derive	diffusion	into	(or	out	of)	a	sphere,	e.g.	a	microplastic	
particle,	resin	beads	or	even	liquids	which	is	limited	by	a	fixed	solid	(or	liquid)	layer	(“shell”)	of	
the	 same	 material	 with	 thickness	 d.	 For	 uptake	 or	 release	 in	 the	 infinite	 bath	 the	 external	
concentration	 in	water	or	 gas	phase	 is	 fixed	 (either	 at	 equilibrium	or	0)	 resulting	 in	 constant	
concentration	at	the	surface	of	the	sphere	(Cs	=	Cs,eq	or	0)	and	eq.	1.5	may	be	expressed	as:		

	 𝜕𝐶#
𝜕𝑡

= −
𝐷#
𝛿
3
𝑟
;𝐶# − 𝐶#,%&<	

or	for	desorption	

𝜕𝐶#
𝜕𝑡

= −
𝐷#
𝛿
3
𝑟
(𝐶# − 0)	

(4.1)	

Ds	is	the	diffusion	coefficient	in	the	surface	layer;	furthermore	d	is	small	compared	to	r	and	the	
layer	does	not	store	the	solute.	3/r	is	the	specific	surface	area	(surface	per	volume	of	a	sphere).	
Integration	yields	the	following	analytical	solutions	for	uptake:	

	
8

𝜕𝐶#
𝐶# − 𝐶#,%&

+!

-

= 8−
𝐷#
𝛿
3
𝑟
𝜕𝑡

,

-

		

ln;𝐶# − 𝐶#,%&< − ln;−𝐶#,%&< = ln =−
𝐶#
𝐶#,%&

+ 1> = −
𝐷#
𝛿
3
𝑟
𝑡	

𝐶#
𝐶#,%&

= 1 − exp 6−
𝐷#
𝛿
3
𝑟
𝑡7	

or	more	generally	which	also	applies	for	desorption:	

𝑀
𝑀%&

= 1 − exp 6−
𝐷#
𝛿
3
𝑟
𝑡7	

(4.2)	

	

=>	 in	 the	 infinite	 bath	 sorption/desorption	 time	 scales	 are	 independent	 on	Kd,	 if	mass	
transfer	limitations	are	inside	a	nonporous,	solid	particle	

	
More	frequent,	especially	in	laboratory	batch	experiments,	is	the	finite	bath	boundary	condition:	

	 𝜕𝐶#
𝜕𝑡

= −
𝐷#
𝛿
3
𝑟
(𝐶# − 𝐶#))	

(4.3)	

The	unknown	concentration	at	the	surface	C’s	is	in	equilibrium	with	the	aqueous	concentration	Cw	
(=	C’s/Kd	).	Cw	is	calculated	from	the	total	mass	in	the	system	which	under	equilibrium	conditions	
is	simply	given	by	the	sum	present	in	the	water	and	the	solids	(Cs,eq	md	+	Cw,eq	Vw)	minus	the	actual	
mass	in	the	solids	(Cs	md).		
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𝐶! =
𝐶!,%&𝑉! + 𝐶#,%& 	𝑚" − 𝐶#𝑚"

𝑉!
= 𝐶!,%& + 𝐶#,%&

	𝑚"

𝑉!
− 𝐶#

𝑚"

𝑉!
	

C’s	thus	is:	

𝐶#) = 𝐾" 	𝐶! =	𝐶!,%&𝐾" + 𝐶#,%&𝐾"
	𝑚"

𝑉!
− 𝐶#𝐾"

𝑚"

𝑉!
=	𝐶#,%& + 𝐶#,%&𝐾"

	𝑚"

𝑉!
− 𝐶#𝐾"

𝑚"

𝑉!
	

(4.4)	

The	concentration	difference	in	4.3	then	becomes:	

	
𝐶# − 𝐶#) = 𝐶# − 𝐶#,%& − 𝐶#,%&𝐾"

	𝑚"

𝑉!
+ 𝐶#𝐾"

𝑚"

𝑉!
= 𝐶# 61 + 𝐾"

	𝑚"

𝑉!
7 − 𝐶#,%& 61 + 𝐾"

	𝑚"

𝑉!
7	

(4.5)	

Thus	eq.	4.3	becomes:	

	 𝜕𝐶#
𝜕𝑡

= −
𝐷#
𝛿
3
𝑟 6
1 + 𝐾"

	𝑚"

𝑉!
7 ;𝐶# − 𝐶#,%&<	

(4.6)	

which	upon	integration	yields	the	following	analytical	solution	(sorption	mode	-	initial	condition	
Cs	(t	=	0)	=	0):	

	
8

𝜕𝐶#
𝐶# − 𝐶#,%&

+!

-

= 8−
𝐷#
𝛿
3
𝑟 6
1 + 𝐾"

	𝑚"

𝑉!
7𝜕𝑡

,

-

		

ln;𝐶# − 𝐶#,%&< − ln;0 − 𝐶#,%&< = ln =−
𝐶#
𝐶#,%&

+ 1> = −
𝐷#
𝛿
3
𝑟 6
1 + 𝐾"

	𝑚"

𝑉!
7 𝑡	

and	for	the	relative	mass	which	has	diffused	into	or	out	of	the	sphere:	

𝑀
𝑀%&

= 1 − exp 6−
𝐷#
𝛿
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7 𝑡7	

(4.7)	

Thus,	with	increasing	sorption	(Kd)	sorption	kinetics	limited	by	diffusion	in	a	solid	in	batch	
systems	always	gets	accelerated	(if	Kd	md/Vw	>	1).	
	

=>	 in	 the	 finite	bath	 sorption/desorption	 time	 scales	 are	decreasing	with	 increasing	Kd	
(and	increasing	solid	to	liquid	ratios)	if	mass	transfer	limitations	are	inside	a	nonporous,	
solid	particle	(e.g.	microplastic)	

	
Increasing	the	internal	film	thickness	with	time	during	intraparticle	diffusion.		

If	we	assume	internal	mass	transfer	resistance	such	as	intraparticle	diffusion,	d	in	eq.	4.6	and	4.3	
may	be	estimated	by	the	mean	square	displacement	(=	diffusion	distance,	here	(π	Ds	t)0.5)	which	
grows	with	the	square	root	of	time:		

	 𝜕𝐶#
𝜕𝑡

= −
𝐷#

Q𝜋	𝐷#	𝑡
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7 ;𝐶# − 𝐶#,%&<	

(4.7)	

The	solution	for	early	times	(Cs	<<	Cs,eq)	may	be	easily	obtained	upon	integration	(with	Cs	»	0):		
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8
𝜕𝐶#
𝐶#,%&

+!

-

= 8
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7R

𝐷#
𝜋	𝑡

	𝑑𝑡
,

-

	

𝑀
𝑀%&

= 2	
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7R

𝐷#	𝑡
𝜋
	

(4.8)	

This	corresponds	exactly	to	the	early	time	solution	for	intraparticle	diffusion	(see	next	chapter)	
with	the	difference	that	diffusion	in	the	solid	is	independent	on	Kd	(for	large	Kds	and	or	low	liquid	
to	solid	ratios,	kinetics	accelerates	with	Kd	and	md/Vw	squared).	This	approximation	only	holds	for	
low	Cw/Cw,eq	(<	0.5).	An	approximation	working	for	longer	times	is	obtained	if	we	directly	integrate	
eq.	4.7:		

	
8

𝜕𝐶#
𝐶# − 𝐶#,%&

+!

-

= 8
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7R

𝐷#
𝜋	𝑡

	𝑑𝑡
,

-

	

𝑀
𝑀%&

= 1 − expk−2
3
𝑟 6
1 + 𝐾"

𝑚"

𝑉!
7R

𝐷#	𝑡
𝜋 l	

(4.9)	

Note,	for	small	arguments	(x),	1-exp(-x)	may	be	approximated	by	x	which	leads	again	to	eq.	4.8.	
These	solutions	are	obtained	by	inserting	(π	Ds	t)0.5	directly	in	eq.	4.7.		
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5. PRACTICAL APPLICATION: PASSIVE 
SAMPLING 

Understanding	mass	transfer	through	layers	of	given	thicknesses	may	be	applied	to	design	passive	
samplers	for	monitoring	of	pollutants	in	the	environment.	The	advantages	of	passive	sampling	in	
the	field	are	i)	that	no	samples	(water	or	air)	have	to	be	taken	which	often	introduces	artifacts	
such	as	 loss	of	the	target	compound	or	cross-contamination	and	ii)	sampling	integrates	over	a	
certain	 time	 period	 and	 provides	 an	 average	 concentration	 which	 is	 an	 advantage	 if	
concentrations	 in	 the	 environment	 fluctuate	 (only	one	 “passive”	 sample	 is	 requires	 instead	of	
many	samples	to	get	a	robust	average).		
Passive	sampling	in	the	environment	comes	in	many	different	designs,	the	most	frequent	is	using	
organic	polymers	to	collect	organic	pollutants	in	air	or	water	–	in	fact,	natural	organic	matter	in	
soils	and	sediments	and	even	plants	(leaves,	bark,	wood)	may	be	considered	as	passive	samplers,	
same	 for	 microplastic	 particles	 in	 the	 environment.	 For	 calibration	 and	 selecting	 the	 proper	
monitoring	 time	 period	 the	mass	 transfer	mechanisms	 of	 target	 compounds	 into	 the	 passive	
sampler	have	to	be	understood.	Here	we	introduce	the	design	of	a	“dosimeter”	for	sampling	of	
pollutants	in	water,	which	involves	diffusion	of	the	target	compound	through	a	porous	membrane	
of	given	 thickness	 into	an	adsorbent	which	acts	as	 infinite	sink	(Martin	et	al.,	2001,	2003).	As	
illustrated	in	Fig.	5.1.,	this	is	realized	by	a	hollow	ceramic	cylinder	(“membrane”)	which	contains	
a	 suitable	 sorbent	 for	 the	 target	 compounds	 (polymers	 or	 activated	 carbon	 for	 organic	
compounds).	Diffusion	into	the	sorbent	material	is	limited	by	diffusion	in	the	ceramic	membrane;	
the	effective	diffusion	coefficient	(Dmem)	may	be	estimated	by	empirical	relationships	similar	to	
the	well-known	Archie’s	law	correlation:		
	 𝐷.%. = 𝐷!𝜀.	 (5.1)	
The	empirical	exponent	m	accounts	for	the	tortuosity	and	is	mostly	between	1.5	and	2,	but	for	
analytical	purposed	the	value	for	m	has	to	be	calibrated.	
	

	
Fig.	5.1:	Design	of	a	ceramic	passive	sampler	“dosimeter”	(Bopp	et	al.,	2004;	Weiß	et	al.,	2007)		
	
Fluxes.	The	total	flux	of	the	target	compound	into	the	ceramic	cylinder	depends	on	the	surface	
area	 (2	 p	 r	 l)	 and	 the	 inner	 and	 outer	 radii	 of	 the	 cylinder	 membrane	 (rout,	 rin)	 have	 to	 be	
considered;	the	total	flux	then	is	(note	similarities	in	calculating	film	thicknesses	and	Sherwood	
numbers	for	spheres):		

Groundwater		Membrane		Sorbent	
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	 𝐹,*, = 𝐷.%.2	𝜋	𝑟	𝑙	
𝑑𝐶
𝑑𝑟
	 (5.2)	

2	p	r	l	is	the	area	of	a	cylinder	with	length	l.	Integration	yields:	

	

8
𝐹,*,	𝑑𝑟
2	𝜋	𝑟	𝑙

6'(

6#)*
= 8 𝐷.%.𝑑𝐶	

+'(

+#)*
	

𝐹,*,
2	𝜋	𝑙

(ln 𝑟*<, − ln 𝑟81) = 𝐷.%.(𝐶*<, − 𝐶81)	

𝐹,*, = 𝐷.%.2	𝜋	𝑙	
(𝐶*<, − 𝐶81)

ln K𝑟*<,𝑟81
L
	

(5.3)	

Dividing	 by	 the	 surface	 area	 yields	 the	 flux	 density	 and	 illustrates	 the	 effective	 membrane	
thickness:	

	 𝐹 =
𝐷.%.

𝑟81 ln K
𝑟*<,
𝑟81

L
(𝐶*<, − 𝐶81)	 (5.4)	

Often	following	simplification	is	used	(just	based	on	the	thickness	of	the	membrane):	

	 𝐹,*, =
𝐷.%.2	𝜋	𝑙	𝑟*<,
𝑟*<, − 𝑟81

(𝐶*<, − 𝐶81) =
𝐷.%.2	𝜋	𝑙

1 − K 𝑟81𝑟*<,
L
(𝐶*<, − 𝐶81)	 (5.5)	

This	compares	well	to	eq.	5.3	for	ratios	of	rin/rout	close	to	one	(e.g.	>	0.8),	then	1	-	rin/rout	 »	ln	rout/rin.	

	

Target	compound	uptake	and	characteristic	 times.	The	change	of	concentration	(Cs)	of	 the	
target	compound	in	the	adsorber	material	inside	the	dosimeter	is:	

	 𝑑𝐶#
𝑑𝑡

=
𝐷.%.2	𝜋	𝑙

𝑚"
	
(𝐶*<, − 𝐶81)

ln K𝑟*<,𝑟81
L

=
𝐷.%.2	𝜋	𝑙

𝑚"
	
6
𝐶#,%&
𝐾"

− 𝐶#
𝐾"
7

ln K𝑟*<,𝑟81
L
	 (5.6)	

Kd	is	the	distribution	coefficient	between	adsorber	material	of	mass	md	and	water.	Cs,eq/Kd	is	the	
average	concentration	in	water	outside	the	dosimeter	(or	the	arithmetic	average	of	it),	Cs	/Kd	is	
the	aqueous	concentration	inside	the	dosimeter.	The	analytical	solution	for	this	is:		

	
𝐶#
𝐶#,%&

= 1 − expk−
𝐷.%.2	𝜋	𝑙

𝐾" 	𝑚" 	 ln K
𝑟*<,
𝑟81

L
	𝑡l	 (5.7)	

Kd	 is	 the	 distribution	 coefficient	 between	 adsorber	 mass	 (m)	 and	 water.	 Cs,eq/Kd	 is	 the	
concentration.	 The	 term	 before	 the	 time	 is	 the	 rate	 constant	 and	 the	 inverse	 of	 that	 is	 a	
characteristic	time:	

	 𝑡5=(6 =
𝐾" 	𝑚" 	 ln K

𝑟*<,
𝑟81

L

𝐷.%.2	𝜋	𝑙
	 (5.8)	

The	absolute	mass	in	the	adsorber	as	a	function	of	the	concentration	of	the	target	compound	in	
water	is:	

	 𝑀# = 𝐶!	𝐾" 	𝑚" p1 − expk−
𝐷.%.2	𝜋	𝑙

𝐾" 	𝑚" 	 ln K
𝑟*<,
𝑟81

L
	𝑡lq	 (5.9)	

For	small	arguments	of	the	exponential	function	(early	time)	the	uptake	is	linear	and	proportional	
to	the	negative	argument:	
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	 𝑀# = 𝐶!	𝐾" 	𝑚" 	
𝐷.%.2	𝜋	𝑙

𝐾" 	𝑚" 	 ln K
𝑟*<,
𝑟81

L
	𝑡 = 𝐶!

𝐷.%.2	𝜋	𝑙

ln K𝑟*<,𝑟81
L
	𝑡	 (5.10)	

Thus,	 in	 this	 range	 (far	 away	 from	 equilibrium)	 uptake	 is	 independent	 on	 Kd	 and	 mass	 of	
adsorbent	 and	 the	 same	 for	 all	 compounds	 (see	 for	 illustration	 Fig.	 5.2).	 This	 is	 the	 desired	
operation	state	of	a	dosimeter	(or	general	a	non-equilibrium	passive	sampler).	
	

Fig.	5.2:	Mass	uptake	in	Dosimeter	in	ng	(solid	lines)	and	relative	uptake	(dotted	lines)	at	different	Kd-
values	(low:	red,	high:	blue);	initially	absolute	mass	uptake	(M)	is	(almost)	independent	on	Kd	as	shown	
in	the	right	plot	(solid	lines)	while	relative	mass	M/Meq	depends	on	Kd	–	as	in	all	first	order	sorptive	
uptake	processes	in	an	infinite	bath.		

	

Calibration	in	batch	studies.	In	a	sorptive	uptake	experiment	in	a	bottle	(batch	test)	the	initial	
high	concentration	in	water	(Cw,0)	drops	to	the	equilibrium	concentration	(Cw,eq):	

	
𝐶! − 𝐶!,%&
𝐶!,- − 𝐶!,%&

= exp 6– 𝑘	𝐴* 61 +
𝑉!

𝐾" 	𝑚"
7 𝑡7	 (5.11)	

k	A0	is	a	rate	constant	(i.e.	the	product	of	the	mass	transfer	coefficient	and	the	specific	surface	
area	of	the	dosimeter	to	the	volume	of	water	Vw):	

	 𝑘	𝐴* =
𝐷.%.2	π	𝑙

ln K𝑟*<,𝑟81
L 𝑉!

=
𝐷(& 	𝜀.	2	π	𝑙

ln K𝑟*<,𝑟81
L 𝑉!

	 (5.12)	

Since	the	aqueous	diffusion	coefficient	(Daq)	and	the	porosity	of	the	membrane	(e)	are	known,	the	
exponent	m	is	the	only	fitting	factor.	If	Cw,eq	goes	to	zero,	then	we	get	a	simple	exponential	decay:	

	 𝐶!
𝐶!,-

= expk−
𝐷(& 	𝜀.

ln K𝑟*<,𝑟81
L
	2	π	𝑙	 6

1
𝑉!
+

1
𝐾" 	𝑚"

7 𝑡l	 (5.13)	

If	Kd	gets	big	then	it	drops	out	and	we	simply	arrive	at:	

	
𝐶!
𝐶!,-

= expk−
𝐷(& 	𝜀.

ln K𝑟*<,𝑟81
L
	
2	π	𝑙
𝑉!

𝑡l	 (5.14)	
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In	this	case	m	may	be	determined	by	linear	regression	in	a	semi-log	plot.	

6. SUMMARY 
	

“Take	home	messages”	on	Kd	dependency	of	sorption/desorption	kinetics	

• Film	diffusion	in	an	external	boundary	layer	(e.g.,	water	or	air	film):	Slows	down	with	
increasing	Kd	in	the	infinite	bath	but	becomes	independent	on	Kd	in	the	finite	bath	for	large	Kd	
values	(still	depends	on	the	liquid	to	solid	ratios;	faster	with	increasing	md/Vw	=	1/LS)		

• If	sorptive	uptake	is	expressed	as	Kd,a/Kd	then	kinetics	at	early	times	appear	independent	on	
the	liquid	to	solid	ratio	(LS)	

• Intraparticle	diffusion	(e.g.,	diffusion	in	a	solid	particle	such	as	a	polymer	sphere):	
Independent	of	Kd	in	the	infinite	bath	but	accelerates	in	the	finite	bath	with	increasing	Kd	(at	
early	times	with	Kd	squared)	-	Intraparticle	pore	diffusion	slows	down	with	increasing	Kd	in	
the	infinite	bath,	but	in	the	finite	bath	gets	accelerated	with	increasing	Kd	(next	chapter)	
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