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Plumes: Matrix Diffusion and Back Diffusion 
1. DIFFUSION INTO AND OUT OF LOW PERMEABILITY 

ZONES 

The	subsurface	environment	typically	has	zones	of	different	permeabilities,	such	as	sand	layers	
with	embedded	clay	or	silt	lenses.	A	typical	sequence	of	geological	formations	in	valleys	(where	
often	cities	are	located	due	to	the	proximity	to	rivers)	are	weathered	bedrocks	(e.g.,	mudstones,	
limestones,	sandstones,	or	igneous	rocks)	with	low	permeabilities	followed	by	glacial	sand	and	
gravel	deposits	(which	are	very	heterogeneous).	These	are	topped	by	alluvial	loam	layers,	which,	
to	a	large	extent,	may	come	from	eroded	soils	amplified	after	the	onset	of	agriculture.	Thicknesses	
of	these	layers	are	highly	variable	(e.g.,	the	top	layer	often	has	"windows"	or	is	removed	in	urban	
areas	 for	 construction	 purposes).	 Glacial	 sand	 and	 gravel	 layers	 host	 valuable	 groundwater	
resources,	which	typically	are	used	for	drinking	water	production.	Also,	fractured	sedimentary	
aquifers	(limestones	and	sandstones)	are	important	sources	of	drinking	water;	here	groundwater	
flow	 occurs	 predominantly	 in	 the	 fractures	while	 solute	 exchange	with	 the	 rock	matrix	 is	 by	
molecular	diffusion.	In	both	cases	permeable	units	are	surrounded	by	low	permeability	domains	
and	the	latter	may	store	contaminants	for	very	long	time	periods.	After	pollutant	input	stopped	
(application	 of	 pesticides	 ended	 or	 NAPL	 were	 removed),	 “back	 diffusion”	 out	 of	 the	 low	
permeability	 domain	 starts.	 An	 important	 feature	 of	 back	 diffusion	 is	 that	 concentrations	 are	
independent	on	compound	and	porous	medium	properties.		

A	typical	example	of	contamination	of	 low	permeability	domains	are	DNAPL	spills	 in	urban	or	
industrialized	areas.	For	example,	DNAPLs	would	infiltrate	into	the	ground(water)	until	they	hit	
a	low	permeability	layer	(e.g.,	weathered	mudstones	or	clays)	and	form	pools.	DNAPL	constituents	
then	diffuse	continuously	into	the	low	permeability	layer	as	long	as	the	source	exists	(see	Fig.	1.1).	

	

	

Fig.	 1.1:	 Concentration	 profile	 during	
contaminant	 diffusion	 into	 a	 low	 permeability	
clay	 layer;	 normalized	 concentration	 vs.	
dimensionless	 distance	 calculated	 from	 the	
analytical	solution	for	semi-infinite	diffusion:	

𝐶
𝐶!
= erfc '

𝑧
2*𝐷"	𝑡

.	

Numbers	on	lines	denote	dimensionless	time	(i.e.	
arguments	 in	 the	 complimentary	 error	 function	
(erfc);	“reservoir”	may	represent	a	landfill	or	any	
other	 long	 term	 contaminant	 source	 such	 as	 a	
DNAPL	 pool	with	 constant	 concentrations	 at	 the	
top	boundary.	
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After	 source	 removal	 by	 dissolution	 or	 active	 remediation	 (e.g.,	 excavation	 of	 a	 landfill)	 back	
diffusion	starts	at	the	upper	part	of	the	low	permeability	zone	and	concentrations	decrease,	but	
at	larger	depth	downward	diffusion	still	continues	as	shown	in	Fig.	1.2.	This	causes	hysteresis,	
which	is	frequently	observed	during	remediation	of	contaminated	sites.	If	the	back	diffusion	time	
scale	 matches	 the	 exposure	 time	 (te)	 we	 still	 have	 significant	 contaminant	 mass	 in	 the	 low	
permeability	zone.	Since	the	porous	medium	is	(semi-)infinite,	back	diffusion	theoretically	lasts	
for	infinite	times.		

	

	

Fig.	1.2:	 Concentration	profiles	 after	30	
years	of	diffusion	into	a	low	permeability	
clay	layer	(dashed	line)	followed	by	back	
diffusion	after	5,	15,	30	(dashed	line)	100	
and	 200	 years	 (apparent	 diffusion	
coefficient	 =	 1	 10-10	 m2	 s-1	 for	 TCE	 in	
weathered	 “Opalinuston”	 (Middle	
Jurassic	 mudstone)	 after	 Grathwohl,	
1998).	

	

	

	

	

	

	

	

	

	

The	vertical	concentration	profiles	for	back	diffusion	maybe	calculated	based	on	simple	analytical	
solutions	of	the	diffusion	equation:	

	
𝐶
𝐶!
= erfc '

𝑧
2*𝐷"	(𝑡# + 𝑡)

1 − erfc '
𝑧

2*𝐷"	𝑡
1	 (1.1)	

For	practical	purposes	during	remediation,	the	residual	contaminant	mass	and	fluxes	out	of	the	
low	permeability	zone	are	more	relevant.	The	mass	in	the	porous	medium	(Mte)	after	exposure	
time	(te)	is:	

	 𝑀$# = 2	𝐶%	𝛼5
𝐷"	𝑡#
𝜋

		[M	L&']	 (1.2)	

a	denotes	the	rock	capacity	factor:	e	+	Kd	r	(see	also	chap.	2).	The	solute	mass	(Mb)	which	left	the	
porous	medium	during	back	diffusion	is	(Liedl,	1994,	see	Grathwohl,	1998):	
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	 𝑀( = 2	𝐶%	𝛼5
𝐷"	𝑡#
𝜋

	;1 − *1 + 𝑡# 𝑡⁄ + *𝑡# 𝑡⁄ >	[M	L&']	 (1.3)	

This	may	be	normalized	to	Mte	(division	by	eq.	1.2):	

	
𝑀(

𝑀$#
= 1 − *𝑡/𝑡# + 1 + *𝑡/𝑡# 	 (1.4)	

Now	 the	 relative	 mass	 during	 back	 diffusion	 is	 independent	 of	 the	 diffusion	 coefficient	 and	
sorption	properties.	It	just	depends	on	the	ratio	of	the	back	diffusion	time	to	the	exposure	time	
(t/te).	For	larger	time	periods	this	reduces	further	to:	

	

𝑀(

𝑀$#
= 1 −

1
2*

𝑡#/𝑡	

and	the	relative	mass	left	in	the	porous	medium	(1-Mb/Mte)	is:	

𝑀
𝑀$#

=
1
2*

𝑡#/𝑡	

(1.5)	

Ultimately	eq.	1.4	becomes	unity	(=	1).	As	shown	in	Fig.	1.3	it	takes	about	30	times	the	exposure	
time	to	remove	more	than	90%	of	the	initial	mass	just	by	back	diffusion.	Typically,	DNAPL	pools	
exist	for	decades	and	thus	remediation	times	scale	may	easily	amount	to	centuries	to	millennia.		

In	order	 to	get	 concentrations	 in	overlying	groundwater,	 the	back	diffusion	 fluxes	are	needed	
which	are	simply	given	by	the	time	derivatives	of	eq.	1.5:		

	
𝐹
𝑀$#

=
1
4
*𝑡# 𝑡)⁄ 	 (1.6)	

Now	we	get	a	relative	decrease	of	the	back	diffusion	flux	which	scales	with	t-3/2	as	shown	in	Fig.	
1.4.	Such	real	world	data	were	observed	in	reactive	tracer	experiments	on	radionuclide	transport	
in	fractured	rocks	at	the	Grimsel	test	site	in	Switzerland	(Heer	and	Haderman,	1994).		

For	the	absolute	fluxes	we	have	to	account	for	Mte	(from	eq.	1.2):	

	

𝐹 = 2	𝐶%	𝛼5
𝐷"	𝑡#
𝜋

1
4
*𝑡# 𝑡)⁄ =

1
2
	𝐶%	𝛼	𝑡#5

𝐷"
𝜋	𝑡)

	

and	the	extended	solution	is	(time	derivatives	of	eqs.	1.3	or	1.4):	

𝐹 = 2	𝐶%𝛼5
𝐷"	𝑡#
𝜋

1
2
⎝

⎛ 1

D 𝑡𝑡#

−
1

D 𝑡𝑡#
+ 1⎠

⎞ = 𝐶%	𝛼5
𝐷"
𝜋	𝑡

'1 −
1

*1 + 𝑡# 𝑡⁄
1	

(1.7)	
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Fig.	 1.3:	 Relative	 mass	 in	 the	
porous	 medium	 during	 back	
diffusion	 (M/Mte,	 descending	
lines)	 and	 relative	 mass	 which	
has	 left	 the	 low	 permeability	
domain	(Mb/Mte,	ascending	lines)	
vs.	 t	 normalized	 to	 the	 exposure	
time	te;	after	t/te	=	10	still	15%	of	
the	original	solute	are	in	the	low	
permeability	domain.		

	

	

	

	

	

	

	

	

	

Fig.	 1.4:	 Diffusive	 fluxes	 into	
(solid	lines)	and	out	(dotted	lines)	
of	 a	 semi-infinite	 medium	
(descending	lines)	and	total	mass	
(ascending	 lines);	 from	
Grathwohl	(1998).	
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2. TRANSPORT IN FRACTURED AQUIFERS WITH 
MATRIX DIFFUSION 

2.1 BREAKTHROUGH CURVES AND RETARDATION FACTORS 
Advective	transport	of	a	concentration	front	(constant	source)	in	a	fracture	can	be	calculated	with	
a	 simple	 analytical	 solution	 which	 accounts	 for	 retarded	 pore	 diffusion	 in	 the	 rock	 matrix	
(Rahman	et	al.,	2004):		

	
𝐶
𝐶!
= erfc

⎝

⎛
𝑅*+ε	*𝐷" 	

𝑥
𝑣

𝑏D4 ;𝑡 − 𝑥𝑣>⎠

⎞ = erfc

⎝

⎛
*𝐷#𝛼	

𝑥
𝑣

2	𝑏D𝑡 − 𝑥𝑣⎠

⎞	 (2.1)	

Rim	and	e	denote	the	retardation	factor	and	the	porosity	of	the	rock	matrix	(immobile	phase).	Da	
is	 the	 apparent	 diffusion	 coefficient	 in	 the	 rock	matrix;	 t,	 x	 and	v	 denote	 time,	 distance	 along	
fracture	and	the	flow	velocity	in	the	fracture	(x/v	is	the	travel	time	of	water	in	the	fracture).	b	is	
the	half	aperture	of	the	fracture	or	the	inverse	of	the	surface	to	volume	ratio	of	a	channel	(then	
the	solution	also	applies	to	other	geometries	and	cylindrical	pores,	see	Rahman	et	al.,	2004).	Rim	
is	given	by	1	+	Kd	r/e	(r	is	the	bulk	density	of	the	rock	matrix	(=	(1-e)	rsolids))	and	the	product	of	
Rim	e	is	the	rock	capacity	factor	a	=	e	+	Kd	r.	Da	is	the	ratio	of	the	effective	diffusion	coefficient	(De)	
and	a	(or	the	ratio	of	the	pore	diffusion	coefficient	(Dp)	and	Rim):		

	 𝐷" =
𝐷#
𝛼
=
𝐷,
𝑅*+

=
𝐷"-𝜀+

𝜀 + 𝐾.𝜌
=
𝐷"-𝜀+&/

1 + 𝐾.
𝜌
𝜀
≈

𝐷#
𝐾. 	𝜌

=
𝐷,
𝐾. 	

𝜌
𝜀
	 (2.2)	

m	is	an	empirical	exponent	(from	Archies	law)	and	often	close	to	2	(Boving	and	Grathwohl,	2001).	
De	thus	mostly	depends	on	the	matrix	porosity	(and	not	much	on	the	compound);	for	conservative	
solutes	a	reduces	to	e	(Kd	=	0).		

According	to	eq.	2.1	the	solute	breakthrough	starts	for	t	>	x/v	with	a	fast	(initially	almost	linear)	
increase	followed	by	slower	and	slower	increase	(“tailing”)	and	it	takes	almost	5	times	longer	to	
reach	C/Co	=	0.75	compared	to	C/Co	=	0.5	(50%	breakthrough)	as	illustrated	in	Fig.	2.1.		

	

	

	

	

Fig.	2.1:	Breakthrough	of	 a	 solute	
in	 a	 fracture	 retarded	 by	 matrix	
diffusion	(eq.	2.1);	Kd	= 10,	e	=	0.06,	
b	=	1	mm,	x/v	=	100	d,	x/v	=	100	d.	
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Retardation	factor	from	boundary	layers.	In	order	to	predict	the	advancement	of	a	solute	front	
propagating	 in	 a	 fracture	 retardation	 has	 to	 be	 considered.	 There	 are	 many	 ways	 to	 derive	
retardation	factors	in	solute	transport	(Rm)	–	the	most	simple	one	is	just	based	on	mass	balance	
considerations	(see	the	appendix	for	other	approaches).	Rm	then	is	the	ratio	of	total	solute	mass	
in	 the	system	to	mobile	mass	 in	 the	 fracture.	The	 total	solute	mass	 in	 the	rock	matrix	may	be	
calculated	based	on	a	boundary	layer	approach	as	shown	in	Fig.	2.2.	The	mobile	mass	is	given	by	
the	solute	concentration	in	the	fracture	(Cw,)	times	the	distance	traveled	in	the	fracture	(x)	and	its	
half	aperture	(b).	Rm	thus	becomes:		

	 𝑅+ =
𝑡𝑜𝑡𝑎𝑙
𝑚𝑜𝑏𝑖𝑙𝑒

=
𝐶0	𝑏	𝑥 + 𝐶0	𝑥	𝛼*𝐷"𝑡

𝐶0	𝑏	𝑥
= 1 +

1
𝑏
𝛼	*𝐷"𝑡 = 1 +

1
𝑏*

𝐷#𝛼	𝑡	 (2.3)	

𝑥	𝐶0	𝛼*𝐷"𝑡	represents	the	solute	mass	in	the	matrix	on	one	side	of	the	fracture	and	Cw	b	x	is	the	
mobile	mass	in	the	half	aperture.	Cw	and	x	(=	v	t/Rm)	are	not	exactly	known,	but	drop	out	anyway.	
Thus,	this	approach	can	be	used	for	different	scenarios	(without	exact	knowledge	of	x	and	Cw).	The	
thickness	 of	 the	 boundary	 layer	 in	 the	 rock	matrix	 is	 not	 exactly	 known	 and	 depends	 on	 the	
scenario,	but	may	be	approximated	by	the	mean	square	displacement	*𝐷"𝑡	(e.g.,	representing	half	
of	the	boundary	concentration	for	an	advancing	front,	see	Fig.	1.1).		

	

Fig.	2.2:	Fracture	and	rock	matrix	illustrating	a	boundary	layer	representation	of	a	sorbing	or	reactive	
solute	concentration	front	

For	strong	retardation	(Rm	>>	1)	the	second	term	in	in	eq.	2.3	becomes	much	larger	than	1	and	
reduces	to	just	the	last	term:	

	 𝑅+ =
1
𝑏
𝛼	*𝐷"𝑡 =

1
𝑏*

𝐷#𝛼	𝑡	 (2.4)	

Alternatively,	this	solution	can	be	derived	from	eq.	2.1	if	a	certain	value	for	C/Co	is	assumed	as	
shown	in	Appendix	1	(e.g.,	C/Co	=	0.478	for	an	argument	of	erfc	of	0.5,	see	Fig.	2.1).	Rm	increases	
with	the	square	root	of	time	and	the	larger	the	aperture	the	smaller	Rm	becomes.	

	

2.2 BREAKTHROUGH FOLLOWED BY BACK DIFFUSION 
In	most	cases,	we	don’t	have	a	continuous	 input	of	a	solute,	but	only	 for	a	certain	time	period	
(exposure	time	te)	before	it	stops.	Rahman	et	al.	(2004)	derived	an	analytical	solution	for	transport	
in	a	squared	macropore	(surface	to	volume	ratio	=	4/aperture)	which	can	be	applied	to	fractures	
(surface	to	volume	ratio	=	2/aperture),	see	also	eq.	2.1:	
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𝐶
𝐶!
= erfc	

⎝

⎛
*𝐷#𝛼	

𝑥
𝑣

2	𝑏D𝑡 − 𝑥𝑣⎠

⎞ − erfc	

⎝

⎛
*𝐷#𝛼	

𝑥
𝑣

2	𝑏D𝑡 − 𝑥𝑣 − 𝑡#⎠

⎞	 (2.5)	

One	example	of	limited	input	of	a	solute	followed	by	back	diffusion	from	the	rock	matrix	is	the	
application	of	the	pesticide	atrazine	on	agricultural	land,	which	stopped	after	about	33	years	of	
application	in	1991	(but	we	still	find	it	in	fractured	aquifers).	Figs.	2.3	compares	the	breakthrough	
of	a	tracer	and	atrazine	and	Fig.	2.4	illustrates	transport	behavior	in	space	and	time.		

	

Fig.	 2.3:	 Breakthrough	 curves	 of	
conservative	 (red)	 and	 sorbing	
tracer	 atrazine	 (blue)	 next	 to	 the	
fracture	 inlet	 (residence	 time	 of	
water:	𝑥/𝑣	 =	 0.1	 year)	 calculated	
with	 eq.	 2.5	 for	 an	 input	 period	
from	 1958-1991	 (33	 years,	 black	
line);	aperture	=	0.2	mm,	ε	=	1	%,	v	
=	0.5	m	d-1,	Kd	=	7	l	kg-1	

	

	

	

	

Fig.	2.4:	Transport	of	a	solute	(top,	no	sorption)	and	atrazine	(bottom)	in	a	fracture	with	aperture	of	
1	 mm	 (left,	 numbers:	 time	 in	 years)	 after	 33	 years	 of	 input	 and	 tailing	 concentrations	 after	
breakthrough	(right,	numbers:	distance	 in	meters);	note	 the	 linear	 increase	of	concentrations	with	
distance	during	back	diffusion	until	the	peak	is	reached	(a).	Since	the	peak	concentration	decreases	
linear	with	time	and	the	distance	traveled	by	the	peak	propagates	with	the	square	root	of	time	the	
tailing	concentrations	(upstream)	decrease	with	a	slope	of	t-3/2	(b);	Kd	=	10	l	kg-1,	hydraulic	gradient	
1‰,	matrix	porosity	3%.		
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2.3 APPROXIMATIONS FOR BACK-DIFFUSION 
Approximations	only	apply	for	certain	scales	in	time	or	space,	but	allow	to	get	general	insights	on	
how	concentrations	in	a	fracture	may	develop.	The	approximation	for	the	tailing	part	(t	>	x/v)	of	
the	analytical	solution	(eq.	2.5)	is	(for	small	arguments	erfc	(ß)	=	1-	ß	2/√𝜋):		

	
𝐶
𝐶!
=
1	𝑥
𝑏	𝑣

	5
𝐷#𝛼
𝜋	𝑡

	

⎝

⎛ 1

D1 − 𝑡#𝑡

− 1

⎠

⎞	 (2.6)	

and	for	t	>>	te	the	term	in	parenthesis	goes	to	te/(2	t)	and	thus	we	get:	

	 𝐶
𝐶!
=
1	𝑥
𝑏	𝑣

5
𝐷#𝛼
𝜋	𝑡

	
𝑡#
2	𝑡

=
𝑥

2	𝑏	𝑣
	𝑡#5

𝐷#𝛼
𝜋	𝑡)

	 (2.7)	

In	 the	 long	 term,	 concentrations	 in	 the	 fracture	 drop	with	 t-3/2	 compared	with	 t-1/2	 for	 other	
diffusion	 phenomena.	 Concentrations	 decrease	 slower	with	 increasing	 exposure	 time	 and	 the	
square	root	of	sorption	capacity.	Increasing	aperture	and	flow	velocity	in	the	fracture	accelerate	
concentration	decrease.		
The	distance	 Xmax	 traveled	by	 a	 certain	 “maximum”	 concentration	may	be	 estimated	by	 intro-

ducing	a	retardation	factor.	For	instance,	for	𝑅+ = 1 + 1/𝑏	D1
2
𝐷# 	𝛼	𝑡 ≈ 1/𝑏	D1

2
𝐷# 	𝛼	𝑡	we	get:		

	 𝑋+"3 = 𝑡
𝑣
𝑅+

≈
𝑏	𝑣	𝑡

D4𝜋𝐷#𝛼	𝑡
= 𝑏	𝑣5

𝜋	𝑡
4	𝐷#𝛼	

	 (2.8)	

Inserting	Xmax	(eq.	2.8)	for	x	in	eq.	2.6:		

	
𝐶+"3
𝐶!

=
𝑏	𝑣D 𝜋	𝑡

4	𝐷# 	𝛼	
𝑏	𝑣

	5
𝐷# 	𝛼
𝜋	𝑡

⎝

⎛ 1

D1 − 𝑡#𝑡

− 1

⎠

⎞ = 51
4
⎝

⎛ 1

D1 − 𝑡#𝑡

− 1

⎠

⎞	 (2.9a)	

Inserting	Xmax	(eq.	2.8)	for	x	in	the	long	term	approximation	(eq.	2.7)	results	in:	

	 𝐶+"3
𝐶!

=
𝑏	𝑣D 𝜋	𝑡

4	𝐷# 	𝛼	
2	𝑏	𝑣

	𝑡#5
𝐷# 	𝛼
𝜋	𝑡)

=
𝑡#
4	𝑡
	 (2.9b)	

This	simple	approximation	was	also	reported	by	Petrova	et	al.	(2023)	using	a	heuristic	approach	
by	“mapping”	the	analytical	solution	for	the	peak	concentration.	Since	the	peak	decays	linear	with	
time	(eq.	2.9b)	but	moves	with	the	square	root	of	time	(eq.	2.8)	the	concentrations	upstream	of	
the	peak	decrease	with	t-3/2.	These	approximations	apply	reasonably	well	for	t	>>	te.	A	better	fit	at	
early	times	is	obtained	by:	

	
𝐶+"3
𝐶!

=
1

1 + 4; 𝑡𝑡#
− 1>

	 (2.9c)	

which	reduces	 to	eq.	2.9b	 for	 long	 times	(and	=	1	 for	 t	=	 te;	valid	 for	 t	/	 te	  ³	1).	These	simple	
equations	(2.9a-c)	 for	Cmax/Co	have	practical	consequences	since	relative	concentrations	at	any	
location	are	independent	on	flow	fields,	solute	or	rock	properties	and	they	will	continue	to	drop	
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with	time	(e.g.,	always	stay	below	the	 legal	 limit	 if	 this	 is	 larger	than	Cmax).	 If	t	 is	 twice	te	 then	
Cmax/Co	 is	 0.2	 (eq.	 2.9c),	 0.233	 (eq.	 2.9a)	 or	 slightly	 underestimated	 by	 eq.	 2.9b	 at	 0.125.	 The	
“decay”	 of	 the	 peak	 concentration	 during	 back	 diffusion	 again	 thus	 is	 independent	 on	 the	
properties	of	the	porous	medium	and	solute	as	already	observed	for	the	relative	mass	in	porous	
rock	matrix	in	chap.	1:	

	
𝑀
𝑀$#

= 51 +
𝑡
𝑡#
−5

𝑡
𝑡#
	and	for	𝑡 ≫ 𝑡# ⟹

𝑀
𝑀$#

= 5
𝑡#
4	𝑡
	 (2.10)	

Mte	is	here	the	solute	mass	in	the	rock	matrix	after	exposure	time	(𝑀$# = 2	𝐶!*(𝐷#𝛼	𝑡#)/𝜋).	M/Mte	
only	depends	on	the	ratio	t/te.	Back	diffusion	rates	become	independent	on	sorption	and	matrix	
diffusion	if	normalized	to	Mte.	

Note,	 that	 eq.	 2.8	 gives	 not	 exactly	 the	 peak	 location,	 for	 which	 Petrova	 et	 al.	 (2023)	 report	
following	empirical	relationship:	

	 𝑋+"3 ≈
𝑏	𝑣	 ;𝑡 − 𝑡#𝜋>

D𝐷# 	𝛼	𝑡2

= 𝑏	𝑣	 ^1 −
𝑡#
𝑡	𝜋_

5
2	𝑡
𝐷# 	𝛼

	 (2.11a)	

Realizing	that	te/t	is	proportional	to	the	concentration	ratio	(Cmax/Co	=	te/(4	t))	allows	to	express	
eq.	2.11a	as	a	function	of	the	relative	peak	concentration	which	for	small	Cmax/Co	(<	0.1)	or	for	t	
>>	te	allows	a	simple	approximation:	

	 𝑋+"3 = 𝑏	𝑣	 ^1 −
4	𝐶+"3
𝜋	𝐶!

_5
2	𝑡
𝐷# 	𝛼

≈ 	𝑏	𝑣	5
2	𝑡
𝐷# 	𝛼

	 (2.11b)	

This	would	correspond	to	a	slightly	different	retardation	factor	compared	to	the	one	used	in	eq.	

2.8	(𝑅+ ≈ 1/𝑏	D/
'
𝐷#𝛼	𝑡).	An	improved	approximation	for	small	values	of	Xmax	is	possible	using	a	

simple	correction	term	(in	parenthesis	under	the	square	root):	

	 𝑋+"3 = 𝑏	𝑣	`
2	𝑡	 ^1 − ;𝑡#𝑡 >

'
_

𝐷# 	𝛼
	 (2.11c)	

Note,	eqs	2.11a-c	are	empirical	and	based	on	“trial	and	error”,	fits	with	the	analytical	solution	
are	shown	in	Fig.	2.6.		
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Fig.	2.5:	Comparison	of	analytical	
solution	 and	 long	 term	 approx-
imations	 in	 red	 (30	 years	 ex-
posure	time);	blue:	breakthrough	
of	the	solute	for	continuous	input,	
black:	 decrease	 after	 input	
stopped,	 red:	 approximations	
(eqs.	2.6	and	2.7;	Kd	=	10,	e	=	0.06,	
b	=	1	mm,	x/v	=	100	d).	

	

	

	

Nonlinear	sorption.	In	back	diffusion	the	mass	of	the	contaminant	in	the	rock	matrix	drops	with	
the	square	root	of	time	(eq.	2.10.),	while	the	aqueous	concentration	in	the	fracture	drops	even	
more	rapidly	(eqs.	2.7,	2.9,	Fig.	2.5).	If	concentrations	change	a	lot,	e.g.,	during	extended	tailing,	
nonlinear	sorption	may	become	relevant.	Since	exponents	of	Freundlich	sorption	isotherms	are	
typically	 below	 one,	Kd	 values	 increase	with	 decreasing	 concentrations;	 the	 ratio	 of	Kd	values	
scales	with	the	ratio	of	the	concentrations	(e.g.,	low/high)	to	the	exponent	(1/n-1),	where	1/n	here	
denotes	 the	Freundlich	exponent;	 for	example,	 if	 the	concentration	drops	by	a	 factor	of	10,	Kd	
increases	by	a	factor	of	2	for	1/n	=	0.7.		
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Fig.	2.6:	Match	of	approximations	of	relative	peak	concentrations	(eq.	2.9c)	and	peak	travel	distance	
(eq.	2.11c)	for	500	random	parameter	combinations	of	aperture,	porosity,	total	time,	plume	duration,	
aqueous	diffusion	coefficient,	and	distribution	coefficient;	bottom:	relative	concentration	vs.	the	travel	
distance	of	the	peak	derived	analytically	(circles)	and	approximated	(stars);	symbols	are	connected	
via	a	blue	line	to	clarify	corresponding	results	(adapted	from	Petrova	et	al.,	2023	but	with	different	

approximations:	 4!"#
4$

= /
/516 %%&

&/7
	 and	 𝑋+"3 = 𝑏	𝑣	5

'	$	9/&6%&% 7
'
:

;&	<
	 );	 good	 agreement	 for	 medium	

distances	(1	–	10	km)	and	low	concentrations	(<	30%	C0).	
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2.4 REVOLATILISATION ACROSS THE CAPILLARY FRINGE 
Theoretically,	 groundwater	 contamination	 could	 result	 from	 the	 diffusion	 of	 volatile	
contaminants	from	the	unsaturated	zone	across	the	capillary	fringe	(although	in	most	cases	it	will	
DNAPL	infiltration	into	the	aquifer)	which	downgradient	from	the	source	zone	could	lead	to	back	
diffusion.	Transfer	of	volatile	compounds	across	the	capillary	fringe	in	principle	follows	the	same	
initial	 and	 boundary	 conditions	 as	 in	 the	 case	 of	 pool	 dissolution	 (i.e.,	 constant	 Co	 at	 the	
groundwater	table	-	calculated	from	the	vapor	phase	concentration	using	the	Henry's	law	constant	
-	and	semi-infinite	diffusion	into	the	groundwater,	see	Fig.	2.7)	and	a	chemical	boundary	layer	(Zs)	
can	be	introduced	to	estimate	the	contaminant	fluxes	across	the	capillary	fringe:	

	

𝑍= = 5𝐷$	𝑡> 	
4
𝜋
= 5b𝐷, + 𝛼$	𝑣"c

𝑥
𝑣"
4
𝜋
	

if	dispersion	dominates	

𝑍= = 5𝛼$	𝑥	
4
𝜋
≈ *𝛼$	𝑥	

(2.12)	

	

Fig.	 2.6.	 Scheme	 of	 diffusion/dispersion	 of	 volatile	 organic	 compounds	 across	 the	 capillary	 fringe	
(analogous	to	the	dissolution	kinetics	of	pools:	semi-infinite	diffusion)	

	

Downstream	of	the	contaminated	zone,	volatile	compounds	may	diffuse	back	into	the	unsaturated	
as	shown	in	Fig.	2.7	for	an	idealized	(no	groundwater	recharge).	Note,	like	in	the	back	diffusion	
examples	 the	relative	mass	 in	groundwater	downstream	of	 the	source	zone	 is	 independent	on	
dispersivity	or	diffusion	coefficients	(input	and	output	processes	are	the	same	and	cancel	out).	As	
outlined	above,	the	penetration	depth	(i.e.	ZS)	of	volatile	contaminants	is	usually	very	small	and	
therefore	fast	volatilization	may	be	expected.	This	scenario	may	be	treated	analogously	to	the	case	
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of	semi-infinite	diffusion	into	a	thick	clay	layer,	followed	by	back	diffusion	of	the	contaminant	(e.g.	
resulting	from	decontamination	of	the	overlying	aquifer).	The	decrease	of	the	contaminant	mass	
(or	concentration)	 in	 the	groundwater	normalized	 to	 the	mass	diffused	 into	 the	aquifer	 in	 the	
contaminated	area	is:	

	 𝑀′(𝑥") = 51 +
𝑥"
𝐿>
− 5

𝑥"
𝐿>
	 (2.13)	

xa	denotes	the	distance	downstream	of	the	contaminated	zone	(where	back	diffusion	occurs).	Lc	
is	the	length	of	the	contaminated	zone.	In	this	case	again	pseudo-hysteresis	is	observed:	it	takes	
more	time	(longer	distance)	to	remove	the	contaminant	from	the	groundwater	than	to	diffuse	in	
(or	longer	distances	are	needed	for	back	diffusion	in	comparison	to	the	length	of	the	contaminated	
zone).	This	is	only	valid	at	small	scales	where	groundwater	recharge	plays	no	role.	
	

	

Fig.	 2.7.	 Increase	 of	
normalized	 mass	 of	
contaminant	 (M')	 during	
flow	 past	 the	 contaminated	
zone	 of	 length	 Lc	 =	 10	 m	
(solid	 line)	 followed	 by	
contaminant	diffusion	out	of	
the	 groundwater	 (dashed	
line).	
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3. REACTIVE DIFFUSION 

Similar	 to	 transport	 of	 solutes	 in	 fractured	 systems	 as	 discussed	 above,	 reactions	 in	 the	 rock	
matrix	may	be	handled	based	on	a	simple	electron	donor/acceptor	balance,	such	as	the	mass	of	
electron	acceptor	(e.g.,	O2,	nitrate)	which	has	entered	the	fracture	after	time	t	versus	the	loss	of	
electron	donor	(e.g.,	organic	matter,	Fe2+,	sulfur)	from	the	rock	matrix:		

	
𝐹?@	𝑡 = 𝑀?;	

𝐶?@	𝑏	𝑤	𝑣	𝑡 = 𝐶?;	𝛾	𝑤	𝑥A 	𝑧A 	
(3.1)	

FEA	and	MED	denote	the	advective	flux	of	the	electron	acceptor	(EA)	and	the	mass	of	electron	donor	
(ED)	 lost	 from	the	matrix.	CEA	and	CED	are	 the	volumetric	molar	concentrations	of	 the	electron	
acceptor	and	donor	in	the	fracture	water	and	the	rock	matrix	and	 g	accounts	for	the	stoichiometry	
(mol	EA	consumed	per	mol	ED).	w,	xr,	zr,	v	and	b	denote	fracture	width	(which	drops	out)	and	
reactive	distance,	the	average	depth	of	electron	donor	depletion	(location	of	the	reaction	front,	
see	 Fig.	 2.2)	 in	 the	 matrix,	 the	 flow	 velocity	 in	 the	 fracture	 and	 the	 half	 fracture	 aperture,	
respectively.	1/b	corresponds	the	surface	to	volume	ratio	of	the	fracture	(w	x	/	w	x	b).	Thus	Eq.	
3.1	may	be	expressed	as:	

	
𝑥A
𝑣
=
𝐶?@	𝑏	𝑡
𝐶?;	𝛾	𝑧A

	 (3.2)	

xr/v	 is	the	residence	time	of	the	water	in	the	fracture	until	 the	electron	acceptor	is	completely	
depleted	(“reactive”	residence	time).	The	depth	of	electron	donor	depletion	in	the	rock	matrix	at	
x	=	0	is	(see	Fig.	2.2):	

	 𝑧	(𝑥 = 0) = *2	𝐷"	𝑡	 (3.3)	

If	we	assume	a	boundary	layer	(average	depth	of	donor	depletion)	as	shown	in	Fig.	2.2,	then	the	
thickness	of	that	layer	(d)	is	only	half	of	z	(x	=	0).	Da	is	an	apparent	diffusion	coefficient	which	
accounts	for	retardation	of	the	electron	donor	depletion	front	(“oxidation	front”)	in	the	matrix:	

	 𝐷" =
𝐷#𝐶?@
𝐶?;	𝛾

	 (3.4)	

De	is	the	effective	diffusion	coefficient	which	accounts	for	matrix	porosity	and	tortuosity	of	the	
pores.	The	term	CED	g/	CEA	may	be	interpreted	as	capacity	factor	similar	to	sorption	(»	Kd	r),	thus	
eq.	3.2	becomes:		

	
𝑥A
𝑣
= 𝑏	

2	𝐶?@𝑡

𝐶?;	𝛾	D2
𝐷#𝐶?@
𝐶?;	𝛾

	𝑡
= 𝑏5

𝐶?@
𝐶?;	𝛾

2	𝑡
𝐷#
	 (3.5a)	

Thus,	the	residence	time	of	the	electron	acceptor	needed	to	be	balanced	by	the	consumption	of	an	
electron	donor	in	the	rock	matrix	increases	with	the	square	root	of	time	and	the	acceptor/donor	
ratio	 and	 decreases	 with	 increasing	 diffusion	 coefficient	 in	 the	 matrix.	 This	 is	 equal	 to	 the	
analytical	 solution	published	by	 Sidborn	 and	Neretnieks	 (2007),	 see	Appendix.	 This	 approach	
assumes	that	the	reaction	(oxidation)	front	is	located	in	the	rock	matrix	where	the	solid	electron	
donor	 (e.g.	 Fe2+-bearing	 minerals)	 is	 consumed.	 Such	 reactions	 are	 often	 catalyzed	 by	
microorganisms;	 if	 these	can’t	access	 to	rock	matrix,	e.g.,	because	of	 small	pore	sizes	 in	dense	
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rocks,	reactions	are	limited	to	the	fracture	surface	(e.g.,	in	biofilms),	then	CEA	in	the	definition	of	
the	apparent	diffusion	 coefficient	 (eq.	3.4)	has	 to	be	 replaced	by	 the	 solubility	of	 the	electron	
donor	CEDaq,	which	changes	the	picture:		

	
𝑥A
𝑣
= 𝑏	

2	𝐶?@𝑡

𝐶?;=!B*. 	𝛾	52
𝐷#𝐶?;"-
𝐶?;=!B*.

	𝑡

= 𝑏5^
𝐶?@
𝛾 _

' 2	𝑡
𝐷# 	𝐶?;"- 	𝐶?;=!B*.

	
(3.5b)	

Since	CEDaq	is	much	smaller	than	CEA,	z	becomes	much	smaller	as	well	and	xr/v	gets	much	longer.	
This	illustrates	that	the	reaction	scenario	chosen	is	decisive	for	the	estimation	the	propagation	of	
reaction	fronts	and	large	differences	arise	depending	on	where	and	how	reactions	occur.	These	
scenarios	(reaction	in	the	matrix	or	in	the	fracture)	represent	the	largest	uncertainty,	followed	by	
the	 aperture	 with	 and	 the	 matrix	 porosity.	 Therefore,	 it	 is	 crucial	 to	 understand	 the	
biogeochemistry	of	 the	system,	since	differences	 in	reactive	distances	easily	are	more	 than	an	
order	of	magnitude	(see	Fig.	3.1).	For	a	more	in-depth	discussion	of	this	see	Petrova	et	al.	(2022)	
and	Osenbrück	et	al.	(2022).	

Based	on	the	above,	one	can	easily	derive	a	retardation	factor	based	on	the	ratio	of	the	distance	
traveled	by	the	water	in	the	fracture	to	the	distance	of	a	reactive	compound:		

	 𝑅+ =
𝑣	𝑡

𝑏	𝑣	D 2	𝑡	𝐶?@
𝐷# 	𝐶?;	𝛾

=
1
𝑏
5
𝐷#
2
	
𝐶?;	𝛾
𝐶?@

	𝑡	 (3.6)	

The	appendix	shows	how	the	same	approach	may	be	used	to	describe	sorption	of	a	solute	in	the	
rock	matrix.	

Reactive	distance	in	a	fracture	and	the	“cubic	law”.	From	eq.	3.5a	we	may	define	a	reactive	
distance:	

	 𝑥A = 𝑏	𝑣5
𝐶?@
𝐶?;	𝛾

2	𝑡
𝐷#
	 (3.7)	

The	velocity	in	a	fracture	is	(from	the	“cubic	law”):	

	 𝑣 =
𝑏'	𝑔
3	µ

	𝑖	 (3.8)	

Where	µ	denotes	the	kinematic	viscosity	(=	h/r	=1.	3x10-6	[m2	s-1]	at	10	°C),	g	is	the	gravitational	
constant	 (9.80665	m	 s-2)	 and	 i	 the	 hydraulic	 gradient	 (typically	 around	 0.001	 [-]).	With	 that	
equation	3.7	becomes:	

	 𝑥A =
𝑏)	𝑔
3	µ

	𝑖5
𝐶?@
𝐶?;	𝛾

2	𝑡
𝐷#
	 (3.9a)	

	 or	(based	on	eq.	3.5b)	 	

	
𝑥A =

𝑏)	𝑔
3	µ

	𝑖5^
𝐶?@
𝛾 _

' 2	𝑡
𝐷# 	𝐶?;"- 	𝐶?;=!B*.

	
(3.9b)	
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Fig.	3.1:	Reactive	distance	and	residence	time	(x/v)	needed	for	denitrification	(nitrate	1	mol	m-3)	in	
fractures	vs.	half	aperture	(b)	after	30	years	for	reaction	only	in	the	fracture	(blue)	and	additionally	in	
the	matrix	(red);	hydraulic	gradient	i	=	0.003,	matrix	porosity	3%;	1%	Fe2+	bearing	mineral	(g	=	1/5).	

 
Box 3: Example for reduction and denitrification capacity (not necessarily representative) 

Below	we	discuss	some	hypothetical	scenarios	for	the	oxidation	of	pyrite	and	denitrification.	Often	
reaction	pathways	and	location	of	bioactive	zones	(matrix	vs.	fracture	surface)	are	not	clear,	und	thus	
reaction	distances	(location	of	oxidation	and	denitrification	fronts)	are	uncertain.	

Pyrite	oxidation:	The	oxidation	of	1	mol	of	FeS2	consumes	3.5	mol	O2	(mainly	for	the	production	of	
sulfate),	g	thus	is	3.5.	Assuming	an	oxygen	concentration	of	8	mg	l-1	(1/4	mol	O2	per	m3)	in	recharge	
water	and	a	pyrite	content	in	the	rock	from	0.3	–	3	mass-%	resulting	in	7.5	–	75	kg	pyrite	per	m3	of	
rock	(rock	bulk	density	2500	kg	m-3)	or	62	-	620	mol	m-3	(FeS2	=	119.98	g	mol-1)	leads	to	CEA/(CED	g)	in	
a	range	of	0.001	-	0.0001.		

Nitrate	reduction:	Here	we	may	assume	that	1	mol	of	nitrate	consumes	5	mol	Fe2+	(to	produce	5	mol	
iron	hydroxide:	Fe(OH)3),	g	thus	is	1/5.	Nitrate	in	groundwater	may	range	from	30	mg	l-3	to	300	mg/l	
(ca.	0.5	–	5	mol	m-3	;	NO3	=	62	g	mol-1)	and	pyrite	in	the	rock	from	0.3	–	3	mass-%	or	62	-	620	mol	m-3	
Fe	as	above.	CEA/(CED	g)	in	this	case	is	in	a	range	of	0.004	-	0.4.	At	1%	pyrite	(25	kg	m-3;	208	mol	m-3)	
and	62	mg	l-1	NO3-	(1	mol	m-3),	CEA/(CED	g)	is	around	0.024	meaning	that	42	m3	of	nitrate	containing	
water	would	be	needed	per	m3	of	rock	to	consume	the	Fe2+.		

CEA/(CED	g)	is	about	10	times	smaller	in	the	O2	than	in	the	nitrate	scenario	und	thus	the	nitrate	reaction	
distance	is	around	3	times	(Ö10)	longer	than	for	O2.	Since	O2	in	recharge	water	occurred	at	least	100	
times	longer	than	nitrate	pollution,	the	O2	oxidation	zone	still	would	be	longer	than	the	denitrification	
zone.	For	the	case	of	Fe2+	does	not	react	in	the	matrix	(small	pores	exclude	bacteria)	but	has	first	to	
diffuse	into	the	fracture	to	react	with	the	nitrate,	then	CEDaq	would	be	only	around	5.6´10-3	mol	m-3	
(from	the	solubility	product	of	siderite)	and	the	denitrification	distance	would	increase	significantly	
(approx.	factor	of	30,	see	eq.	3.9b,	Fig.	3.1).	

For	more	information	on	such	scenarios	see	Osenbrück	et	al.	(2022)	and	Petrova	et	al.	(2022).	
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APPENDIX  

Retardation	 factor	 from	 concentration	 front	 in	 the	 fracture:	 Breakthrough	 of	 solute	 in	 a	
fracture	at	a	transport	distance	x	maybe	defined	for	a	certain	relative	concentration	C/Co;	if	this	is	
close	to	0.5	then	the	argument	of	erfc	is	0.5(=	0.478).	For	t	>>	x/v	in	eq.	2.1	we	get:		

	
*𝐷# 	α	

𝑥
𝑣

2	𝑏	√𝑡
= 0.5	 (A1)	

The	distance	the	solute	front	traveled	thus	is:	

	 𝑥 = 𝑏	𝑣	5
𝑡

𝐷# 	α
	 (A2)	

This	distance	traveled	of	the	“retarded”	compound	increases	with	velocity	and	aperture	width	and	
with	the	square	root	of	time,	it	decreases	with	the	square	root	of	the	effective	diffusion	coefficient	
and	the	capacity	factor	(increasing	sorption).	The	retardation	factor	of	the	solute	in	the	fracture	
may	be	defined	as	the	ratio	of	the	distance	traveled	by	conservative	tracer	with	no	matrix	diffusion	
(e.g.,	particles	in	the	fracture	water:	v	t)	and	the	retarded	solute:	

	
𝑅+ =

𝑣	𝑡

𝑏	𝑣	D 𝑡
𝐷# 	α

=
1
𝑏*

𝐷# 	α	𝑡	 (A3)	

which	is	the	same	as	eq.	2.4	(but	neglects	the	solute	mass	in	the	fracture:	1+….).	

This	retardation	factor	may	also	be	derived	based	on	a	flux	balance	for	sorption	of	a	solute	in	the	
rock	matrix:		

	

𝐹C"BD	DA">$EA#𝑡 = 𝑀+"$A*3	

𝐶0𝑣	𝑏	𝑤	𝑡 = (𝐶=	𝜌 + 𝐶0	𝜀)	𝑤	𝑥	𝑧	

𝐶0𝑣	𝑏	𝑡 = (𝐾. 	𝐶0	𝜌 + 𝐶0	𝜀)	𝑥	𝑧	

𝑣	𝑏	𝑡 = (𝐾. 	𝜌 + 𝜀)	𝑥	𝑧 = 𝛼	𝑥	𝑧	

(A4)	

Cw	 and	 Cs	 denote	 the	 solute	 concentration	 in	 the	 water	 (fracture	 and	 pore	 water)	 and	 the	
concentration	 in	 the	solids	(Cs	multiplied	by	 the	bulk	density	𝜌	of	 the	rock	matrix	denotes	 the	
volumetric	concentration	in	the	rock).	z	is	the	diffusion	distance	given	by	*𝐷"	𝑡.	Da	is	the	apparent	
diffusion	coefficient	in	the	rock	matrix,	i.e.,	the	ratio	of	the	effective	diffusion	coefficient	(De)	and	
rock	capacity	factor	(a	=	e	+	Kd	r)	and	thus	we	get:	

	
𝑥
𝑣
=

𝑏	𝑡
(𝜀 + 𝐾.𝜌)	𝑧

=
𝑏	𝑡

𝛼*𝐷"	𝑡
= 𝑏5

𝑡
𝐷# 	𝛼

	 (A5)	

The	distance	traveled	be	the	solute	front	(retarded	by	matrix	diffusion)	increases	with	velocity	
and	aperture	width	and	with	 the	square	root	of	 time;	 it	decreases	with	 the	square	root	of	 the	
effective	diffusion	coefficient	and	the	capacity	factor.	x/v	denotes	here	the	residence	time	of	the	
reactive	solute	until	it	“vanishes”	(no	longitudinal	dispersion).	The	retardation	factor	R	may	be	
obtained	by	calculating	the	ratio	of	velocity	of	the	water	(v)	in	the	fracture	to	the	retarded	velocity	
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(x/t)	of	 the	solute	(this	may	also	be	 interpreted	as	 the	ratio	of	 the	 total	mass	 in	 the	matrix	 to	
mobile	mass	in	fracture):	

	
𝑅+ =

𝑣
𝑣
𝑡 	𝑏D

𝑡
𝐷#𝛼

	
= 𝑏	*𝐷#	𝛼	𝑡	 (A6)	

To	account	for	the	mass	of	solute	in	the	fracture	we	have	to	add	1	to	the	right-hand	side:	

	 𝑅+ = 1 +
1
𝑏*

𝐷# 	𝛼	𝑡	 (A7)	

	

Travel	 time	of	a	 reaction	 front.	Eq.	4.5	 is	 equal	 to	 the	analytical	 solution	 (A9)	published	by	
Sidborn	and	Neretnieks	(2007)	for	reactive	transport	(also	compare	to	A5):	

	 𝑧(𝑡, 𝑥) = 52	𝐷#
𝐶?@
𝐶?;

	𝑡 −
𝐷#𝑥
𝑣	𝑏

	 (A8)	

z	is	the	location	of	the	reaction	front	in	the	rock	matrix.	For	z	=	0	we	get	the	end	of	the	plume:		

	

𝐷#𝑥
𝑣	𝑏

= 52	𝐷#
𝐶?@
𝐶?;

	𝑡	

𝑥
𝑣
= 𝑏5

2
𝐷#
𝐶?@
𝐶?;

	𝑡	

(A9)	

x/v	denotes	the	residence	time	of	the	solute	needed	until	it	is	depleted	in	the	fracture	(same	as	
eq.	4.5).	Eq.	A9	may	be	interpreted	as	a	flux	balance	(diffusion	flux	into	matrix	vs.	advective	flux	
of	the	electron	acceptor):	

	
𝐷#

D2	𝐷#
𝐶?@
𝐶?;

	𝑡
𝑥	𝑤	𝐶?@ = 𝑏	𝑣	𝑤	𝐶?@	 (A10)	

w	denotes	the	width	of	the	fracture	and	drops	out	(x	w	and	b	w:	area	of	fracture	surface	and	of	
half	aperture,	resp.).	


