Aktuelle Informationen
06.01.2016
Was das Mäuseauge dem Mäusegehirn erzählt
Tübinger Neurowissenschaftler zeigen, wie die Netzhaut Informationen ans Gehirn sendet: Bilder werden bereits im Auge ausführlicher interpretiert als bislang angenommen
Bilder werden im Auge wesentlich umfassender verarbeitet und interpretiert ¬als bisher bekannt. Tübinger Wissenschaftler haben in einer Studie die Kanäle untersucht, über die Informationen aus dem Auge ins Gehirn geleitet werden. Dabei identifizierten sie zahlreiche neue Zelltypen und stellten zudem fest, dass die Netzhaut über bis zu 40 verschiedene Kanäle ins Gehirn verfügen dürfte – doppelt so viele wie bislang angenommen. Die Ergebnisse werden im renommierten Fachjournal „Nature“ veröffentlicht. DOI: 10.1038/nature16468
„Was das Froschauge dem Froschgehirn erzählt“ überschrieb 1959 der Kognitionswissenschaftler Jerome Lettvin einen bahnbrechenden Aufsatz. Seine Annahme: Das Gesehene wird nicht erst im Gehirn, sondern bereits im Auge verarbeitet. Lettvin konnte zeigen, dass das Auge nicht nur wie eine Kamera Bilder aufnimmt und ungefiltert ins Gehirn weiterleitet. Vielmehr werden bereits im Auge wichtige Informationen gewonnen, beispielsweise im Falle des Frosches: „Dort ist etwas Kleines, Dunkles, vielleicht eine Fliege“. Seine Thesen waren so revolutionär, dass Lettvin zunächst ausgelacht wurde. Mittlerweile aber gilt sein vielzitierter Aufsatz als Meilenstein, die damals gestellten Fragen beschäftigen die Wissenschaft noch heute.
So auch das Tübinger Forscherteam um Professor Thomas Euler und Professor Matthias Bethge vom Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen, dem Bernstein Center for Computational Neuroscience und dem Forschungsinstitut für Augenheilkunde des Universitätsklinikums Tübingen: Die Neurowissenschaftler wollten wissen, welche Informationen über die Welt die Retina (Netzhaut) vom Auge ins Gehirn sendet. Dazu untersuchten sie in einer großangelegten Studie über 11.000 einzelne Netzhaut-Zellen in Mäusen. Die bisher größte Studie dieser Art hatte ca. 450 Zellen umfasst.
Durch eine Kombination modernster experimenteller Methoden untersuchten die Forscher sogenannte retinale Ganglienzellen (retinal ganglion cells, RGCs): Sie nutzten Elektroporation, eine Färbetechnik, durch die man ganze Populationen von Nervenzellen unter dem Mikroskop sichtbar machen und dann einzelnen Zellen in Echtzeit „bei der Arbeit“ zusehen kann. Dazu kamen neue Verfahren zur Analyse der großen Datenmengen. Die Wissenschaftler interessierten sich dabei vor allem für die verschiedenen Funktionen der Zellen: Unterschiedliche Ganglienzellen reagieren auf unterschiedliche Eigenschaften der gesehenen Bilder und schicken diese Informationen über getrennte Kanäle ans Gehirn, die jeweils für Kontrast, Farbe, Bewegungsrichtung, die Lage von Kanten und ihrer Orientierung etc. zuständig sind. Aus diesen Informationskanälen baut das Gehirn dann unser Bild von der Welt. Die Wissenschaftler testeten Nervenzellreaktionen auf verschiedene einfache Bilder und bewegte optische Reize.
Das Forscherteam konnte anhand dieser funktionalen Unterscheidung bis zu 40 verschiedene Typen von Ganglienzellen in der Netzhaut zuordnen, die sehr wahrscheinlich ebenso viele Informationskanäle repräsentieren. Bislang war man von maximal 20 Typen ausgegangen. Die Ergebnisse aus dem Mausmodell lassen sich zwar nicht eins zu eins auf den Menschen übertragen – die Retina ist aber bei allen Säugetieren sehr ähnlich aufgebaut.
Die Vielzahl an Informationskanälen weist darauf hin, dass die Netzhaut die aufgenommenen Lichtsignale nicht nur in Nervenzellsignale umwandelt, sondern bereits wichtige Interpretationsarbeit leistet. Mit ihrer grundlegenden Arbeit sind die Tübinger Wissenschaftler dem Verständnis, wie die Interpretation von Bildern im Gehirn erfolgt, einen Schritt näher gekommen. Da viele Erkrankungen, die den Sehsinn einschränken, nur bestimmte Zelltypen in der Retina oder bestimmte Informationskanäle betreffen, können die Erkenntnisse auch dazu beitragen, gezielte Therapien zu entwickeln. Auch die – gerade in Tübingen – seit einigen Jahren voranschreitende Forschung an prothetischer Implantattechnologie (Retina-Implantat), die eines Tages Blinde sehend machen könnte, kann derartige Beobachtungen nutzen. Bisherige Modelle stimulieren die Netzhaut relativ unspezifisch, mit Hilfe der neuen Erkenntnisse könnten künftige Versionen gezielt visuelle Informationen in die passenden Kanäle einspeisen.
Publikation:
Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, Thomas Euler: “The Functional Diversity of Retinal Ganglion Cells in the Mouse.” Nature (im Druck). Januar 2016. DOI: 10.1038/nature16468
Kontakt:
Prof. Thomas Euler
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Telefon +49 7071 29-85028
<link>thomas.euler[at]cin.uni-tuebingen.de
<link http: www.eye-tuebingen.de eulerlab>www.eye-tuebingen.de/eulerlab
Pressekontakt CIN:
Dr. Paul Töbelmann
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Wissenschaftskommunikation
Otfried-Müller-Str. 25 ∙ 72076 Tübingen
Tel.: +49 7071 29-89108
<link>paul.toebelmann[at]cin.uni-tuebingen.de
<link http: www.cin.uni-tuebingen.de>www.cin.uni-tuebingen.de
Die Universität Tübingen
Innovativ. Interdisziplinär. International. Die Universität Tübingen verbindet diese Leitprinzipien in ihrer Forschung und Lehre, und das seit ihrer Gründung. Seit mehr als fünf Jahrhunderten zieht die Universität Tübingen europäische und internationale Geistesgrößen an. Immer wieder hat sie wichtige neue Entwicklungen in den Geistes- und Naturwissenschaften, der Medizin und den Sozialwissenschaften angestoßen und hervorgebracht. Tübingen ist einer der weltweit führenden Standorte in den Neurowissenschaften. Gemeinsam mit der Medizinischen Bildgebung, der Translationalen Immunologie und Krebsforschung, der Mikrobiologie und Infektionsforschung sowie der Molekularbiologie der Pflanzen prägen sie den Tübinger Forschungsschwerpunkt im Bereich der Lebenswissenschaften. Weitere Forschungsschwerpunkte sind die Geo- und Umweltforschung, Astro-, Elementarteilchen- und Quantenphysik, Archäologie und Anthropologie, Sprache und Kognition sowie Bildung und Medien. Die Universität Tübingen gehört zu den elf deutschen Universitäten, die als exzellent ausgezeichnet wurden. In nationalen und internationalen Rankings belegt sie regelmäßig Spitzenplätze. In diesem attraktiven und hoch innovativen Forschungsumfeld haben sich über die Jahrzehnte zahlreiche außeruniversitäre Forschungsinstitute und junge, ambitionierte Unternehmen angesiedelt, mit denen die Universität kooperiert. Durch eine enge Verzahnung von Forschung und Lehre bietet die Universität Tübingen Studierenden optimale Bedingungen. Mehr als 28.000 Studierende aus aller Welt sind aktuell an der Universität Tübingen eingeschrieben. Ihnen steht ein breites Angebot von rund 300 Studiengängen zur Verfügung – von der Ägyptologie bis zu den Zellulären Neurowissenschaften.
Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN)
Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdisziplinäre Institution an der Eberhard Karls Universität Tübingen, finanziert von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative von Bund und Ländern. Ziel des CIN ist es, zu einem tieferen Verständnis von Hirnleistungen beizutragen und zu klären, wie Erkrankungen diese Leistungen beeinträchtigen. Das CIN wird von der Überzeugung geleitet, dass dieses Bemühen nur erfolgreich sein kann, wenn ein integrativer Ansatz gewählt wird.
Eberhard Karls Universität Tübingen
Hochschulkommunikation
Dr. Karl Guido Rijkhoek
Leitung
Antje Karbe
Pressereferentin
Telefon +49 7071 29-76789
Telefax +49 7071 29-5566
antje.karbe[at]uni-tuebingen.de
www.uni-tuebingen.de/aktuelles