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Point-spread functions for backscattered imaging in the scanning
electron microscope
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One knows the imaging system’s properties are central to the correct interpretation of any image. In
a scanning electron microscope regions of different composition generally interact in a highly
nonlinear way during signal generation. Using Monte Carlo simulations we found that in
resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an
approximately linear treatment. We then mapped point-spread functions for backscattered-electron
contrast, for primary energies of 3 and 7 keV and for different detector specifications. The
point-spread functions are surprisingly well confined �both laterally and in depth� compared even to
the distribution of only those scattered electrons that leave the sample again. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2817591�

I. INTRODUCTION

Under certain conditions the point-spread function for
optical microscopy and for transmission electron micro-
scopes �TEM� can be derived in a straightforward manner
from the physical laws governing the imaging process. The
situation in the scanning electron microscope �SEM�, how-
ever, where the beam hits a solid block of material, is usually
dominated by multiple scattering of electrons inside the
sample and closed-form solutions cannot easily, if at all, be
found. Therefore, Monte Carlo simulations are usually em-
ployed to study image formation in the SEM.1–4 Several
studies have explored a number of special geometries such as
thin films on top of substrates �e.g., Refs. 5 and 6�, spherical
inclusions at the point of beam impact,1,7 and, more recently,
objects elsewhere in the interaction volume.8,9 These studies
were applied to semiconductor samples of very heteroge-
neous elemental composition, for which linearity most likely
does not hold. In this case any particular elemental distribu-
tion has to be subjected to a full Monte Carlo simulation
�MCS�. If, on the other hand, linearity can be assumed the
point-spread function �PSF� completely describes the imag-
ing process. Then and only then, the image expected for any
distribution in space can be obtained by convolution.

Our study was motivated by the imaging of biological
samples in the SEM using backscattering contrast.1 This im-
aging modality has recently received renewed interest since
it allows, in combination with an in-chamber ultramicro-
tome, the acquisition of stacks of sequential cross-sectional
images,10 which can then be used to reconstruct three-
dimensional tissue nanostructure. For these types of imaging
�serial block-face scanning electron microscopy10� the prepa-
ration techniques are very similar to those used in TEM of
biological tissue:11 after fixation and staining with heavy at-
oms �such as osmium and uranium� the tissue is dehydrated
and “embedded” in a polymeric matrix �often some type of

epoxy resin12�. Such samples might be more amenable to a
linear analysis of imaging properties since they essentially
consist of a homogeneous background material into which a
spatially inhomogeneous but dilute distribution of strong
scatterers has been embedded. Even for the most densely
stained material, e.g., for the widely used enzymatic precipi-
tation of osmiophilic 3 ,3�-diaminobenzidine polymer,13 the
fractional concentration of heavy atoms is at most 7%, with
typical values much below that.14 In the current study we
have explored the point-spread functions for this type of
sample.

II. THE SIMULATION

The MCSs use as the bulk material epoxy �in our case
Epon 812, which is widely used for the embedding of bio-
logical tissues15� and as the “point object” a small sphere,
which in our case is “stained” by osmium to an atomic frac-
tion of nOs. Our simulation algorithm is based on those de-
scribed in Ref. 2. To improve the accuracy we used for the
calculation of path lengths between scattering events and of
scattering angles numerical approximations to the partial-
wave expansion approximation to the Mott cross section16

�see Sec. V�. Our algorithm also allows the simulation of
samples with regions of spatially varying chemical
composition.7,17,18 Since we were interested in backscattered-
electron contrast, we ignored secondary-electron generation.

The simulated path of each electron is an ordered se-
quence of vertices connected by straight line segments. To
generate this path, a segment length is first chosen19 from a
modified Poisson distribution, which takes into account that
the material composition varies along a segment if the seg-
ment intersects the test object �see Sec. V�. At the end of the
line segment �the “current position” at the end of the step� a
chemical element �the scattering partner� is chosen stochas-
tically from the set of elements comprising the local mate-
rial. Next a scattering angle is chosen16 at random, using the
Mott cross section for the chosen element. �The azimuth is
taken from a uniform distribution.� This now determines the
direction of the next line segment. �The very first segment
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begins at the beam impact point �BIP� and points along the
direction of the incoming beam, straight down for all results
presented here�. The energy lost during a segment is calcu-
lated using the so-called continuous-slowing-down approxi-
mation,20 which combines all inelastic electron-sample inter-
actions. We have used Joy and Luo’s21 enhanced version of
Bethe’s formula22 for the electron-energy loss. Because this
approximation is only valid for energies above the average
ionization energy �see Sec. V�, our simulation is not suitable
for the simulation of secondary electron �SE� imaging and
SEs have thus been omitted.

III. RESULTS AND DISCUSSION

A. Electron trace-length density and average energy
in the penetration volume

First we mapped the distribution of trace lengths and
average energy �Fig. 1� around the BIP. In agreement with
published work1 we find that the penetration into the material
�Figs. 1�a� and 1�c�� is strongly dependent on the primary
beam energy �PBE� and that the average electron energy
�Figs. 1�b� and 1�d�� decreases with lateral and vertical dis-
tance from the BIP.

B. Linearity of image formation

In order to establish that the calculation of a PSF is
meaningful, we first needed to show that the process of im-

age formation is sufficiently linear for the type of samples
�epoxy-embedded biological tissue� that we are interested in.
To test for linearity, we determined how well the backscatter-
ing coefficient ��� with two objects present agrees with the
sum of the signals with each one of the objects present sepa-
rately. For 4 nm diameter solid-osmium spheres, one of them
just below the beam impact point and the other one at a
variable distance into the sample, we find the behavior to be
rather nonlinear for both 3 and 7 keV PBE if the spheres are
close together �Fig. 2�. As the osmium concentration is re-
duced to a plausible value �7% atomic fraction� for biologi-
cal specimens the nonlinearity is much reduced �with the
sum of single-sphere signals being approximately 6% and
8% larger than the two-sphere signal for 3 and 7 keV PBE,
respectively� even when the spheres are touching. To exam-
ine whether cumulative effects could still affect linearity
even when the osmium density was everywhere below 7%,
we simulated the interaction between an Os-stained hemi-
sphere of increasing radius, centered on the BIP, with a 4 nm
sphere at a fixed depth of 12 nm below the BIP �Fig. 3�. We
found that the signals from sphere and hemisphere add ap-
proximately linearly over the radius range examined �Fig. 3�.
Even a 10 nm-radius hemisphere centered at the beam im-
pact point reduces the signal due to the lower sphere by less
than 7%. These results show that linearity is a reasonable but
not a perfect assumption.

FIG. 1. �Color online� Electron trace length density and mean energy in a homogeneous sample �epoxy� around the beam impact point. 1000 simulated traces
�a� of which 74 were backscattered �red� and 926 terminated in the block �black�. Electron trace length densities for PBEs of 3 �b� and 7 keV �d�. Mean
electron energies for primary energies of 3 �c� and 7 keV �e�. The singularity at the beam axis results from the way the electron density was calculated.
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C. Point-spread functions

The spatial extent of the region within which an object
can affect the backscattering signals depends on a number of
factors. First, the scanned electron beam has a finite width at
the BIP, which depends1 on the source size, the quality of the
electron optics, and on the beam current, but is, in modern
SEMs with field-emission cathodes and at moderate beam
currents, usually so small �even at low PBEs� that it does not
affect the achievable resolution for the type of sample con-
sidered here. Second, and much more important for our
sample type, is the spread of electrons in the interaction vol-
ume. In this paper we focus on this effect and, to avoid
confounding the two mechanisms, assume the primary beam
width to be zero. The combined effect of spot size and
sample interaction can, if needed, be calculated by convolv-
ing the results of our simulations with the lateral distribution
of primary electrons. To map the point spread function, we
placed a test object �a sphere containing a certain concentra-
tion of Os� at a varying position around the impact point and
then determined the backscattering coefficient for each posi-
tion. To obtain results of sufficient precision and resolution
in a reasonable time the concentration of Os and the size of
the test object has to be chosen carefully. While the spatial
resolution improves, of course, as the sphere gets smaller, the
number of traces needed for a given accuracy increases. We

found a diameter of 4 nm to be a good compromise for most
of our simulations. This size is comparable to the SEM focus
diameter but is still smaller than, for example, the thickness
of cell membranes �5 nm�. The relative density of Os �nOs�
was chosen such that about one scattering event by an os-
mium atom occurs as the electron traverses the sphere. For a
4 nm sphere a density of 12% osmium fulfills this require-
ment. This is slightly larger than the 7% values used for the
linearity tests but we found in separate simulations �data not
shown� that the signal size as a function of the Os concen-
tration still lies in the linear range for 12% Os. We did not
sample the whole interaction volume �Fig. 1� for the full
simulations because preliminary results made it clear that the
test object had a discernable effect on the backscattering co-
efficient only in a small fraction of the penetration volume.

The PSFs �Fig. 4� for PBEs of both 3 �Fig. 4�b�� and 7
keV �Fig. 4�c�� become indistinguishable from the back-
ground noise �i.e., the statistical fluctuation of the simulated
epoxy backscattered electron �BS4� signal� at depths much
smaller than the penetration of electrons into the sample
�Fig. 1�. While the actual PSF is expected to start increasing
in width immediately below the surface, the finite size of the
test sphere dominates the width of our simulated PSF close
to the sample surface �Fig. 4�d��. Only deeper in the sample

FIG. 2. �Color online� Linearity of image formation for two small objects. Simulation geometry �a� two spherical objects, one at a fixed position just below
the BIP and a second, identical one at variable distance straight below. Backscattering coefficients for 100% Os ��b�, �d�� and 7% Os ��c�, �e�� spheres for PBEs
of 3 ��b�, �c�� and 7 keV ��d�, �e�� as a function of the distance ��z� between the spheres. Compared are sums �red trace� of the background-corrected
backscattering coefficients ��−�0� for each sphere alone with that for both spheres present �blue�, where in both cases the signal of the upper sphere alone,
�upper, has been subtracted. The gray area between the curves indicates the nonlinearity. In �b�, �c�, and �d� 105 simulated traces were used for each data point.
In �e� 106 traces were used per data point to achieve a satisfactory precision �note the considerable statistical fluctuation� of the signal, due to the low
signal-to-noise ratio.
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does the increasing lateral width of the PSF due to spreading
of the electrons from the beam axis become apparent
�Fig. 4�e��.

The signal-to-noise ratio falls off with rising primary
beam energy �from �max /�0�1.8 for 3 keV to �max /�0

�1.2 for 7 keV for our particular choice of sphere size and
osmium concentration, where �max denotes the backscatter-
ing coefficient for a sphere position directly underneath the
BIP and �0 denotes the backscattering coefficient of epoxy
with no stained sphere present�.

We next explored how energy and angular distributions
of BS electrons depend on the presence of the heavy metal-
stained sphere �Fig. 5�. Without the test sphere the energy
distribution follows the broad distribution typical for back-
scattering from light elements23–25 and the angular distribu-
tion is almost perfectly Lambertian, as expected for diffusing
electrons.1,26 With the sphere placed directly underneath the
BIP a strong peak appears in the energy spectrum just below
the primary energy �Fig. 5�a�� and the angular distribution
�Fig. 5�b�� deviates from a Lambertian behavior, with more
electrons emerging at smaller angles from the surface nor-
mal, which has also been observed experimentally.27,28 The

angular distribution of BSEs with an energy loss of less than
300 eV closely resembles the backward portion of the Mott
cross section used to generate Os scattering angles �Fig.
5�b��. Those observations are consistent with the fact that
heavy atoms �Os in this case� have larger average scattering
angles and thus cause many more scattering events with
large scattering angles, which contribute very efficiently to
the generation of backscattered electrons. If the trajectory
direction is turned around with few, maybe even a single,
scattering event�s� the path length inside the sample is small,
and so is the energy loss. We found it to be crucial to use the
full Mott distribution for osmium, rather than the approxima-
tion based on transport cross sections16,29,30 used for the re-
maining bulk elements �see Sec. V�, which is appropriate
only when many scattering events occur, but will lead to
spurious BSEs at high angles �data not shown�, when used
for osmium in our scattering geometry.

Given that energy and angular distributions are changed
substantially by the presence of heavy-atom objects, we next
explored how selecting the backscattered electrons according
to energy and angle affects the PSF �Fig. 6�. If we simply use
the angular acceptance range and the energy-dependence of a

FIG. 3. �Color online� Linearity of image formation for one large and one small object. The simulation geometry �a� comprises a hemispherical object of
variable radius centered on the BIP and a 7% Os spherical object of 4 nm diameter at a depth of 12 nm. Background-corrected backscattering coefficient
��−�0� as a function of the hemisphere radius for PBEs of 3 �b� and 7 keV �c�. Plotted are the signals of the fixed sphere �green�, the growing hemisphere
alone �red�, which is shifted upwards by the signal of the deep sphere alone, and the signal with both spheres present �blue�. The gray area between the red
and the blue lines indicates the nonlinearity. Each data point represents 106 simulated traces.
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FIG. 4. �Color online� Point-spread functions. Principle of PSF mapping �a� an Os containing sphere �12% Os and 4 nm diameter for panels�b�, �c�, and �e��
is placed at different depths, z, and radial distances, r, from the BIP. The PSFs for PBEs of 3 �b� and 7 keV �c�. The region �d� close to the beam impact point
was sampled again at higher resolution, using a smaller sphere �1 nm diameter, 55% Os�. Each simulation contains �106 traces. The spacing in the color scale
is roughly proportional to the square root of the signal. �0 is 5.82% for 3 and 4 keV, 4.76% for 7 keV. Horizontal �e� cross sections through the PSF at different
depths, normalized to their peaks, sampled at a higher lateral resolution, using 106 traces per data point. Note that absolute values are displayed �due to noise
�−�0 can go slightly negative�.

FIG. 5. �Color online� Energy �a� and angular �b� distributions for BSEs with and without a 4 nm, 7% Os sphere directly underneath the BIP. Angular
distributions �b� of all BSEs with �red circles� and without �blue squares� the Os sphere. Also shown �red crosses� are the distribution of electrons with Ei

�2.7 keV, a Lambertian �cosine� distribution �black line�, and the differential elastic Mott cross section for backward scattering �violet line�. Each MCS
contains 106 electron traces with a PBE of 3 keV. Even though the total number of BSEs is larger �by 46%� with the Os sphere, the angular histograms in �b�
were normalized to their values at the surface normal to facilitate comparison.
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realistic detector, such as a PIN silicon detector diode, where
the charge generated is roughly proportional to the electron
energy �IRD AXUV�, see Ref. 31, we find the PSF to be
nearly unaffected �Fig. 6�b��. But if we used a hypothetical
detector that has a much narrower angular acceptance �30
degrees from the axis� and detects only electrons that have
lost less than 10% of their energy the PSF extends much less
deep into the sample �Fig. 6�c��, while at the same time the
signal-to-noise ratio appears to be improved.

When we explore the falloff of the PSF with depth in
more detail �Fig. 7� we find a somewhat complicated picture
and that the use of a single information depth1 is misleading.
Along the beam axis the falloff is rather fast, much faster

even than the distribution of backscattered electrons. Next to
the beam axis the maximal intensity is reached deeper inside
the sample and the decay with depth is much slower. If we
test how a heavy-atom stained horizontal plane affects the
backscattering coefficient we find that such a plane has a
strong effect on backscattering, even when it is located be-
yond the depth to which backscattered electrons normally
reach, indicating that such a plane changes the directional
distribution of electrons deeper in the sample such that
otherwise-absorbed electrons are converted into backscat-
tered electrons. This situation somewhat resembles that of
wide-field fluorescence microscopy, where the resolution
along the optical axis is poor for low spatial frequencies, i.e.,

FIG. 6. �Color online� Effect of the detector energy and angle sensitivity on the PSF. The PSF when counting ��a�, which is identical to Fig. 4�b�� all electrons
that emerge with equal weight, irrespective of angle and energy, does not change much when taking into account �b� the typical acceptance angle �60° from
the surface normal� and the energy sensitivity of a silicon-diode detector �given in �b� are the number of electrons generated in the diode per incident electron�.
A hypothetical detector �c� selecting only electrons within a 30° angle from the surface normal and sharply cutting off electrons with energies below 2.7 keV
�for a PBE of 3 keV� shows a PSF penetrating considerably less deep into the sample and also shows a higher signal to noise ratio.

FIG. 7. �Color online� Falloff with depth of the electron trace density counting all electrons �thick black lines�, the density of those electrons �backscattered
electrons, thin black line� that leave the sample again, and the backscattering coefficient for a 4 nm, 12% Os sphere on the beam axis �blue disks� and at
4 nm radial distance �red diamonds�, and a 4 nm thick film �green squares� of stained material �12% Os�. All falloffs are plotted at PBEs of 3 �a� and 7 keV
�b�. The red and blue lines in �a� represent 106 traces, the green line 104 traces. In �c�, the red and blue lines represent approximately 107 traces, the green line
represents roughly 106 traces. All data sets were normalized to a maximal value of 1. The ratio of the depth scales is �3 /7�1.67, following a commonly used
model for the scaling of penetration depths �Ref. 32�.
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large objects, but small structures can be resolved quite well.
Our PSF data suggest that for samples such as brain tissue,
where most important structural detail is on a small spatial
scale, the effective z resolution is much better than the depth
to which backscattered electrons penetrate, which is some-
what similar to the situation in the transmitted-light micros-
copy, where although light penetrates the whole sample the z
location of small structures can be quite well determined.

IV. CONCLUSION

We have shown that for the concentrations of heavy at-
oms typical for biological tissue embedded in a polymer ma-
trix backscattered-electron image formation is sufficiently
linear to justify the use of superposition. Our most surprising
result is the steep falloff of the PSF with depth, which is
much steeper than the density of electron trajectories that
eventually emerge from the sample. Thus estimates of the
information depth in SEM imaging,1 which used this density
need to be used cautiously.

V. METHODS

The unstained parts of the sample are assumed to consist
of epoxy with an elemental composition �mostly hydrogen,
carbon, and oxygen� of the widely used Epon 812 resin. Its
mass density is �Ep=1.22 g /cm3 and the atomic �molar�
fractions are nH=0.53, nC=0.35, nO=0.12, �according to data

sheets provided by a supplier, Serva Electrophoresis GmbH,
Heidelberg, Germany�. The atom density is then N
=�EpNAv�i��H,C,O�ni /Ai �where NAv is Avogadro’s constant
and the Ais are the atomic masses�. In the stained regions, the
atomic fractions are ni�= �1−nOs�ni and the number density is
N�=��NAv�i��H,C,O,Os�ni /Ai with ��= �1−nOs��Ep+nOs�Os,
where �Os=22.61 g /cm3 is the density of pure Os.

The calculation of a trajectory proceeds as follows. The
electron starts at a particular location in a defined direction.
At the very beginning the location is the beam impact point,
the direction is along the beam axis �i.e., straight down�, and
the energy is the PBE. First, the distance to the next scatter-
ing event is determined stochastically using a probability dis-
tribution given by d�p�x�� /dx, where p�x� is the probability
that the electron has not yet been scattered and x is the dis-
tance along the segment. At the start of a segment �x=0� we
have p�x=0�=1 and we know that

dp�x�/dx = p�x�/��x� = p�x�N�T�x� = p�x�N�
i

ni�i,

where ��x� is the mean free path, �T�x� is the total cross
section, and the �i�s are the single-element elastic scattering
cross sections.33 If the material composition is homogeneous
p�x�=exp�−x /��. If the path crosses the test object there will
be a region of different composition between, say, x1 and x2,
then

p�x� =	
exp
−

x

�b
� for 0 � x � x1

exp
−
x1

�b
+

x1

�h
�exp
−

x

�h
� for x1 � x � x2

exp
−
x1 − x2

�b
−

x2 − x1

�h
�exp
−

x

�b
� for x2 � x

,

where �b and �h are the mean free paths in the bulk and in the stained region, respectively.
Using a uniformly distributed random variable R� �0,1� we can draw a free path

x�R� = 	x0 − �b ln�R� if R � exp�− x1/�b�
x0 − �h���b

−1 − �h
−1��x1 − x0� + ln�R�� if exp�− x1/�b� � R � exp�− �x1 − x2�/�h − x1/�b�

x0 − �b���h
−1 − �b

−1��x2 − x1� + ln�R�� if else

.

To determine the flight direction for the next segment,
we choose an element stochastically18 using the elemental
composition at the end of the current segment, each element
having the probability Pi=ni�i /�T, �where i� �H,C,O,Os��,
then draw a scattering angle. For osmium, which has a dif-
ferential scattering cross section of considerable complexity,
tables of precalculated values for the partial-wave expansion
approximation to the differential elastic Mott scattering
cross section were used.34 The type of binning used in
Ref. 34 proved, however, too coarse for the simulation of
bulk elements, especially at PBEs above 5 keV. For these

elements, the following approximation to the differential
Mott cross section was used16,30 instead:

d�

d�
=

�el

4	

Y�Y + 2�
�1 − cos 
 + Y�2 ,

where �el is the total Mott scattering cross section �taken
from precalculated values using the partial wave expansion
approximation29�, 
 is the scattering angle, and Y is a param-
eter found by imposing
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� �1 − cos 
�
d�

d�
d�=! �tr,

where �tr is the transport cross section, which was also tabu-
lated in Ref. 29. This approximation ensures, by construc-
tion, that average scattering angles are conserved and is at
energies used here a good approximation for the light ele-
ments, since deviations from the full partial wave expansion
are averaged out due to the large number of consecutive
scattering events.35 Using only the elastic scattering cross
section leads to a systematic underestimation of the segment
lengths. This error is, however, small �
1%−2% relative
change in signal36� and we have neglected it.

For PSF mapping, we chose the Os concentration, nOs,
such that for an electron traversing the test sphere the aver-
age number of scattering events �POs2r /�h, with r the sphere
radius, POs defined analogous to Pi earlier.� involving os-
mium as the scattering partner is about 1.

The energy loss along the segment length �s is deter-
mined by using the stopping-power formula by Joy and
Luo2,21 �which incorporates low energy corrections to
Bethe’s22 original formula�

dE

ds
= − 78 500

N

NAv

1

�
i

ni/Ai

Z̄

ĀE
ln� 1.166�E + 0.85J̄�

J̄
� ,

where � is the local mass density, while Z̄, Ā, and J̄ are the
weighted averages of nuclear charge, nuclear mass, and
mean ionization energy, respectively, using the Pis as
weights. If a segment intersects regions that differ in elemen-
tal composition the energy loss is calculated for each region
separately.

Each electron trajectory is followed until either the elec-
tron energy falls below the mean ionization energy2,32 of the
heaviest bulk element, JO= �9.76+58.8·Z−0.19� eV, which is
�110 eV for oxygen, or the electron leaves the sample. �Os-
mium stained areas were only simulated in sample regions
with average electron energies far above JOs.� The whole
simulation was written in MATLAB and is capable of generat-
ing electron traces at a frequency of about 200–300 Hz on
standard contemporary computer hardware �3 GHz Intel Pen-
tium 4, 2 GB RAM�.

For the calculation of radial electron trace-length densi-
ties �Fig. 1�, individual trace segments are broken up into
subsegments of 0.1 nm length and individually placed in
radial/depth bins �1 nm wide in the radial and depth direc-
tions�. The trace density was corrected for the fact that the

bin volume is proportional to 2	r. This, however, causes an
artifact for r=0 �visible in Fig. 1�. Horizontal integrals of
electron trace densities at depth z �black curves in Fig. 5�
were calculated as the sum of subsegments intersecting a
horizontal plane at depth z, weighted by 1 /cos���, where �
is the angle between the segment and the horizontal plane.
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