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Abstract

In this work we present the design, construction and initial characterization of a setup for a one-
photon transition to Rydberg states in Potassium. The work describes the design of two doubling
cavities which allow the conversion of infrared to UV light, tunable between 285.5 and 288.5nm.
We characterize the frequency-stabilized linewidth of the infrared laser to be 160kHz and achieve
output powers of at least 8W after a Raman Fiber Amplifier. The performance of the constructed
first doubling cavity yields output powers of up to 4W which exactly fits with the calculations.





Introduction

The first experimental realization of a Bose-Einstein condensate [1], [2], [3] and the achievement
of cooling to Fermi degeneracy [4],[5], [6] have set the basis for significant growth of the research
field around ultracold atoms. These systems of atoms present a clean and controllable platform.
They are used for the exploration of phenomena such as the existence of coherent matter waves
or for the simulation of complex many-body systems. Historically, two developments broadened
the possible range of physics accessible with these systems: the use of Feshbach resonances, and
optical traps. Feshbach resonances allow to tune the interaction strength between the atoms
and with optical traps, they can be confined in particular configurations such as lattices. Bench-
mark experiments following these new methods are the measurement of the superfluid to Mott-
insulator transition [7], investigations on the BEC-BCS crossover [8] and the Ising model [9].

Quantum gas microscopes are another invaluable tool in the research field around ultracold
atoms. They enable single-site detection and were first implemented for bosons [10], [11] and
later for fermions [12], [13], [14], [15], [16]. This new imaging tool allows to locate individual
atoms but also provided a basis for methods to manipulate these atoms with the help of strongly
focused beams or spatial modulators [17], [18], [19]. The manipulation and visualization tools
provided by ultracold atoms allow to engineer a range of easily accessible and controllable quan-
tum systems which can provide insight into the behavior of more complex quantum systems.
This methodology is called quantum simulation and enables the study of strongly correlated
systems which were until then only accessible in condensed matter or nuclear physics.

However, using Feshbach resonances limits the simulated quantum systems to those with short-
range interactions. Possibilities to widen the range and nature of interactions, are the use of
atoms with permanent magnetic dipoles [20], [21], [22], [23], dipolar molecules [24], or Rydberg
atoms [25]. In these Rydberg atoms one or more electrons are excited to a high-lying energy level
which induces long-range interactions. These interactions cause the so called Rydberg blockade:
two Rydberg atoms cannot be simultaneously excited within a certain distance of one another.
Instead of a pure Rydberg state, it is also possible to only add a small admixture of Rydberg state
to the ground state of a neutral atom. This is called Rydberg dressing. Both Rydberg atoms and
Rydberg dressed atoms can be achieved by optical coupling to laser light. There are two possi-
ble methods to implement this coupling. The first is to directly go from the ground state to the
Rydberg state using one laser and the so-called a one-photon transition. The second possibility
is to introduce an intermediate state which requires two lasers, one for the coupling to the inter-
mediate state and the other for the coupling to the Rydberg state, this methodology is therefore
called a two-photon transition.

The laboratory in which this thesis was conducted aims at implementing both methods for the
excitation of Potassium atoms. In this context, the aim of this thesis is the design and char-
acterization of the setup necessary for the one-photon transition. Work on the setup for the
two-photon transition in Potassium atoms is described in [26].

First, we give a quick introduction on Rydberg atoms, some of their characteristics and interac-
tions, and move on to Rydberg dressing. As it is necessary to rely on frequency doubling to obtain
the necessary high power light fields with short wavelengths, theory of second harmonic gener-
ation is described in the second Chapter: we discuss non-linear effects in media, the necessary
phase matching condition and finally the harmonic conversion of Gaussian beams. In the exper-
iment, it is important to have high powers of UV light as the interaction strength increases with
the light intensity. Therefore, cavities have to be built around the non-linear medium which gen-
erates second harmonic light, they are the focus of Chapter 3. Chapter 4 describes the stability
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and self-consistency of cavities in ray optics, moves on to a more accurate description through
Gaussian beams, then looks into detail at the cavities important to this thesis, to conclude with
the fundamental quantities which characterize them. For the frequency and length stabilization
of these cavities and the laser, the locking methods of interest are presented in Chapter 5.

For the construction of the two doubling cavities, from infrared to green, and then to UV light,
we conduct a parameter optimization in Chapter 6 to allow for a stable geometry and impedance
matching. Chapter 7 describes the experimental setup and starts off with the infrared laser
source, its frequency stabilization and linewidth characterization and the amplification stage
by way of a Raman Fiber Amplifier (RFA). Finally, the first doubling stage, from infrared to green
light is described in Chapter 8, and the performance is compared to the calculations from Chap-
ter 6.



1 Rydberg Atoms

Rydberg atoms are atoms with one or more electrons excited to a high-lying energy level. This
excitation can be induced by various means such as radiative recombination of electrons with
ions, collisions of electrons with ground state atoms or by optical coupling to laser light [27]. The
spatial separation between electron and atomic core leads to the exaggerated properties of Ryd-
berg atoms. For instance, this separation implies that there is only a small overlap between the
electron’s and core’s wavefunctions leading to lifetimes of the excited state of a few milliseconds
which enable long coherence times in experiments. In the following, we restrict ourselves to al-
kali atoms which have their outermost electron in an s-orbital and to Rydberg excitation through
optical coupling to laser light. We first describe the energy scheme of such atoms, the lifetime of
the Rydberg states and follow with the interaction between two atoms in such a high-lying state.
Finally, moving away from resonantly excited Rydberg states, we discuss Rydberg dressed states
and demonstrate their reduced interaction strength and increased lifetime.

1.1 Level Scheme and Lifetime

Rydberg atoms with one electron populating a high-lying energy level are similar to the hydrogen
atom. However, the point charge of the proton in hydrogen needs to be replaced by a finite-
sized ionic core. The outer electron in the Rydberg atom lies outside the ionic core. Indeed, the

mean square radius of Rydberg atoms scales as 〈r 2〉1/2 ∝ n2. For large n, this puts the electron
far outside the core. Therefore we can use quantum defect theory to calculate the correction to
the hydrogen model [28]. The resulting binding energies of the valence electron with quantum
numbers n, L, J are:

En,L,J = Ei on − R∗(
n −δn,L,J

)2 ≡ Ei on − R∗
(n∗)2 , (1.1)

where Ei on is the ionization threshold and R∗ the effective Rydberg constant corrected by the re-
duced mass R∗ = 1

1+me
m
·Rinf with m as the atom’s nuclear mass, me the electron’s mass and Rinf the

Rydberg constant. The effective principal quantum number n∗ takes into account the quantum
defect correction δn,L,J induced by the screening of the electrons around the core. This correc-
tion is determined by fitting empirical models to experimental data of the energy spectrum. It is
highest for s-states as the wavefunction is closest to the core and decreases with higher angular
qunatum number L, generally becoming negligible for L > 4 [29]. The resulting level scheme of
the outer valence electron for Potassium 39 is shown in Fig. 1.1.

For optical coupling to a Rydberg state, there are two possibilities either by a two or one-photon
transition. The first introduces an intermediate level before coupling to the Rydberg state and
requires two lasers. The second possibility, the one-photon transition couples directly to the
Rydberg state. In the laboratory both possibilities will be realized although this work focuses on
the latter. For a discussion of the two-photon transiton in Potassium 39 we refer to [26]. This
direct transition corresponds to wavelengths in the UV. To obtain high power UV light, it is best
to start with an infrared laser source and go through two doubling cavities. Transitions for the
different possibilities for Rydberg excitation are shown in Fig. 1.1.

Once an electron is excited to a Rydberg state, this state will have a finite lifetime and decay
back to the ground state or to another Rydberg state. The value of this lifetime is important
as it sets a limit to the timescales on which an experiment can be conducted coherently. The
decay to the ground states 1/τr ad is accompanied by the emission of an UV photon. The decay
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Figure 1.1: Energy levels of 39K: Displayed are the one and two-photon transitions to Rydberg states and
the transition used for cooling of the MOT, imaging etc. [30], [31]

to neighboring Rydberg states via stimulated emission of a microwave photon to the black-body
radiation background yields a rate 1/τBB [27]. The overall lifetime τ is then composed of both
contributions:

τ=
(

1

τr ad
+ 1

τBB

)−1

. (1.2)

The radiative lifetime τr ad scales as n∗3 for alkali atoms and can be of the order of milliseconds
for high n ∼ 100. This high value can be understood from the decreasing overlap of the ionic
core’s and electron’s wavefunctions with increasing quantum number n. Compared to the ra-
diative lifetime, the blackbody lifetime is the restrictive factor as it scales with n∗2. Indeed with
higher n∗ the Rydberg atom becomes more sensitive to external fields. The lifetime in an envi-
ronment with blackbody radiation at temperature T is given by [27]:

τBB (n,T ) = 3ħn∗2

4α3kB T
, (1.3)

with α the fine structure constant and kB the Boltzmann constant.
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1.2 Interaction between two Rydberg States

In order to obtain long-range interactions in a system, different possibilities exist. One approach
is to start with weakly interacting particles and switch on the interactions by tuning Feshbach
resonances [32] or using high-finesse resonators [33]. Another way is to use particles like polar
molecules or ions which are already strongly interacting. However, the strong interactions be-
tween the ions fix the particles in certain configurations, while molecules are difficult to cool to
low temperatures. As we will see below, Rydberg-Rydberg interactions present a solution to this
as their interaction strength is comparable to ionic systems while being switchable [25].

The interactions between atoms are strongly modified when they are excited to high-lying Ry-
dberg states. In Rydberg atoms the large spatial separation between valence electron and ionic
core leads to a high polarizability scaling with n∗7. Due to this high polarizability, Rydberg atoms
are very sensitive to external electric fields, including the multipole moments of neighboring
Rydberg atoms. The interaction potential between two Rydberg atoms separated by a distance
R can be expanded in a Laurent series. Being neutral atoms, the first two terms involving the
charge vanish. The first non-vanishing term is the dipole-dipole interaction:

V (r1,r2) = (
1−3cos2θi j

) di d j

4πε0R3 , (1.4)

with di and d j being the electric dipole operators and θi j the angle between the interatomic axis
and the quantization axis of the atoms. This is the potential for the interaction between Rydberg
atoms in different Rydberg states. If, however, the two atoms are in the same Rydberg state, with
an optical detuning much larger than the interaction strength, it is possible to solve the system
in perturbation theory leading to a van-der-Waals interaction of the form [34]:

VvdW (R) =−C6

R6 , (1.5)

where the coefficient C6 scales as n∗11. For Rydberg states with typical n∗ ∼ 40 this scaling is very
favorable and the coefficient C6 grows large. The atoms are optically coupled to the high-lying
Rydberg state through coupling to laser light. We consider the case for which the interaction
between the two Rydberg atoms is larger than the decay rate Γ of the Rydberg state and the Rabi
frequencyΩwith which the transition is driven:

VvdW (R) =−C6

R6 >ħ·max {Γ,Ω} . (1.6)

If this applies, the interaction causes the pairstate of double excitation to significantly shift in
energy and causes the laser to become off-resonant to the transition. Therefore, it is not possible
to excite a second Rydberg atom within a certain distance of a first. This phenomenon is called
Rydberg blockade. In some experiments, the Rabi frequency is larger than the decay rate of the
Rydberg atom, makingΩ the determining value for the so called blockade radius:

Rb =
(

C6

ħΩ
)1/6

. (1.7)

Its values are of the order of a few micrometers. A schematic drawing of the energy shift out of
resonance in the pair state picture is shown in Fig. 1.2a.

1.3 Rydberg Dressing

With these Rydberg atoms, it is hard to probe dynamical systems because of the limiting life-
times. To achieve longer lifetimes which allow measurements in the dynamical regime, it is pos-
sible to couple the ground state

∣∣g 〉 to the Rydberg state |r 〉 off-resonantly, leading to a ground
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state with a small Rydberg state admixture [35]:∣∣ψ〉 =α ∣∣g 〉+β |r 〉 , (1.8)

where β = Ω/2∆, with ∆ the detuning and Ω the Rabi frequency. Rydberg dressing occurs in the
regime where β¿ 1. The resulting interaction potential between two Rydberg dressed atoms
can be obtained by treating the light field as a small perturbation and is of the form:

U (R) = U0

1+
(

R
Rc

)6 , (1.9)

where U0 = 2ħ∆β4 = ħΩ4/8∆3 is the saturation value of this soft-core potential for R → 0. The
cut-off radius Rc = |C6|/2ħ|∆|1/6 sets the scale at which the value of the dressed potential changes
(see Fig. 1.2b). This equation is valid for a repulsive van-der-Waals interaction C6 > 0 and red-
detuned light ∆< 0, or vice versa. If both C6 and ∆ have the same sign, a resonance appears for
the distance at which the energies of the

∣∣g g 〉 and |r r 〉 states become equal.

An advantage of Rydberg dressing is the prolonged lifetime of the dressed state compared to the
bare Rydberg state’s lifetime τ [34]:

τdressed = 1

β2 τ. (1.10)

(a) Schematic drawing of the blockade between
two Rydberg atoms where the van-der-Waals
interaction shifts the doubly excited state out of
resonance

(b) Schematic drawing of the soft-core poten-
tial betweeen two Rydberg-dressed atoms

Figure 1.2: Van-der-Waals interaction for resonant Rydberg atoms and soft-core potential for
Rydberg-dressed states

The interaction strength between Rydberg-dressed states has a dependency ∝ Ω4/∆3 while the
lifetime scales with ∝ ∆2/Ω2. This means that in order to achieve long lifetimes while retaining
a high interaction strength, we need a high Rabi frequency Ω. In the experiment high Rabi fre-
quencies are achieved by high laser intensities which justifies the need for a high power UV laser
source tunable between 285.5 and 288.5nm corresponding to N = 20 to ionization.

As we have seen in this section, alkali atoms are described by a corrected hydrogen atom model.
There are different methods to excite a Rydberg level and the resulting lifetime depends strongly
on the main quantum number n. Furthermore with Rydberg dressing it is possible to allow for
long-range interactions between atoms, which can be implemented in an optical lattice.



2 Theory of Frequency Doubling

The energetic transition to Rydberg states in Potassium corresponds to wavelengths in the UV.
For our experiments with Rydberg dressing, we need optical coupling between the atoms and
laser light with a wavelength between 285.5 and 288.5nm. To generate UV light, usually the fre-
quency of a visible laser is doubled. This visible light can be generated directly, e.g. with a dye
laser, or in our case be generated by a second doubling from an infrared laser source. The latter
approach is chosen here.

We will see that frequency doubling is a non-linear effect in second order of the electric field.
To observe these nonlinear optical phenomena, the light field must be coherent and its power
sufficiently high, i.e. of the order of the interatomic electric field strength (106-108 V/m). Lasers
can fulfill these requirements for high power and coherence. Indeed, the first demonstration of
a working laser in 1960 [36] was quickly followed by the discovery of second harmonic genera-
tion [37], marking the beginning of the field of non-linear optics. Due to the presence of light,
the optical properties of a material can change and lead to a non-linear behavior. For example,
the electric field obtained from second harmonic generation (SHG) scales quadratically with the
fundamental light’s electric field. The expression for the induced second harmonic electric field
is derived in Sec. 2.1. To obtain a non-negligible frequency doubling, a phase matching condi-
tion must be fulfilled as we show in Sec. 2.2. We examine second harmonic generation in the
case of Gaussian beams in Sec. 2.3 which is of practical relevance for the construction of the two
doubling cavities.

2.1 Non-Linearity in Media and Second-Harmonic Generation

It is possible to write a material’s response to light in powers of the electric field E . The induced
polarization is then [38]:

P (t ) = ε0
[
χ(1)E(t )+χ(2)E 2(t )+χ(3)E 3(t )+ . . .

]
≡ P̃ (1)(t )+ P̃ (2)(t )+ P̃ (3)(t ).

(2.1)

The first term of the expansion accounts for linear effects and the proportionality factor χ(1) cor-
responds to the linear susceptibility. The following two contributions represent second and third
order non-linear effects, and define the second and third-order non-linear optical susceptibili-
tiesχ(2) andχ(3) as well as the respective induced polarizations P̃ (2)(t ), P̃ (3)(t ). For the occurrence
of second order effectsχ(2) 6= 0, it is necessary for the medium to be non-centrosymmetric, which
excludes liquids and many crystals. However, we choose media for this work which fulfill this cri-
terion and therefore allow to exploit second-order nonlinear effects. Specifically, we use crystals
made of Lithium Triborate (LBO) for the first doubling stage and Cesium Lithium Borate (CLBO)
for the second.

Second Harmonic Generation (SHG) is a second order effect. It is a special case of the sum-
frequency generation, where two light fields of different frequencies yield a third one, the fre-
quency of which corresponds to the sum of the other two. For SHG the frequencies of the two
incoming beams are equal. In our setup, this process enables us to double the frequency of our
laser source. Considering media for which effects of order higher than two are negligible, the
non-linear polarization PN L can be written as:

PN L =χ(2)ε0E(t )2 = 2deffE(t )2, (2.2)

where deff is the non-linear coefficient of the medium.
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In the following, we derive the formula for the second harmonic electric field. We start with a
linear light field propagating along the z-axis [39]:

E = 1

2

(
Eω(z)e−i (ωt−kωz) +E∗

ω(z)e i (ωt−kωz)
)

, (2.3)

where Eω(z) is the electric field’s amplitude, ω its frequency and kω its wave vector. The corre-
sponding non-linear polarization is:

P N L
2ω = 1

2
deff

(
E2
ω(z)e−i (2ωt−2kωz) +E∗2

ω (z)e i (2ωt−2kωz)
)

. (2.4)

This induced polarization radiates an electric field with frequency 2ω:

E2ω = 1

2

(
E2ωe−i (2ωt−k2ωz) +E∗

2ωe i (2ωt−k2ωz)
)

. (2.5)

In first order this generated electric field induces another contribution to the polarization at 2ω.
The total polarization at 2ω is then:

P2ω = 1

2

(
PN L

2ω e−i (2ωt+kωz) +PL
2ωe−i (2ωt−k2ωz) + c.c.

)
, (2.6)

where PN L
2ω and PL

2ω are the amplitude of the induced non-linear and linear polarization fields.
The first term corresponds to the non-linear polarization induced by the original field at ω. The
second contribution is the linear polarization induced by the electric field at 2ωwhich is radiated
by the non-linear polarization, i.e. the first term.

Both the polarization and electric field at 2ω must obey the one-dimensional wave equation:(
∂2

∂z2 −ε0µ0
∂2

∂t 2

)
E2ω =µ0

∂2

∂t 2 P2ω. (2.7)

To solve eq. 2.7 for E2ω, the amplitude of the total electric field at 2ω, we use the slowly varying
amplitude and phase approximation (SVAPA). In this approximation and by expressing the linear
polarization as PL

2ω = εχ(1)
2ωE2ω, we obtain the differential equation:

∂E2ω

∂z
= iω

√
µ0/ε0

n2ω
deffE2

ωe i∆kz , (2.8)

with∆k = 2kω−k2ω the phase mismatch. To better understand the behavior of E2ω, we solve this
differential equation in the simplified case that there is no depletion of the fundamental beam
over the length L of the non-linear medium. These assumptions lead to the following electric
field amplitude:

E2ω(z) = iω

√
µ0/ε0

n2ω
deffE2

ω(0)ze i∆kz/2 sin(∆kz/2)

∆kz/2
. (2.9)

The corresponding intensity after the non-linear medium exhibits the following dependencies:

I2ω∝ I 2
ω(0)L2

(
sin(∆kL/2)

∆kL/2

)2

. (2.10)

For the intensity of the second harmonic light to be significant, the sinc function must have an
argument close to zero. Also, to increase the value of I2ω, the intensity of the incoming beam
must be high and the converting medium has to be long. However, we remind ourselves that
the solution was obtained without taking into account the depletion of the fundamental beam,
which is inaccurate for large L.
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2.2 Phase-Matching

As mentioned in the previous section, the value ∆kL must be close to zero for the second har-
monic’s intensity to be significant. The intensity depends on ∆k due to the difference in phase
velocity between the two waves. As the first wave travels with a velocity of c/nω, the generated con-
tributions to the second harmonic beam travel with a different velocity c/n2ω. This leads to a phase
mismatch between the contributions and therefore destructive interference. Quantitatively, this
reduction in intensity of the second harmonic wave is contained in the factor sin2(∆kL/L)/(∆kL/2)2,
which is a squared sinc function. This function is plotted in Fig. 2.1 and shows that to have a
non-negligible second harmonic intensity, the length of the medium must either be of the order
of the coherence length Lc or the refractive indices of both waves must be equal, i.e. ∆k = 0. The
coherence length Lc of the medium is the length for which the phase of the fundamental beam
and the one of the second harmonic light are 180° apart from each other. For this length the
function has dropped to 40% of its maximum value. For commonly used non-linear media it is
of the order of 10µm. However, L appears as a multiplicative factor in Eq. 2.10, therefore using
small L also decreases the value of the intensity [40]. Decreasing the non-linear medium’s length
also decreases the second-harmonic intensity, we must therefore resort to phase-matching.

4
k

2
k

0 2
k

4
k

0.0

0.5

1.0

G
(L

) LC = k

L

Figure 2.1: Depiction of the phase mismatch factor G(L) = sin2(αL)/(αL)2 with α= ∆k/2

Consequently, the condition for a non-negligible second harmonic intensity is:

∆k = 2kω−k2ω = 0 ⇔ n2ω = nω. (2.11)

Eq. 2.11 is called the phase-matching condition. There are two main possibilities to meet this
condition: quasi phase-matching or the use of a birefringent medium.

The first option makes use of a periodically polarized non-linear medium, for which the spatial
periodicity is equal to the phase mismatch ∆k. The periodicity of the refractive index then com-
pensates the difference in phase velocity of the fundamental and second harmonic light. The
non-linearity deff of the medium is then replaced by:

deff (z) = d0

2

(
e i k ′z −e−i k ′z

)
, (2.12)

where d0 is the new non-linearity of the medium and k ′ the periodicity’s wavenumber. Replacing
the former deff in Eq. 2.8 with the periodic one, then leads to the following expression for the
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second harmonic electric field:

∂E2ω

∂z
= iω

√
µ0/ε0

n2ω
deffE2

ω

(
e i(k ′+∆k)z +e−i(k ′−∆k)z

)
k ′=∆k≈ iω

√
µ0/ε0

n2ω

d0

2
E2
ω.

(2.13)

In the last step, we set ∆k and k ′ equal and disregard the first term which leads to a contribution
similar to the one from Eq. 2.9. This new equation for the second harmonic field lacks the ex-
ponential dependence on the phase mismatch. Subsequently, the corresponding intensity does
not have a squared sinc function dependence on∆kL, which was responsible for the decrease in
intensity. As the phase of the waves is not matched, this method is called quasi phase-matching.
As the polarizations of all involved waves are usually parallel, it can also be called type 0 phase
matching.

The second possibility for phase matching makes use of the birefringence in certain materials
and can be divided into type I and type II phase matching. For type I the two fundamental waves
necessary for the new frequency generation have the same polarization. The resulting second
harmonic beam then has a polarization orthogonal to the fundamental one. This method is
used for both the first and second doubling stages of this work. For type II phase matching the
two fundamental waves have orthogonal polarizations.

Type I and type II can further be classified into critical and noncritical phase matching. The
first uses the geometric dependence of the refractive index relative to the crystal axis while the
second makes use of its temperature dependence. For the first doubling stage, with a LBO crys-
tal and a fundamental wavelength of approximately 1150nm, it is possible to use non-critical
phase matching at a temperature of about 70◦C (the fundamental beam is the extraordinary
beam while the generated one is ordinary: e + e → o). For the second doubling stage, we use
critical phase matching, by choosing a crystal axis orientation relative to the propagation direc-
tion where n2ω = nω. For CLBO with a fundamental wavelength of 575nm this corresponds to an
angle θ of 54.3° (the fundamental beam is the ordinary beam while the generated one is extraor-
dinary: o +o → e).

2.3 The Boyd-Kleinman Integral

The light field emitted by lasers is better approximated by Gaussian beams, compared to the
plane wave we discussed in the previous Sections. Using Gaussian beams instead of plane waves
leads to corrections of our previous result. We will discuss the main steps of the derivation, which
lead to the corrected formula for the second harmonic light field. For a more detailed treatment,
we refer to the literature [41]. Conceptually, the approach is to divide the crystal into infinitesi-
mally small slices. The contribution to the second harmonic light of a single infinitesimal slice
is calculated. To assess the total second harmonic field, these contributions are added up coher-
ently after the crystal on an observation plane, see Fig. 2.2.

In anisotropic media an important effect which has to be taken into account is walkoff. This
happens when the beam does not propagate along one of the crystallographic axes. This is the
case for the critical phase matched SHG in CLBO. This anisotropy causes the generated second
harmonic light in each slice to have a certain angle with regard to the initial beam. On the ob-
servation plane where all contributions are added coherently, each second harmonic addition
has a different spatial displacement. The resulting beam profile is then no longer Gaussian. An
explanatory figure for the walkoff effect is shown in Fig. 2.2.
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Figure 2.2: Schematic drawing of the walkoff effect in non-linear media with critical phase matching

An important quantity for our setup is the power of the generated second harmonic light. In the
following we present the main steps which lead to a formula for the power [42]. We start with a
Fourier transformed Gaussian beam (see Sec. 3.2):

E1(r, z, t ) = 2π
[
Ẽ1 (r, z)δ (ω−ω1)+ Ẽ∗

1 (r, z)δ (ω+ω1)
]

, (2.14)

where:

Ẽ1 (r, z) = E0

2

wo

w (z)
e−

α1
2 z e

− r 2

w2(z) e−i kz e
i kr 2

2R(z) e iφ(z), (2.15)

with α1 the absorption coefficient of the fundamental beam and the functions φ (z), w (z), R (z)
are defined in Sec. 2.2. The minimum waist of the Gaussian beam in Eq. 2.14 is located at z = 0.
To obtain a more general expression, we shift the position to z = f and introduce the notation
ζ= 2(z− f )/b, with b = 2zr = 2λ/πnw 2

0 . The electric field can then be written as:

Ẽ1 (r, z) = E0

2
e−

α1
2 z 1

1+ iζ
e
− 2r 2

w2
0 (1+iζ) e−i k1z . (2.16)

The second order induced polarization is then:

P̃ (ω3) = 2εdeff
[
Ẽ (ω1)]2 = ε0deff

E 2
0

2
e−α1z

(
1

1+ iζ

)2

e
− 2r 2

w2
0 (1+iζ) e−2i k1z . (2.17)

Analogously to Eq. 2.8, we calculate the electric field generated by the polarization in a slice d z
of the crystal and obtain:

dẼ3 (x) =− i

2ε0n2
3

k3e i k3z P̃ (ω3)d z

=− i k3

2n2
3

e i∆kz deff
E 2

0

2
e−α1z 1

1+ iζ

{
1

1+ iζ
e
− 2r 2

w2
0 (1+iζ)

}
d z.

(2.18)
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The expression in the braces resembles a Gaussian beam with beam waist w0/
p

2, confocal pa-
rameter b and focus at z = f .

The crystal slab d z at
(
x, y

)
contributes, due to a walkoff angle ρ in the xz-plane to the field at

a point x ′, y ′ and z ′ outside of the crystal. For this observation point, the coordinates are in a
small-angle approximation x ′ = x +ρ (l − z), y ′ = y and ζ′ = 2(z ′− f )/b. This propagation can be
expressed in the Gaussian part of Eq. 2.18 by replacing the original coordinate with x ′, y ′ and z ′.
We then integrate over all z-contributions along the crystal length l and obtain:

Ẽ3
(
r ′, z ′)=− i k3

2n2
3

deff
E 2

0

2
e−

α3
2 l

l∫
0

e−αz e i∆kz

1+ iζ

 1

1+ iζ′
e
− 2

{
[x′−ρ(l−z)]2+[y ′]2

}
w2

0 (1+iζ′)

d z, (2.19)

whereα=α1−α3/2 andα3 takes into account the loss of the second harmonic light in the medium.
To simplify the expression, we introduce normalized spatial coordinates:

u = x ′−ρ (
l − f

)
w0ζ′

v = y ′

w0ζ′

β= ρ

θ0

(2.20)

and let ζ′ →∞ for an observation point at infinite distance. The electric field then simplifies to:

Ẽ3
(
r ′, z ′)=− k3

2n2
3

deff
E 2

0

2ζ′
e−2(1−iζ′)(u2+v2)

l∫
0

e−αz e i∆kz e4i uβζ

1+ iζ
d z. (2.21)

To conform to the notation in [41], we define the following variables:

κ= αb

2

σ= ∆kb

2

µ= l −2 f

l

ξ= l

b
,

(2.22)

make the substitution ζ= 2(z− f )/2 and define the integral:

H
(
σ+4βµ,κ,ξ,µ

)= 1

2π

ξ(1+µ)∫
−ξ(1−µ)

e−κζe i(σ+4βµ)ζ

1+ iζ
dζ. (2.23)

In this new representation, the electric field reads:

Ẽ3
(
r ′, z ′)= −k3

2n3
deff

E 2
0

2ζ′
e−α3l/2e−2(1−iζ′)(u2+v2) b

2
e−α f e i∆k f [

2πH
(
σ+4βµ,κ,ξ,µ

)]
. (2.24)

We integrate the corresponding intensity over the dimensions u and v and obtain an expression
for the second harmonic power:

P3 =
16π2d 2

e f f

ε0cλ3
1n3n1

P 2
1 e−α

′l l︸ ︷︷ ︸
κN L

h
(
σ,β,κ,ξ,µ

)
, (2.25)
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with P1 the power of the fundamental beam, α′ =α1 +α3/2 and the Boyd-Kleinman factor:

h
(
σ,β,κ,ξ,µ

)= 2π3/2

ξ
eµαl

+∞∫
−∞

due−4u2 ∣∣H
(
σ+4βu,κ,ξ,µ

)∣∣2 . (2.26)

Eq. 2.25 shows the strong dependence of the second harmonic’s power on the power of the fun-
damental beam and the nonlinearity of the medium. Both quantities appear quadratically in the
formula. For practical purposes the Boyd-Kleinman factor is further simplified in Sec. 5.1.

In this section we discussed the emergence of non-linear optics in the particular case of second
harmonic generation. We have showed the necessity of phase matching for SHG and described
different possibilities to achieve it. For the construction of the cavities we looked into the second
harmonic conversion of Gaussian beams and derived the resulting power. We will in Chapter 5
use this formula to calculate a geometry for the doubling cavities so that the second harmonic
power is maximized.
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3 Optical Resonators

In this work, we need optical resonators for two purposes, cavity-enhanced second harmonic
generation and frequency stabilization of a laser using a reference cavity. They are alignments
of two or more mirrors. Their geometric configuration allows for the formation of a standing or
traveling wave of the incoupled light. Optical resonators play an important role in the construc-
tion of lasers as they surround the gain medium and provide feedback on the laser light.
In order to understand how the light couples into an optical resonator, we first look at the geo-
metric ray approach of optics and then move on to a more realistic description of light, provided
by Gaussian beams. Subsequently, we describe the specific resonators used in this thesis. Fi-
nally, we establish the characteristic values of resonators and define a condition for impedance
matching for one of the thesis’ cavities.

3.1 Cavity Matrices and Stability

Geometric optics assumes the light to propagate as rays. The direction of propagation is assumed
to be perpendicular to the wavefronts and the width of the beam is negelected in this approach
[40]. A beam traveling in the x y-plane and forming only a small angle with the z-axis can be de-
scribed by a vector with two components. The first entry is the lateral displacement r (z) and the
second the slope r ′ (z) with respect to the z-axis. From the roughly unidirectional propagation
along z, we can use the small-angle approximation, such that:

r ′ (z) = dr

d z
= tan(θ) ≈ sin(θ) ≈ θ. (3.1)

This vector description characterizes paraxial rays. In this notation the effect of optical elements
as well as the propagation of the ray are expressed by matrices. The matrices for the optical
resonators which are for interest to this thesis are listed in Tab. 1 [43].

Optical Element Corresponding Matrix

Propagation through a homogeneous medium
of length d

(
1 d
0 1

)
Refraction at a dielectric interface

from a medium with refractive index n1

to another with n2

(
1 0
0 n1/n2

)

Reflection at a spherical mirror
with a radius of curvature R

(
1 0

−2/R 1

)
Table 1: Ray transfer matrices for the optical elements relevant for this thesis

To find the displacement and slope after an optical element described by the matrix M , we have
to evaluate the following vector-matrix product:(

r f

r ′
f

)
= M ·

(
ri

r ′
i

)
, (3.2)

where
(
ri , f ,r ′

i , f

)T
are the initial and final vectors respectively. The effect of several consecutive

elements M1, M2, M3 is therefore captured by their matrix product, i.e. Mtot = M3 · M2 · M1.
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The ray transfer matrices from Tab. 1 suffice to describe the cavities used in this thesis. How-
ever, not all assemblies of mirrors are stable resonators. In the following we show that a stability
condition has to be fulfilled for the resonator to retain the light. We start by assuming a cavity
described by the four matrices M1, M2, M3, M4. The corresponding roundtrip through the res-
onator can therefore be expressed by the matrix M = M4 ·M3 ·M2 ·M1. The light will pass through
the resonator several times and the matrix describing the ray transfer after the nth roundtrip is
therefore the nth power of M . We rewrite the resulting matrix with Sylvester’s theorem which
yields [44][45]:

M n =
(

A B
C D

)n

= 1

sin(θ)

(
A sin(nθ)− sin((n −1)θ) B sin(θ)

C sin(nθ) D sin(nθ)− sin((n −1)θ)

)
, (3.3)

where the angle θ is defined as:

cos(θ) = 1

2
(A+D) . (3.4)

Motivated by this definition we distinguish two cases. The first case is:

1

2
(A+D) <−1 ∧ 1 < 1

2
(A+D) , (3.5)

which leads to hyberbolic functions in Eq. 3.3 and therefore to diverging entries of the matrix for
large n. In terms of the ray in the resonator: with each roundtrip the resulting ray vector grows
and eventually diverges. This behavior corresponds to an unstable resonator. On the other hand
the second case, for which:

−1 < 1

2
(A+D) < 1, (3.6)

allows for a bounded ray transfer matrix for large n and corresponds to a periodic refocusing of
the ray. Eq. 3.6 is also called stability condition.
For the construction of cavities it is therefore necessary to restrict the cavity parameters to stable
solutions for which the rays are periodically refocused.

3.2 Gaussian Beams and ABCD Law

The description of beams by ray optics enables us to formulate a stability condition for res-
onators. However, this description is not sufficient as it cannot describe the incoupling of light
or resonator modes. We therefore extend the description from rays to Gaussian beams. In the
following, we derive the formula for a Gaussian beam. We start with the wave equation from
Maxwell’s equations under the condition of no currents and a charge-free and non-magnetic
material [40]:

∇2E (r , t ) = 1

c2

∂2E (r , t )

∂t 2 . (3.7)

For a monochromatic field, of the form:

E (r , t ) = E (r )e−iωt , (3.8)

the wave equation can be rewritten to the Helmholtz equation:

∇2E (r )+k2E (r ) = 0. (3.9)

An ansatz for the solution to the Helmholtz equation is to add a finite cross section to a plane
wave. The general form of this ansatz is:

E (r ) = E0 (r )e−i kz . (3.10)
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In a slowly varying amplitude approximation, this solution must fulfill the paraxial approxima-
tion of the wave equation:

∇2
TE0 +2i k

∂E0

∂z
= 0. (3.11)

A solution to this approximated wave equation is the Gaussian beam:

E (r ) = A
w0

w (z)
e−i kz e−iφ(z)e i k(x2+y2)/2R(z)e−(x2+y2)/w 2(z), (3.12)

where A is a constant, w0 the minimum beam waist, w (z) = w0
√

1+ z2/z2
0 the waist, z0 = πw 2

0/λ
the Rayleigh range, R (z) = z+z2

0/z the radius of curvature andφ (z) = arctan(z/z0) the Gouy phase.
The angle θ = λ/πnw0 is the divergence of the beam. Another parameter important for later de-
scriptions is the q-parameter: 1/q(z) = 1/R(z)+ iλ/πw 2(z). An illustration of the Gaussian beam with
its relevant parameters is shown in Fig. 3.1.

Figure 3.1: Illustration of a Gaussian beam with a minimum beam waist w0, a Rayleigh range zR , a beam
curvature R (z) and a divergence θ. On the right is depicted the Gaussian intensity profile of the beam,
the waist w (z) corresponds to the distance for which the intensity has dropped to 1/e2 of its maximum

value

For the construction of cavities, it is necessary to describe the effect of optical components on
Gaussian beams. The ABCD law uses the matrices from ray optics to evaluate the transforma-
tion of Gaussian beams sent through an optical system by transforming the q-parameter in the
following way:

q f =
Aqi +B

C qi +D
, (3.13)

where qi denotes the q-parameter of the initial beam and q f of the final one after the optical
component characterized by a matrix with coefficients A, B , C , D .
Consequently, in order to obtain a Gaussian mode inside a resonator, the q-parameter must not
change after one roundtrip. With the ABCD law from Eq. 3.13, the condition for a Gaussian beam
mode becomes:

q (z) = Aq (z)+B

C q (z)+D
, (3.14)

where A, B , C , D describe the optical system made up of a resonator and q (z) the beam’s q-
parameter at an arbitrary point z in the cavity. Solving for the roots of q with the characteristic
of these ray matrices that AD −BC = 1 leads to two solutions:

q = D − A

2B
−

(+)
i

2B

√
4− (A+D)2. (3.15)
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This corresponds to the self-consistency condition for a Gaussian beam and is used for the pa-
rameter optimization of the bow-tie cavities in Sec. 5.
For bow-tie cavities such as the one shown in Fig. 3.2b, the angle of incidence of the beam is non-
zero. Therefore, some of the matrices from Sec. 3.1 must be corrected. We distinguish between
a tangential and sagittal plane. The first is parallel to the plane of incidence while the second is
perpendicular to it. The optical elements which are affected by this correction are the refraction
at a dielectric medium and the reflection at a curved interface. For the first, we restrict ourselves
to refraction at an interface cut in a Brewster angle, as this is the relevant case for our bow-tie
cavity with the Brewster cut crystal (Fig. 3.2b). The resulting corrected matrices are shown in
Tab. 2. For the Gaussian beam, this means that we must distinguish between the two planes. We
will obtain slightly different Gaussian beams whether we place ourselves in the sagittal or tan-
gential plane.
With the self-consistency condition for Gaussian beams in a resonator and the corrected matri-
ces, it is possible to accurately describe the beam inside the resonators of interest to this thesis.

Optical Process Plane Corresponding Matrix

Refraction at an interface at a Brewster angle
from a medium with refractive index n1

to another with n2

Tangential plane

Sagittal plane

(
n2/n1 0

0 (n1/n2)2

)
(
1 0
0 n1/n2

)

Reflection at a spherical mirror
with a radius of curvature R
and an angle of incidence θ

Tangential plane

Sagittal plane

(
1 0

−2/R cos(θ) 1

)
(

1 0
−2cos(θ)/R 1

)
Table 2: Ray transfer matrices for optical elements with corrections due to a non-zero angle of incidence

[46]

3.3 Hemispherical and Bow-Tie Cavity

Two cavities are used in this thesis. The first is is a hemispherical cavity made of Ultra Low Ex-
pansion glass and is used for the frequency stabilization of the infrared laser. The second one is
a bow-tie cavity and is used for the two frequency doubling stages from the infrared to the green
and finally ultraviolet. It is needed to enhance the power of the fundamental beam and increase
the conversion efficiency of the non-linear medium, i.e. the crystal placed inside it.

R1=∞ R2>0

w0 w(z)l

(a) Hemispherical Cavity

dl

l ds/2

(b) Bow-Tie Cavity with a Brewster-cut crystal

Figure 3.2: Resonators used in this thesis
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Hemispherical Cavity

A hemispherical cavity is made up of one concave and one plane mirror. This configuration is
shown in Fig. 3.2a. The distance between the mirrors is set by the length l of the cavity, which
in this thesis corresponds to the Ultra Low Expansion (ULE) Cavity manufactured by Advanced
Thin Films. In the following, we verify the stability of our hemispherical cavity and determine
parameters which must apply to the beam to be incoupled. The matrix describing this cavity is:

M =
(

1 0
−2/R1 1

)
︸ ︷︷ ︸

R1→∞

·
(
1 l
0 1

)
·
(

1 0
−2/R2 1

)
︸ ︷︷ ︸

R2>0

·
(
1 l
0 1

)
, (3.16)

where R1 and R2 are the radii of curvature of the two mirrors. With the condition in Eq. 3.6, it
is possible to determine for which values of l , R1 and R2 the resonator is stable. For the general
case of a two mirror resonator, which applies to our hemispherical cavity, the stability condition
simplifies to:

0 <
(
1− l

R1

)
·
(
1− l

R2

)
< 1

⇔ 0 < g1 · g2 < 1,
(3.17)

with g1,2 = 1− l/R1,2. For our hemispherical resonator, R1 → ∞ and R2 > 0, therefore, this con-
dition is fulfilled as long as l < R2. This is the case for the mirrors in our ULE cavity for which
l = 10cm and R2 = 50cm. The stability diagram for a two-mirror resonator is shown in Fig. 3.3.
In this Figure, we depict the stability of our ULE cavity with a red marker relative to other two-
mirror resonators.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 3.3: Stability diagram of a two-mirror resonator for the parameters g1 = 1− l/R1 and g2 = 1− l/R2:
the stable regions are shown in blue and the red point indicates where the ULE cavity, used in this thesis,

is situated

Another important criterion for the incoupling into the cavity is the self-consistency condition
for a Gaussian beam in Eq. 3.14. From the cavity matrix, we determine parameters which must
apply to the beam to match the Gaussian cavity mode, a procedure called mode-matching. The
order of the matrices in Eq. 3.16 sets the position in the resonator, at which the q-parameter is
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being calculated. In Eq. 3.16, the last matrix is the one representing the first mirror. Therefore,
with this order of matrices, we evaluate the q-parameter at the position of the first plane mirror.
Solving for the real part in Eq. 3.15, leads to the curvature the beam must have at this point:

1

R(0)
= 1

R1
. (3.18)

Performing two cyclic permutations of the matrices in Eq. 3.16, we now evaluate the q-parameter
at the position of the second mirror. Repeating the same procedure as for the first mirror, leads
to a second condition for the incoupled beam:

1

R(l )
= 1

R2
. (3.19)

The two preceding equations are sufficient to characterize the beam. For a hemispherical res-
onator, as R1 →∞, the first equation gives the position where the beam curvature is infinite and
therefore sets the position of the minimum waist w0 at z = 0. The second equation sets the cur-
vature of the beam to R2 at the position of the second mirror z = l . Inserted into the formula for
the beam curvature R (l ) = l+z2

0/l 2, the resulting Rayleigh range can be rewritten into an equation
for the minimum beam waist:

w0 =
√
λ

π

√
l (R2 − l ). (3.20)

With Eq. 3.18 and 3.20, we know both the position and value for the minimum beam waist. Thus,
we have enough information to couple the infrared laser beam to the Gaussian mode of our ULE
cavity.

Bow-Tie Cavity

The bow-tie cavities in this work are used for cavity-enhanced second harmonic conversion. This
means that we place a crystal as a non-linear medium in the resonator, which generates second
harmonic light. We then use the high circulating powers inside the resonator to achieve a high
conversion efficiency.
The bow-tie cavity configuration is shown in Fig. 3.2b. In the most simple configuration, a bow-
tie cavity is composed of two plane and two concave mirrors. The beam enters the cavity through
one of the plane mirrors and continues to the second plane mirror. Because of a non-zero open-
ing angle, it is deflected to one of the curved mirrors. From there the path continues to the second
curved mirror. Finally, it is deflected back to the first mirror, closing the beam path. The crystal
is placed midway between the two curved mirrors. The length l denotes the distance traveled
inside the crystal. The long arm dl corresponds to the entire beam path except for the segment
between the curved mirrors. The short arm ds denotes the remaining beam path, that means the
path between the curved mirrors except for the segment inside the crystal.
The matrix for this cavity is slightly more complicated than for the hemispherical resonator. Ne-
glecting astigmatism effects, the roundtrip matrix is:

M =
(
1 l/2

0 1

)
·
(
1 0
0 n1/n2

)
·
(
1 ds/2

0 1

)
·
(

1 0
−2/R 1

)
·
(
1 dl

0 1

)
·
(

1 0
−2/R 1

)
·
(
1 ds/2

0 1

)
·
(
1 0
0 n2/n1

)
·
(
1 l/2

0 1

)
=

(
2γ1γ2 −1 Rγ1

(
1−γ1γ2

)
−4γ2/r 2γ1γ2 −1

) ,

(3.21)
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where n1 is the refractive index of air, n2 the one of the crystal, R the radius of curvature of the
two concave mirrors and we introduced the notation:

γ1 := −l −n2/n1 (ds −R)

R

γ2 := n1

n2

(
1− dl

R

)
.

(3.22)

The waist inside the crystal is set by the optimization of the Boyd-Kleinman integral, see Sec. 5.1.
The remaining geometric parameters which must be determined are the curvature of two of the
mirrors R, the length of the short and long arm ds , dl , and the opening angle θ. Two requirements
allow us to determine these parameters: the stability of the resonator and the self-consistency
for a Gaussian beam inside it.
With the order of the matrices in Eq. 3.21 we evaluate the q-parameter in the middle of the crys-
tal, where the waist is minimal and determined by the optimization of the Boyd-Kleinman in-
tegral. The stability of this resonator is, as for the hemispherical cavity, set by the inequality of
Eq. 3.6. With the compact notation from Eq. 3.22, this condition can be rewritten as:

0 < γ1 ·γ2 < 1. (3.23)

Also, the condition for a Gaussian mode in the resonator from Eq. 3.15 can be solved for the waist
inside the crystal. This waist is the minimal waist of the beam. Therefore the curvature must be
infinite and D = A. The q-parameter then becomes a purely imaginary number:

1

q
=− i

B

√
1− A2. (3.24)

With the definition for the q-parameter, this formula can be further rewritten as:

q = iπw2
0n2

λ
= i R

2

√
γ1

γ2

(
1−γ1γ2

)
. (3.25)

Using the notation from Sec. 2.3 with ξ= l/b = l/2zR where zR = πn2w 2
0/λ is the Rayleigh range, it is

now possible to define a parameter α in the following way:

α2 =
(
ξR

l

)2

= γ2

γ1
(
1−γ1γ2

) . (3.26)

This equation characterizes a parametric curve within the stability region for which each point
represents a possible self-consistent solution. We now choose a point which is well within the
stability region whilst still being on the curve defined by Eq. 3.26. One possibility is to take the
minimum of the function. This corresponds to the following values for γ1 and γ2:

γ1 =− 1

α

γ2 =−α
2

.
(3.27)

With the definition for γ1 and γ2 it is now possible to calculate the ensuing values for the short
and long arms ds and dl :

ds = R

(
1+ n1

n2

1

α

)
− n1

n2
l

dl = R

(
1+ n2

n1

α

2

)
.

(3.28)
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These values for ds and dl are obtained without taking into consideration the astigmatism caused
by the curved mirrors and the shape of the crystal. To account for the arising difference between
the sagittal and tangential plane caused by the astigmatism, we need to correct some of the ma-
trices in Eq. 3.21. The impacted matrices are the one describing the reflection at a curved mirror
and the one for the refraction at a dielectric interface. They need to be replaced by the matrices
from Tab. 2.

3.4 Impedance Matching and Finesse

We use the bow-tie cavity configuration for cavity-enhanced second harmonic generation. The
circulating power of the light inside the cavity can be reduced by factors such as imperfectly
reflecting mirrors. By minimizing these losses inside the resonator, we maximize the second
harmonic conversion inside the non-linear crystal. We discuss finesse and free spectral range as
the values characterizing any resonator. Then, we derive a condition for a maximized circulating
power in a bow-tie resonator.
For the general case, the requirement for a standing wave inside a resonator is an infinite number
of waves with equal phase and amplitudes that decrease geometrically by a factor p after each
roundtrip. The total amplitude U then amounts to [47]:

U =U1 +U2 +U3 + ...

=
√

I0
(
1+p +p2...

)
=

p
I0

1−p
,

(3.29)

where Ui is the amplitude of the consecutive waves. The factor p accounts for both the losses
during a roundtrip as well as the accumulated phase and is therefore of the form p = r e iφ. We
introduce the factor r , called reflectivity, which for r < 1 ∈ R+, accounts for dampening of the
waves. The angleφ represents the accumulated phase, which we assume to be constant between
consecutive waves. The resulting intensity is:

I = |U |2 = I0(
1− r 2

)+4r sin2
(
φ
2

)
= Imax

1+ 4r

(1−r 2)sin2
(
φ

2

) ,
(3.30)

where we used Imax = I0/(1−r 2), the maximum intensity in the case of purely constructive inter-
ference, i.e. φ= 0. Further useful definitions are the free spectral range νF and the finesse F :

νF = c

2d

F = π
p

r

1− r
,

(3.31)

where d corresponds to the distance between the two mirrors of a two-mirror resonator. For a
bow-tie cavity 2d is replaced by the length of a whole roundtrip. With the phase described by
φ= k ·2d = 4πνd/νF = 2πν/νF , the intensity can be rewritten as:

I (ν) = Imax

1+ 4F2

π2 sin2
(
πν
νF

) , (3.32)
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a Lorentzian distribution for which the peaks occur at frequencies which are integer multiples of
the free spectral range νF . The full width at half maximum (FWHM) of these peaks, also referred
to as the linewidth, is of the form:

δν= 2νF

π
arcsin

( π

2F

)
≈ νF

F
⇔F = νF

δν
.

(3.33)

The ratio of peak separation to peak width for values of ν close to the peak is therefore deter-
mined by the reflectivity of the mirrors. The resulting transmission of a cavity is:

T (ν) = Itr ans (ν)

Ii nc
, (3.34)

where the incoming intensity is given by the intensity of the initial wave through I0 = |t1|2 Ii nc

with |t1|2 being the transmission of the incoupling mirror. The transmitted intensity for a two-
mirror resonator is defined by the transmission of the second mirror through Itr ans = |t2|2 Ici r c =
|t2|2 I (ν), where |t2|2 is the transmission of the second mirror and Ici r c the circulating intensity.
The transmission coefficient is expressed in cavity parameters as:

T (ν) = Tmax

1+ 4F2

π2 sin2
(
πν
νF

) , (3.35)

with the maximum possible transmission T = |t |2/(1−r )2 and t = t1t2 the total transmission of the
two mirrors.

We now focus on the circulating power, in the general case of any enhancement cavity. We start
with the circulating electric field:

Eci r c = i
√

T1Ei nc + gr t (ω)Eci r c , (3.36)

where the first contribution comes from the incoupling into the cavity with T1 the transmission
power of the first mirror and the second term takes into account phase shifts and losses inside
the cavity through the function gr t (ω). The phase difference of π/2 due to the incoupling is ac-
counted for by the imaginary factor. The roundtrip function gr t (ω) is then of the form:

gr t (ω) =
√
RN e

−iωlN/c
√
RN−1e

−iωlN−1/c ...
√
R1e

−iωl1/c
p
α=

p
Rαe

−iωl/c , (3.37)

with li being the optical lengths between the mirrors, l =
N∑

i=1
li the sum of all lengths, Ri the

reflection power of the mirrors, R = ∏N
i=1Ri the total reflection and α a loss coefficient for all

losses not taken into account by the finite reflection of the mirrors. We are interested in the
circulating power with respect to the incoming power:

Pci r c

Pi nc
=

∣∣∣∣Eci r c

Ei nc

∣∣∣∣2

=
∣∣∣∣ i

p
T1

1− gr t (ω)

∣∣∣∣2

. (3.38)

To maximize the fraction in Eq. 3.38, gr t (ω) must also be maximized. The maxima of the roundtrip
function occur periodically for frequencies which are a multiple of the resonator frequencies
ωm = m · 2πc

l with m ∈Z. The power enhancement at these maxima then becomes:

Pci r c

Pi nc

∣∣∣∣
ω=ωm

= T1(
1−p

Rα
)2 . (3.39)
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If the reflected field is minimized, the circulating power is maximized due to energy conserva-
tion. The value of the reflected field consists of the portion reflected at the incoupling mirror
before the cavity and the part transmitted through the same mirror leaving the cavity, leading to
a factor

p
T1/R1:

Er e f l =
√
R1Ei nc + i

√
T1

gr t (ω)√
R1

Eci r c . (3.40)

The portion of the reflected field is therefore:

Er e f l

Ei nc
= R1 − gr t (ω)√

R1
(
1− gr t (ω)

) . (3.41)

The process of minimizing the fraction in Eq. 3.41 is called impedance matching.

We now determine a condition for impedance matching in the case of a bow-tie cavity. A bow tie
cavity is made of four mirrors so N = 4, therefore the total reflectivity is:

R=R1R2R3R4 =:R1R234, (3.42)

where R2, R3, R4 are the reflectivity of the highly reflective mirrors while R1 is the reflectivity of
the first mirror. The reflectivity R1 must be chosen to maximize the circulating power.
The other losses summarized by α in Eq. 3.39 are ideally only the loss from second harmonic
conversion in the crystal. However, we must also take into account other losses such as the
reflection at the anti-reflective (AR) coating for crystals cut at a right angle. Additionally further
losses can occur through absorption in the crystal.
We discussed the possible losses in the cavity, and now consider the effect of second harmonic
conversion in the crystal. The circulating power P ′

ci r c after the crystal with non-linear coefficient
κN L then is:

P ′
ci r c = Pci r c −κN LP 2

ci r c
!=αPci r c . (3.43)

The resulting fraction of the circulating power from Eq. 3.39 consequently becomes:

Pci r c

Pi nc

∣∣∣∣
ω=ωq

= 1−R1(
1−√

R1R234 (1−κN LPci r c )
)2 . (3.44)

This equation cannot be solved analytically for the circulating power Pci r c . However, for the later
calculations, numerical solutions are used in Sec. 5.3. Assuming the reflection power of all other
mirrors R234 is set, it is possible to maximize the circulating power as a function of R1. This
impedance matching is fulfilled if the reflected power vanishes. From Eq. 3.41, this corresponds
to:

R1 − gr t (ω)
!= 0 ⇒R1 =R234 ·α=R234 (1−κN LPci r c ) . (3.45)

Making use of Eq. 3.44, the formula for R1 becomes:

R1 =R234

1−κN L
1−R1(

1−√
R1R234 (1−κN LPci r c )

)2 Pi nc


=R234

1−κN L
1−R1(

1−
√
R1R234α

)2 Pi nc

 .

(3.46)

Solving this equation for R1 leads to the impedance matching condition:

R1 = 1

2

(
1+R234 −

√
1−2R234 +R2

234 +4R234κN LPi nc

)
. (3.47)
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This condition gives the reflection power of the incoupling mirror for a maximized circulating
power. For the design of the cavities, we know the values for κN L , R234 and Pci r c and can simply
calculate the optimum R1.
In this section we were able to formulate a stability condition for optical resonators using the
matrix formulation of ray optics. Extending our discussion to Gaussian beams led us to a self-
consistency condition for a Gaussian beam inside a resonator. Applying these conditions to the
hemispherical and bow-tie cavity allowed us to describe the incoupling of the infrared laser into
the ULE cavity and determine formulas for geometric parameters important to the design of the
doubling cavities. Finally, we defined characteristic values for resonators in general and derived
an impedance matching condition in the particular case of the bow-tie cavity.
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4 Locking Methods

For most purposes commercial lasers require further frequency stabilization. This also applies to
the infrared laser used in this work. In our case, frequency stabilized UV light is achieved by first
applying stabilization to the source, the infrared laser. Additionally, the doubling cavities need
to be stabilized in length, to enable the incoupling of light (see Sec. 3.4). Both these endeavors
require stabilizing methods, which are explained in this Section. The underlying principle is
to use the periodically occurring cavity resonances, for which the light field builds up in the
resonator. For the frequency stabilization of the infrared laser we use the ULE cavity and we
achieve length stabilization in the doubling cavity itself. These cavity resonances are Lorentzian
peaks in the transmission signal as described in Sec. 3.4. Frequency and length stabilization can
be achieved by building a feedback system which corrects for any deviation from the peak. The
two locking methods relevant for this thesis are the Pound-Drever-Hall (PDH) and the Haensch-
Couillaud (HC) locking methods. We use the first method for the frequency stabilization of the
infrared laser and the length stabilization of the first doubling cavity. We use the second method
for the length stabilization of the second doubling cavity.

4.1 Pound-Drever-Hall Lock

Figure 4.1: Schematic drawing of the necessary components for a Pound-Drever Hall lock

As we saw in Sec. 3.1, the light field only builds up if half the wavelength of the laser fits an integer
number of times into the cavity length, or in other words the frequency is an integer number of
the cavity’s free spectral range ∆νF . The goal of locking techniques is then to keep the frequency
of the laser close to these fixed frequencies of the cavity. In the case of a length stabilization, the
cavity length is adjusted to stay on resonance instead of the frequency assumed fixed.

The PDH locking method uses the reflection signal of the light coming back from and out of
the cavity. Close to resonance the reflected signal is almost zero. This method stabilizes the
frequency or length by keeping the reflection signal at zero.

In the following we derive the formula for the error signal of the PDH locking method. The corre-
sponding optical and electronic setup for this method is shown in Fig. 4.1. If the signal deviates
from the minimum reflection signal, it is still unknown whether the frequency or length is too
high or too low. At this stage we do not not know in which direction to correct for the deviation.
However, if the signal is modulated, for example sinusoidally, the sign of the frequency derivative,
is negative on the falling and positive on the rising edge. Therefore, the signal sent into the cavity
is modulated with a frequency by using an electro-optical modulator (EOM) or by modulation of
the laser current. In both cases the modulated light is of the form [48]:

Ei nc = E0e i(ωt+βsin(Ωt )), (4.1)
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where ω is the frequency of the light, E0 its field amplitude, β the modulation strength andΩ the
modulation frequency. Expanding this field in terms of Bessel functions for small β leads to:

Ei nc ≈ E0
(

J0
(
β
)+2i J1

(
β
)

sin(Ωt )
)

e iωt

= E0

(
J0

(
β
)

e iωt + J1
(
β
)

e i (ω+Ω)t − J1
(
β
)

e i (ω−Ω)t
)

,
(4.2)

where Ji are the Bessel functions of order i . This approximation for a small modulation strength
β shows that the incoming field is made up of three contributions with frequencies ω and ω±
Ω and weighed by the Bessel functions. The power of the initial beam P0 = |E0|2 is therefore
composed of the carrier and two sideband powers P0 = Pc +2Ps , with Pc = J 2

0

(
β
)

P0 the carrier
power and Ps = J 2

1

(
β
)

P0 the sideband power. With these expressions it is possible to calculate
the reflected field:

Er e f = E0

(
F (ω) J0

(
β
)

e iωt +F (ω+Ω) J1
(
β
)

e i(ω+β)t −F (ω−Ω) J1
(
β
)

e i(ω−β)t
)

, (4.3)

where F (ω) is a function which takes into the account the accumulated phaseφduring a roundtrip
in the cavity and the finite reflectivity of the mirrors r in an otherwise loss-free resonator. It is of
the form:

F (ω) = Er e f l

Ei nc
= r

(
e iφ−1

)
1− r 2e iφ

=
r
(
e

i ω
∆νF −1

)
1− r 2e

i ω
∆νF

, (4.4)

where the second part of the equation is written for the case of a varying frequency ω, with ∆νF

the free spectral range of the two mirror cavity. The quantity measured in experiments is the
reflected power:

Pr e f =Pc |F (ω)|2 +Ps
(|F (ω+Ω)|2 +|F (ω−Ω)|2)

+2
√

Pc Psℜ
[
F (ω)F∗ (ω+Ω)−F∗ (ω)F (ω−Ω)

]
cos(Ωt )

+2
√

Pc Psℑ
[
F (ω)F∗ (ω+Ω)−F∗ (ω)F (ω−Ω)

]
sin(Ωt )+ (2Ω terms).

(4.5)

It carries the relevant phase information of the carrier through the terms oscillating with Ω. In
the limit of a high modulation frequency and close to a resonance F (ω±Ω) ≈ −1. We can then
write the coefficient in front of the oscillating terms in Eq. 4.5 as:

F (ω)F∗ (ω+Ω)−F∗ (ω)F (ω−Ω) ≈−2iℑ [F (ω)] . (4.6)

This expression is purely imaginary. Therefore the only term oscillating with Ω in Eq. 4.5 is the
sine function. The process of extracting the coefficient in front of the sine function is called
demodulation. It is achieved by multiplying the electric signal from the photodiode with another
sine function. This function is generated by the same oscillator as the one used for the EOM and
has a frequencyΩ′. The product of these two sine functions of frequenciesΩ andΩ′ can also be
written as:

sin(Ωt )sin
(
Ω′t

)= 1

2

[
cos

((
Ω−Ω′) t

)−cos
((
Ω+Ω′) t

)]
. (4.7)

By choosing the second frequency Ω′ to be the same as Ω, the modulation frequency, the first
term in Eq. 4.7 becomes a constant DC-term. However, if we choose to multiply with a cosine
term, both contributions become sine functions, and by setting Ω and Ω′ equal, the part which
previously became a DC term is zero. However, changing a cosine function to a sine, is only
a matter of introducing a phase shift of 90°. Therefore, it is necessary to be able to adjust the
phase of the signal with which the photodiode signal is multiplied or to introduce a phase shifter
in the setup. All in all, we multiply the reflected signal with a sine function, send it through a
subsequent low-pass filter, and extract an error signal ε of the form:

ε= 2
√

PsPcℑ
[
F (ω)F∗ (ω+Ω)−F∗ (ω)F (ω−Ω)

]
. (4.8)
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An example of such an error signal can be found in Sec. 6.2 and 7.3. Close to resonance, we can
use the approximation from Eq. 4.6 and obtain the following equation for F (ω):

F (ω) ≈ i
r

1− r 2φ≈ i
F
π
δφ. (4.9)

The last approximation is made under the assumption of a high finesse F . If the accumulated
phase stems from changes in the cavity length l , and is close to resonance, it is of the form φ =
2πN + 4πδl/λ. However, if the changes come from the frequency modulation the phase is φ =
2πN +δω/∆νF = 2πN +4πlδν/c, with N ∈N. The resulting error signals for both cases are:

ε|near resonance ≈−8
√

Pc Ps
F
λ
δl (4.10)

ε|near resonance ≈−8
√

Pc Ps
F l

c
δν. (4.11)

It becomes clear that close to resonance, the error signal is linear in the scanned parameter,
whether that is the cavity length or the frequency. This linearity is later used in Sec. 6.3 to assign
a linewidth to the frequency stabilized infrared laser.

With Eq. 4.8 we now have an error signal, which is zero when the frequency or length is on res-
onance. It also changes sign when the frequency or length go over the resonance, making it
possible to distinguish between a too high and too low values.

4.2 Haensch-Couillaud Lock

Figure 4.2: Schematic drawing of the necessary components for a Haensch-Couillaud lock

For the second doubling stage the sidebands typical for the PDH method become problematic
for our application. As these sidebands are only partly filtered by the cavity, they could become
resonant with a Rydberg transition and lead to a resonant Rydberg excitation. The Haensch-
Couillaud locking method first proposed by Haensch and Couillaud in 1980 [49] does not require
sidebands. However, it is necessary to have a polarizing element in the cavity, which is intrinsi-
cally given by a Brewster-cut crystal. In order to have an angle between the transmission axis of
the crystal and the polarization of the light, we slightly tilt the polarization axis of the light away
from its ideal position.

As demonstrated for the PDH method, we derive a formula and protocol to use this locking tech-
nique. The necessary optical components and electronics are shown in Fig. 4.2. We start by
decomposing the linearly polarized light which is coupled into the cavity into a parallel and per-
pendicular part with respect to the polarizer’s transmission axis:

E i nc
∥ = Ei nc cos(θ)

E i nc
⊥ = Ei nc sin(θ) ,

(4.12)
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where θ is the angle between the transmission axis of the polarizer and the polarization axis of
the light, and Ei nc the field amplitude of the incoming light. The amplitude of the reflected light
analogously to the calculation in Sec. 3.4 can be written as:

E r e f l
∥ = E i nc

∥

(√
R1 − T1√

R1

Re iφ

1−Re iφ

)

= E i nc
∥

√
R1 − T1R√

R1

cos
(
φ

)−R+ i sin
(
φ

)
(1−R)2 +4Rsin2

(
φ
2

)
 ,

(4.13)

where R1 and T1 are the reflection and transmission amplitude of the first mirror and R cor-
responds to the amplitude ratio after a whole roundtrip. The coefficient R takes into account
losses from the mirrors as well as from the polarizer resulting in finesse of the form F = π

p
R/1−R.

The phase picked up during a roundtrip is accounted for by φ.
The perpendicular component is only affected by the first mirror:

E r e f l
⊥ = E i nc

⊥ R1. (4.14)

From the parallel field component in Eq. 4.13 and the perpendicular one in Eq. 4.14, it becomes
apparent that on resonanceφ= 2πn with n ∈N both amplitudes are real and in phase. Therefore
the field remains linearly polarized. However, the polarization is rotated from its initial posi-
tion. On the other hand, for frequencies away from resonance the parallel component acquires a
phase shift with respect to the perpendicular component. The result is an elliptical polarization
which is the measured variable of this locking technique.

In the experimental setup, this phase shift is measured by sending the light through a λ/4 wave-
plate and subsequently a polarizing beamsplitter (PBS). The two outputs from the PBS are mon-
itored by two photodiodes. The elliptically polarized light can be regarded the superposition of
two counterpropagating linear components. The λ/4 waveplate then turns these components
into linearly polarized waves which are separated by the subsequent PBS. If the light were lin-
early polarized, as is the case on resonance, both intensity outputs would be equal. In the case of
an elliptical polarization, we assume the fast axis of the λ/4 waveplate to be along the polarization
axis of the intra-cavity polarizer. With Jones calculus it is possible to write the field amplitudes
after the waveplate and PBS as:

Ea,b = 1

2

(
1 ±1
±1 1

)(
1 0
0 i

)(
E r e f l
∥

E r e f l
⊥

)
. (4.15)

The resulting intensities measured by the photodiodes are:

Ia,b = 1

2
cε

∣∣Ea,b
∣∣2 = 1

2
cε

∣∣∣∣1

2

(
E r e f l
∥ ±E r e f l

⊥
)∣∣∣∣ . (4.16)

The error signal is then obtained by subtraction of both intensities:

Ia − Ib = I i nc 2cos(θ)sin(θ)
T1Rsin

(
φ

)
(1−R)2 4Rsin2

(
φ
2

) (4.17)

with I i nc = 1/2cε
∣∣E i nc

∣∣2
the intensity of the incoming beam. This error signal exhibits a steep

slope on resonance and more slowly falling slopes outside of the resonance, yielding a wide cap-
turing range.

In this section, we introduced the locking methods we later use for the frequency stabilization of
the infrared laser and length stabilization of the two doubling cavities.



5 Results of the Parameter Optimization for the Doubling Cavities

In this Chapter we calculate the geometry and parameters necessary for building the doubling
cavities. The basis for these calculations are the Boyd-Kleinman integral from Sec. 2.3, the sta-
bility and self-consistency conditions from Sec. 3.1 and 3.3 and the impedance matching from
Sec. 3.4. We set the conditions in the cavities to yield maximum output power of the second
harmonic light field, with the ultimate goal to have high power UV light.

This is required because we want to increase detuning to have longer lifetimes of the Rydberg
dressed state. As higher detuning also leads to weaker interaction strength of the characteristic
soft-core potential between Rydberg-dressed states, we need to compensate for this decrease.
This can be achieved through a high Rabi frequency and therefore the optical power of the ultra-
violet laser beam must be maximized.

We start by optimizing the Boyd-Kleinman factor for a maximum single-pass conversion. We
then need to determine the geometric parameters of our cavities such that they fulfill the sta-
bility and self-consistency conditions. Finally, to increase the conversion further, we choose the
mirrors of the cavity such that the impedance matching condition is fulfilled.

5.1 Boyd-Kleinman Integral

Optimizing the Boyd-Kleinman parameter is important to obtain high output powers of the sec-
ond harmonic light. This is evident form the formula for the second harmonic power Pout from
Sec. 2.3:

Pout (σ,B ,ξ) = 16π2

ε0cn1n2λ
3
1

·d 2
e f f ·e−αl ·h

(
σ,B ,κ,ξ,µ

) ·P 2
i n = κN L ·P 2

i n , (5.1)

with n1, n2 the refractive indices of air and the crystal respectively, deff the effective non-linearity
of the crystal, α = (α1+α2)/2 the mean of the damping coefficients of the fundamental and sec-
ond harmonic, l the crystal length and h

(
σ,B ,κξ,µ

)
the Boyd-Kleinman factor. The variable

µ = (l−2 f )/l describes the distance of the focus point from the middle of the crystal, which for
symmetry reasons is set to zero. Also, κ which takes into account the absorption of the second
harmonic beam in the medium is neglected, as the crystals are chosen to be transparent around
this wavelength. The B-parameter accounts for the walkoff effect through B = ρ

p
l k1/2 where ρ is

the walkoff angle and is characteristic to a material and wavelength. Our goal is now to choose
our tunable parameters such that Eq. 5.1 is optimized for high output power. These parame-
ters are the phase mismatch parameter σ = b∆k/2 and the factor for focal strength ξ = l/2z0. The
Boyd-Kleinman integral then simplifies to [50]:

h
(
σ,B ,κ= 0,ξ,µ= 0

)= 1

4ξ

ξ∫
−ξ

ξ∫
−ξ

dτdτ′
e−iσ(τ−τ′)− B2(τ−τ′)2

ξ

(1+ iτ′) (1− iτ)
. (5.2)

For the optimization of the Boyd-Kleinman integral, we need material specific parameters and
must therefore determine our non-linear crystals.

We choose Lithium Triborate (LBO) for the first doubling stage. The main advantage of LBO
is its walkoff angle. It is smaller than usual values of other non-linear crystals by two orders
of magnitude. This is a consequence of the non-critical phase matching, for which the beam
propagation is along a crystal axis. This implies that the resulting beam profile is Gaussian (see
Sec. 2.3) and the entire output power can be used. This is important for an efficient incoupling



34

of the light into the second doubling cavity. All LBO crystals are bought from Altechna and have
the dimensions 3×3×20mm3.

For the second doubling stage, the wavelength limits the crystal choice to either Beta Barium
Borate (BBO) or Cesium Lithium Borate (CLBO). An advantage to CLBO, is that its walkoff angle
is half as large as the one of BBO. Also, CLBO presents a higher damage threshold. The latter
is advantageous as we will be working with high intensities. We therefore decided to use CLBO
for the second cavity. However, CLBO is a hygroscopic material, which means that any exposure
to air leads to absorption of water and to damages of the crystal structure. The crystal must
therefore be continuously heated to about 405K (corresponding to approximately 130◦C) and
kept under vacuum [51]. Due to the extremely difficult handling of the CLBO crystals we also
conducted all the calculations and designs for BBO as a backup crystal. The results are shown in
Appendix A. The length of the CLBO and BBO crystals is kept smaller than for LBO to minimize
the effect of walkoff. The overall dimensions of the CLBO and BBO crystals bought from Castech
are 3×3×10mm3.

The necessary crystal parameters for the optimization of the Boyd-Kleinman integral are taken
from the SNLO database and are summarized in Tab. 3 [52].

Parameter
Lithium Triborate

(LBO)
Cesium Lithium Borate

(CLBO)
Beta Barium Borate

(BBO)

Wavelengths
λ1 → λ2 [nm]

1150 → 575 575 → 287.5 575 → 287.5

Refractive indices
nω = n2ω

1.603 1.495 1.67

Walk-off angle
ρ [mrad]

3.9×10−1 3.644×101 8.36×101

Effective non-linearity
de f f

[
pm/V

] 8.41×10−1 7.10×10−1 1.84

Crystal length
l [mm]

20 10 10

Temperature
T [K]

334 405 355

Angle with optical axis
θ [°]

90 54.3 42.9

Angle with second optical axis
φ [°]

0 uniaxial crystal uniaxial crystal

Table 3: Crystal parameters for the Boyd-Kleinman integral optimization from the SNLO program[52]

For the chosen crystals, we determine the maximum value for the Boyd-Kleinman integral, using
the material parameters from Tab. 3. We calculate the real part of Eq. 5.2 for σ ∈ [−3,3] and
ξ ∈ [0,5] and choose the σ and ξ with the highest h. In the cavity the parameter σ fixes the phase
mismatch ∆k through σ= b∆k/2 and ξ can be converted to the beam waist in the crystal wc with
ξ = λl/2πn2w 2

c . The values of the integral for the LBO and CLBO crystals in this parameter range
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are shown in Fig. 5.1a and 5.2a, respectively. The resulting values for a maximum h are:

hLBO = 1.06
ξLBO = 2.79
σLBO =−0.58

hCLBO = 0.0949
ξCLBO = 1.46
σCLBO =−0.75.

(5.3)
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Figure 5.1: Boyd-Kleinman factor h for the LBO crystal with material parameters from Tab. 3
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Figure 5.2: Boyd-Kleinman factor h for the CLBO crystal with material parameters from Tab. 3

It is apparent from Fig. 5.1a, that the value of h for LBO strongly depends on the phase mismatch
parameter σ, which is not the case for CLBO, see Fig. 5.1a and 5.2a. We plotted h as a function of
ξ for σ = 0 and for the maximum σ, and showed the results in Fig. 5.1b for LBO and in Fig. 5.2b
for CLBO. For CLBO, we can set σ to zero for simplicity, because the resulting value for h only
decreases by 2%, the two curves almost exactly overlay in Fig. 5.2b. For LBO, we cannot make
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this simplification without significantly decreasing the value of h, as apparent from Fig. 5.1b.
Therefore we choose σ=σLBO which can be experimentally adjusted by tuning the temperature
for a maximum output of the second harmonic power.

Another concern is the value ξ for highest h. Other sources [53], [54], [55], [56], [51] which have
used LBO or CLBO for continuous-wave second harmonic generation move away from the Boyd
Kleinman maximum and choose ξ smaller by a factor of two or three, which implies a larger
waist inside the crystal. The reason for this choice is to stay below the damage threshold of the
crystal and avoid thermal lensing from the high powers inside the crystal. For LBO and CLBO,
we reduce ξ by a factor of three which decreases the Boyd-Kleinman factor by 20 to 30%, see
Fig. 5.1b and 5.2b. However, this decrease is only a reduction of the single-pass efficiency. It is
therefore partly compensated by a higher circulating power. The final values for ξ, σ and the
corresponding Boyd-Kleinman parameter for LBO and CLBO are:

hLBO = 0.72
ξLBO = 0.93
σLBO =−0.58

hCLBO = 0.074
ξCLBO = 0.48
σCLBO = 0.

(5.4)

This new choice of ξ shifts the value of the crystal waist from w = 28.6µm to w = 49.6µm for LBO
and from w = 20.5µm to w = 35.5µm for CLBO.

We have determined the values for the beam waist by optimizing the single-pass output power.
This now enables us to use them in the following section for the geometry optimization of the
cavity.

5.2 Geometric Optimization

In the geometric optimization of the cavity we must account for the beam waist calculated in the
preceding Section. To obtain this waist in the crystal, the lenses for the incoupling into the cavity
must be chosen accordingly. However, to maintain and enhance the corresponding Gaussian
mode inside the cavity, the self-consistency and stability conditions from Sec. 3.1 and 3.3 must
be fulfilled.

The geometry of the cavity depends on how the crystal is cut. To reduce losses in the first dou-
bling cavity, the LBO crystal we choose for this cavity can either be cut at a right angle and have
an antireflective (AR) coating or be Brewster-cut. We favor the AR-coated LBO crystal for the
following two reasons.

First, for the AR-coated LBO crystal, the beam of the second harmonic light presents a round
profile. This is not the case for the Brewster-cut alternative, as the beam is projected onto a
surface at an oblique angle and is therefore elliptic.

Second, the output efficiency of the cavity with an AR-coated LBO crystal is higher. To under-
stand the reason for this higher efficiency we need to consider the losses generated by the crys-
tals. For the AR-coated LBO crystal, these are the losses of the fundamental and second har-
monic due to an imperfect antireflective coating. For the Brewster-cut LBO crystal, the second
harmonic beam experiences losses as its polarization is perpendicular to the one of the funda-
mental beam from type I phase matching. These relatively high losses of the second-harmonic
light are sufficient to lead to a lower efficiency than for the AR-coated LBO crystal.

However, there are conflicting reports on the sustainability of the AR-coating in the cavity be-
cause of the high circulating power. [50] reports on damages to the coating while [57] presents a
functioning conversion, both with similar wavelengths and input powers. Therefore, to be able
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to resort to the Brewster-cut crystal in case of damage to the coating, we optimize the geometry
for both possibilities. We omit the calculations for the Brewster-cut LBO crystal in the following,
but refer to Appendix A for more details.

For the second doubling cavity, there exists no AR coating which can withstand high circulating
powers of green light and the high output power of the UV light. Therefore, we choose for the
crystals in the second doubling cavity, the CLBO and BBO crystals, to be cut at a Brewster angle.
Also, the ξ-parameter from the Boyd-Kleinman integral optimization and therefore waist for both
crystals is almost identical and the Brewster angles only differ by 3°. Consequently, we can use
the CLBO optimized geometry also for BBO.

In the following we optimize the geometry of the first doubling cavity for an AR coated LBO crys-
tal and the second cavity for a Brewster-cut CLBO crystal. In a bow.tie cavity, we can optimize
the following parameters: the curvature R of two of its mirrors, the length of the short and long
arm ds , dl and the opening angle θ (see Fig. 3.21).

The mirror curvature is determined in retrospect: we start with a set of commonly used cur-
vatures and calculate the corresponding short and long arm ds , dl and opening angle as later
explained. We then check if these values can be translated to a cavity without any clipping of the
beam or excessively large configurations and choose the value with the smallest geometry. We
follow this procedure and obtain the following mirror curvatures for the first and second dou-
bling cavity:

RLBO = 75mm RCLBO = 50mm. (5.5)

With these radii of curvature, we can now calculate the length of the arms with the formula for
self-consistency in a stable bow-tie resonator from Sec. 3.3 (Eq. 3.28). The resulting values are:

ds,LBO = 75.8mm
dl ,LBO = 287.6mm

ds,CLBO = 57.0mm
dl ,CLBO = 141.3mm.

(5.6)

We must in the next step determine the opening angle θ. This angle introduces astigmatism
which leads to the distinction between a sagittal and tangential plane. This distinction affects
beam waists, curved mirrors and for CLBO additionally the Brewster-cut crystal. It is possible
to calculate the waist wc in the crystal and second waist w2 in the long arm for the tangential
and sagittal plane, as a function of the opening angle. For CLBO, there are two astimgatic optical
elements, namely the Brewster-cut crystal and curved mirrors. For the right opening angle, they
can compensate each other and lead to a round waist either in the crystal or in the second arm.
To facilitate the incoupling into the cavity, the angle is chosen such that the second waist is round
and the crystal waist is elliptical. For LBO, as there is no Brewster-cut interface, the angle is
simply chosen to be as small as possible, to minimize the ellipticity of the second waist, but still
large enough to make a reasonably sized cavity. The values for the second and crystal waist w2,
wc in the sagittal and tangential plane as a function of the opening angle θ are plotted in Fig. 5.3
for LBO and in Fig. 5.4 for CLBO. The resulting angles are:

θLBO = 7.5° θCLBO = 14.3°. (5.7)

In order to assess if the arm lengths from Eq. 5.6 are stable in both the sagittal and tangential
plane, we determine the stability regions as a function of ds and dl for both planes separately.
The resulting stability regions are shown in blue in Fig. 5.5 for LBO and Fig. 5.6 for CLBO. The
offset between the self-consistency curve and stability regions is a result of the astigmatism taken
into account for the calculation of the stability regions. Our chosen values for the arm lengths lie
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Figure 5.3: Waist sizes as a function of the opening angle θ for the geometric considerations with the
AR-coated LBO crystal
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in the stable region for both the sagittal and tangential plane as indicated by blue markers in the
Figures.

The self-consistency curves in the sagittal and tangential plane for LBO and CLBO have a slight
offset relative to the stability regions. The curves are not entirely within the blue regions. The
reason is the astigmatism taken into account for the calculation of the stability regions.

Tab. 4 summarizes the results which now determine the geometry of our cavities (see Sec. 7.1 for
a drawing of the resulting cavity).

20 40 60 80 100
Short cavity arm ds (mm)

100

0

100

200

300

Lo
ng

 c
av

ity
 a

rm
 d

l (
m

m
)

(a) Stability diagram in the sagittal plane as a
function of the short and long arm ds , dl

20 40 60 80 100
Short cavity arm ds (mm)

100

0

100

200

300

Lo
ng

 c
av

ity
 a

rm
 d

l (
m

m
)

(b) Stability diagram in the tangential plane as
a function of the short and long arm ds , dl

Figure 5.5: Differing stability diagrams in the tangential and sagittal plane for the AR-coated LBO crystal:
the blue regions indicate a stable resonator, the blue curve is a result of the self-consistency condition
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Geometric parameter AR-coated LBO) Brewster-cut CLBO

Radius of curvature R 75mm 50mm
Short arm length ds 75.8mm 57.0mm
Long arm length dl 287.6mm 141.3mm

Opening angle θ 7.5° 14.3°
Table 4: Geometric parameters necessary for the construction of the cavity with the AR-coated LBO

crystal and Brewster-cut CLBO crystal

5.3 Impedance Matching

Another component of the cavity which requires optimization is the reflectivity of the mirrors,
as this affects the output power. Indeed, for maximum output power, the first mirror used for in-
coupling of the fundamental beam must fulfill the impedance matching condition from Sec. 3.4.
This means that the reflected light at the incoupling mirror and the light exiting the cavity through
that same mirror must interfere destructively. This is fulfilled for a specific reflectivity of the first
mirror. The remaining three mirrors must be highly reflective for the incoming beam to keep
roundtrip losses at the mirrors as small as possible, ideally much smaller than the losses gen-
erated by second harmonic conversion. Yet another requirement is that the fourth mirror must
be AR coated for the second harmonic wavelength and therefore enable the outcoupling of the
generated beam.

In the following we choose a reflectivity for the first mirror which ensures a partial impedance
matching for a range of input powers. For LBO, we need a range of input powers because the
maximal output power of the Raman Fiber Amplifier varies with wavelength. For CLBO, the sec-
ond cavity’s input is the output power of the first cavity. These values are only calculated but not
confirmed experimentally, justifying the need for a range of input powers.

To increase flexibility, we want to be able to switch between different crystals and geometries in
the two cavities. As the choice of crystals affects the reflectivity of our mirrors, we again opti-
mize them for all options. The impedance matching calculation for the AR-coated LBO and BBO
crystals can be found in Appendix A.

We use Eq. 3.44 to calculate the circulating power for varying input powers as a function of the
first mirror’s reflection coefficient. For this calculation the reflection of all the remaining mirrors
must be known. This value is limited by what companies are able to produce for a reasonable
price. The highly reflective mirrors used in this thesis were bought from Layertec and have a
reflectivity of:

R234,LBO = 0.99993 R234,CLBO = 0.99953. (5.8)

Other losses are reflections of the fundamental and second harmonic beam on the AR-coating
of the LBO crystal. They are determined by the company which manufactured the crystal, in our
case Altechna and are 0.25% for the fundamental and 0.5% for the second harmonic. For the
Brewster-cut crystal, we have to take into account the losses from the refraction of the second
harmonic light upon exiting the crystal, they are 14.6%.

The circulating power also allows us to determine the output power Pout and conversion effi-
ciency η:

Pout = κN L ·Pci r c

η= Pi n

Pout
,

(5.9)
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where Pi n is the input power of the fundamental beam. All three quantities are shown for LBO in
Fig. 5.7 for input powers between 4 and 10W. We only show the efficiency for CLBO in Fig. 5.8,
for input powers between 1 and 7W. The markers denote the maximum efficiency which can be
achieved for a given input power.
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Figure 5.7: Circulating power, output power and efficiency for varying values of the reflectivity R1 of the
first mirror for the AR-coated LBO crystal, realistic input powers lie between 8 and 10W
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Figure 5.8: Efficiency for varying values of the input reflectivity R1 of the first mirror for the CLBO crystal,
realistic input powers lie between 3 and 5W

As can be seen from the Figures, the maximum efficiency decreases with increasing input power.
Indeed, for high input powers the losses increase, due to increased second harmonic conversion.
Hence the circulating power in relation to the input power is lower. Therefore the light leaking
from the cavity through the first mirror has an amplitude which is lower relative to the incoming
power. However, the light from the cavity and the one reflected at the first mirror must have
equal amplitude to interfere destructively and this additional loss is compensated by lowering
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the reflection of the first mirror. This means that the amplitude of the reflected light is lowered
and the one of the leaked light increased.

Another important aspect of these curves, is the slowly increasing slope for reflectivities towards
the maximum and a faster decrease to zero for reflectivities to the right of the maximum. In
order not to be on the steep slope, we generally choose the reflection value to be smaller than
the maximum value. The resulting values for the reflectivity are:

R1,LBO = 0.96±0.0075 R1,CLBO = 0.985±0.005 (5.10)

The uncertainty of these values is given by the manufacturing companies and is depicted as grey
areas in Fig. 5.7 and 5.8.

In this Chapter, we started with the Boyd-Kleinman integral to find an optimal waist inside the
non-linear crystals of the doubling cavities. The geometric parameters of these cavities were
then chosen to allow for this waist inside the crystal and fulfill the self-consistency and stability
conditions. Finally, optimizing for a maximum circulating power through impedance matching
led to a value for the reflectivity of the first mirror.



6 Infrared Laser System

In our setup, atoms are dressed with their Rydberg states using UV laser light. For Potassium the
wavelength of the light must be tunable between 285.5 and 288.5nm to access states from N = 20
to ionization. Therefore, the initial infrared laser source must be adjustable between 1142 and
1154nm. Furthermore, the infrared light has to be frequency stabilized and power enhanced to
reach a significant output power in the UV. We start by describing the optical setup built for the
infrared laser system and the electronics necessary for the frequency stabilization of the laser.
We then characterize the Pound-Drever-Hall lock onto a cavity made of Ultra Low Expansion
(ULE) glass and conclude with the power enhancement through a Raman Fiber Amplifier (RFA).

6.1 Optical Setup and Electronics

We build an optical setup for the infrared laser system to serve the following functions: frequency
stabilization, power enhancement and monitoring of the wavelength. A graphical overview of
this setup and its most important components is shown in Fig. 6.1.

Figure 6.1: Optical setup for the infrared laser system, the detailed electronic setup for the PDH
frequency stabilization of the laser is shown in Fig. 6.2

The infrared laser is a tunable external cavity diode laser from Sacher. It is built in a Littrow con-
figuration: the wavelength-selective element in the laser cavity is a grating. The angle of this
grating determines the output wavelength of the laser. It can be adjusted with a screw affixed
to the laser housing. The accessible wavelength ranges from 1100.6nm to 1188.3nm, which in-
cludes the relevant wavelengths between 1142 and 1154nm. The feedback loop for the frequency
stabilization acts on the internal piezo of the laser which tunes the cavity length. A FET tran-
sistor allows for additional fast feedback by modulation of the current. It also has an internal
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Faraday isolator to avoid any back-reflection into the laser, which could create an additional ex-
ternal cavity and lead to unstable operation of the laser. The output power for different operating
currents at a wavelength of 1151nm is shown in Fig. 6.5a. Throughout this thesis the laser is op-
erated at 567.9mA and kept temperature stabilized at 22.75◦C. The corresponding output power
is 65.2mW.

We now describe how the beam is divided and allocated to different functions as shown in Fig. 6.1.
First, we separate a small portion of the beam with a beam sampler and couple a few µW into a
multimode fiber attached to a wavemeter from Toptica, which monitors the wavelength of the
light. We send the remaining beam through a λ/2-waveplate and a subsequent polarizing beam-
splitter (PBS) to regulate the power of the two outputs of the PBS. After the beamsplitter, the part
of the beam with most power is sent to the amplification stage in the Raman Fiber Amplifier
(RFA). The RFA only amplifies light with a certain orientation of polarization. Therefore we need
another λ/2-waveplate before the incoupling into the RFA to adjust the light’s polarization. The
other output of the PBS is sent into a fiber-coupled electro-optical modulator (EOM). This EOM
has a high extinction ratio. Therefore, as for the RFA, we need one more λ/2-waveplate to adjust
the polarization of the light.

We now address the setup needed for the frequency stabilization of the laser. The fiber-coupled
EOM generates the sidebands for the PDH error signal as described in Sec. 4.1. After the EOM, the
beam with about 100µW is sent through a λ/4-waveplate and coupled into an Ultra-Low Expan-
sion cavity, mode matched with two lenses. When the light frequency is off-resonance with the
cavity, the beam is reflected back out of the cavity and sent trough the λ/4-waveplate again. The
polarization is then perpendicular to the one coming out of the EOM and therefore deflected by
the polarizing beam splitter. We then measure this reflection signal with a photodiode and use it
for the generation of the PDH error signal. We also measure the transmission signal after the ULE
cavity using a photodiode. It becomes non-zero on resonance. We scan the laser frequency to
find the transmission peaks and reflection dips by applying a periodic ramp to its internal piezo
which varies the laser cavity length and therefore its frequency.

We need to be able to choose arbitrary detuning for the Rydberg dressing, which means that we
must be able to tune the laser frequency arbitrarily. However, this is problematic because the
cavity’s peaks onto which the laser frequency is locked are fixed by the ULE cavity’s length. To
circumvent locking onto the cavity’s peaks, we generate additional peaks. Additionally to the
frequency of the sidebands, we send another stable and tunable frequency signal to the EOM.
This frequency can cover the whole spectral range of the ULE cavity. The laser frequency is then
locked onto one of these new peaks which can be shifted in frequency and also have the neces-
sary side peaks for the locking. The transmission signal with the resulting cavity peaks is shown
in Fig. 6.4a. In this Figure the frequency for the sidebands is chosen to be νPD H = 21.7MHz and
the one for the adjustable peaks νl ar g e = 340MHz. The smaller peaks are generated by the Rigol
function generator. The frequencies for the adjustable peaks are generated by a direct digital
synthesis device (DDS) which can produce frequencies up to 400MHz. The ULE cavity’s length
is l = 10cm and its free spectral range νF SR = c/2l = 1.5GHz. Therefore we need to double the
DDS frequency to cover the entire range between cavity peaks. Both signals, from the function
generator and the DDS are added and sent to the fiber-EOM.

The electronics necessary for the generation of new peaks and the sidebands are shown in Fig. 6.2.
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Figure 6.2: Electronic setup for the generation of peaks between the resonance peaks of the ULE cavity,
all electronic components are from Mini-Circuits except for the function generators

6.2 Frequency Stabilization to an ULE Cavity

For the frequency stabilization of the infrared laser, we use a cavity made of Ultra Low Expansion
glass from Advanced Thin Films. This synthetic material has a zero crossing of the expansion
coefficient. The cavity’s length is therefore very stable. It is a commonly used very precise ref-
erence, onto which the laser can be locked [58]. To reduce length fluctuations due to thermal
drifts, the cavity’s temperature is stabilized with Peltier elements and placed into two consec-
utive copper-shielding housings. The optical path length can also fluctuate due to changes of
the refractive index of air, hence the cavity is placed under vacuum. A drawing of this system is
shown in Fig. 6.3.

AR coated 
windows

ULE Cavity 
Highly Reflective 

Mirrors

Outer copper 
shielding

Inner copper 
shielding

Figure 6.3: Cut through the ULE system placed under vacuum and two consecutive copper shieldings to
avoid cavity length changes due to fluctuations of the refractive index of air or thermal drifts
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For this ULE cavity, we need to find the cavity peak and generated peak at νl ar g e = 340MHz.
We choose a large scan range of the piezo within the laser, thus also increasing the scanned fre-
quency range. To convert the x-axis from time to frequency, we use the small sidebands around
the highest peak as reference. They are 21.7MHz away from the main peak. Also we assume the
axis to have a linear behavior in frequency and can therefore rescale it with the reference given
by the distance to the sidebands. The transmission signal showing a cavity peak and a peak gen-
erated with the DDS frequency is displayed in Fig. 6.4a. To lock the laser, the scan range of the
piezo is reduced until only the main cavity peak and its sidebands are visible on the transmission
signal as seen in Fig. 6.4b. The corresponding PDH signal is shown in Fig. 6.4c. The feedback to
the laser is converted into a current modulation for the fast deviations from resonance, and the
piezo for slow drifts over time. We optimize the PID values of the feedback loop and show the
resulting locked signal in Fig. 6.4e.

For the characterization of the laser’s linewidth the frequency is locked onto one of the main
peaks. As calculated in Sec. 4.1, close to resonance, the error signal is linear in the frequency.
Therefore, a linear function is fitted to the measured error signal, yielding a slope of a =−7.4×10−7 mV/Hz.
Assuming the data points of the locked signal in Fig. 6.4e are in the linear range of the error sig-
nal, the unit of the y-axis can be converted to Hertz by diving the voltage value of each data point
by the slope a. Every point xi deviating from zero then corresponds to a deviation of the laser
frequency with respect to the cavity peak and therefore the frequency onto which the laser is
locked. To extract a linewidth from these deviations, we calculate the root mean square:

RMS =
√√√√ 1

N

N∑
i=1

(xi − x̄)2, (6.1)

where N corresponds to the number of data points taken over 100ms and x̄ corresponds to the
mean of the xi . The resulting value is of approximately RMS = 80kHz and shown as the grey
delimitation in Fig. 6.4e. The linewidth is defined as the Full Width at Half Maximum (FWHM)
and is therefore twice the value of the RMS:

δν= 160kHz. (6.2)

With the optical electronic setup described in the previous Section we were able to frequency
stabilize the infrared laser to a ULE cavity and obtained a linewidth of 160kHz over 100ms.



6. INFRARED LASER SYSTEM 47

300 200 100 0
Frequency (MHz)

0

10

20

30

40

50
Tr

an
sm

is
si

on
 (m

V)

(a) Transmission signal showing the main cav-
ity peak and the side peak as well as a TEM02

mode from imperfect incoupling

20 10 0 10 20
Frequency (MHz)

0

20

40

60

80

100

120

Tr
an

sm
is

si
on

 (m
V)

(b) Close-up of the main cavity peak with the
generated side peaks at 21.7MHz
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ear fit close to resonance with a slope a =
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Figure 6.4: Measurements for the characterization of the frequency stabilizing lock of the infrared laser



48

6.3 Power Enhancement with a Raman Fiber Amplfier

Because we need high output powers in the UV, the amplification of the infrared laser system
is important. In this part we characterize the power to current behavior of the laser itself and
of the amplifying device, a Raman Fiber Amplifier from MPB Communications Inc.. The output
power as a function of current at a wavelength of 1151nm is shown in Fig. 6.5a for the laser and
in Fig. 6.5b for the Raman Fiber Amplifier with a seed of 17mW.
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(a) Output power of the infrared laser as a func-
tion of current

1 2 3 4
Current (A)

0

2

4

6

8

O
ut

pu
t p

ow
er

 (W
)

(b) Output power of Raman Fiber Amplifier as a
function of current with a seed of 17mW

Figure 6.5: Characterization of the output power for the infrared laser and Raman Fiber Amplifier at a
wavelength of 1151nm

In this Section we have discussed the main elements of our infrared laser system. After having
motivated the need to lock onto a tunable peak, we discuss the details of our locking procedure.
We have also characterized the ensuing frequency stabilization of the laser with the PDH locking
method. Finally, we have characterized the power behavior of both the laser and Raman Fiber
Amplifier responsible for the power amplification. We successfully obtain high powers of up to
10W.



7 First Doubling Cavity

The first second-harmonic-generation cavity is responsible for converting the infrared light tun-
able between 1142 and 1154nm to green light of corresponding wavelengths between 571 and
577nm. Its geometry and values for mirror reflectivity were optimized in Section 5. We now
present the design of this cavity based on our theoretical calculations. We then characterize the
performance of the cavity in operation, and determine its finesse by measuring the transmis-
sion signal. We show how the cavity length is locked with the Pound-Drever-Hall method and
compare the resulting power of green light to calculations for the theoretically calculated cav-
ity from Sec. 5. All measurements in this Section are obtained for a fundamental wavelength of
1143.8nm, corresponding to N ∼ 60.

7.1 Optical Setup and Cavity Design

We start by describing the optical setup surrounding the first doubling cavity which is depicted
in Fig. 7.1. This setup is necessary for the coupling into the cavity and the Pound-Drever-Hall
lock of the cavity length. All optical components and the doubling cavity itself are placed on a
water-cooled breadboard to avoid any material expansion which could lead to misalignment.

Figure 7.1: Schematic drawing of the optical setup surrounding the first doubling cavity

We start with the high-power output from the Raman Fiber Amplifier from the previous Section.
We need to collimate the beam after the RFA. However, the optical fiber which provides the out-
put light from the RFA has a Numerical Aperture (NA) smaller by a factor of 10 than commonly
used optical fibers. It is therefore not possible to use the usual fiber outcouplers. Instead, we
place a lens with focal length f = 30mm at a distance f from the fiber output. To prevent dust
from settling on the exposed fiber head, we cover the beam path between output and lense with
tape partly made of anodized aluminum. Also, to keep any back-reflection of the cavity from
traveling back into the RFA, we place a high power isolator from Toptica (SSR1150) in the beam
path before the cavity. This isolator generates losses which are measured to be 10%, which fits
with the specifications from the manufacturer.

For the incoupling into the cavity, we use two lenses to obtain the second waist from Sec. 5.2,
at the right position in the cavity. Also, the light must have the correct polarization with respect
to the crystal inside the cavity. Thus we place an additional λ/2-waveplate in the beam before
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coupling into the cavity.

The reflected light from the cavity has an angle with respect to the incoming beam, due to the
non-zero angle of incidence. It is therefore possible to measure the reflection signal from the
cavity directly. With this signal, we can assess the efficiency of the incoupling. Whilst scanning
the cavity length, we examine by how much the reflection drops when the light is on resonance
with a cavity peak. The reflection signal is also used to generate the Pound-Drever-Hall error
signal. For the measurements in the following Sections the incoupling is measured to be approx-
imately 65%. The reasons for this value could be misalignment of mirrors or a wrong position of
the lenses which would lead to a wrong value or location of the second waist.

We also measure the transmitted light, i.e. the green light exiting the cavity. Using the height of
the transmission peak, we optimize the incoupling, the orientation of the cavity mirrors and the
position of the crystal for a maximum output power.

In the following we describe the design of the cavity and its components. The cavity is made of
an aluminum box which encloses a removable breadboard. Onto this breadboard, we place the
cavity mirrors and the translational stage with the crystal holder. To showcase the cavity design,
Fig. 7.2 presents the drawings for the second doubling stage. It only differs from the first doubling
cavity by the specific values of the beam path geometry and the Brewster-cut crystal. For this
qualitative discussion of the design and the components, the differences are insignificant.

The cavity housing made of aluminum is planned such that it can be evacuated, see Fig. 7.2a. The
holes in the back of the cavity are for the access to the adjustment screws of the crystal’s trans-
lational stage, a feedthrough for a connection to a vacuum pump, and electrical feedthroughs
for the connection to the piezos, the heating elements and thermistor. The holes meant for the
access to the translational stage, can be shut by using M10 screws and sealing rings. For the
vacuum connection, we use KF− 16 connections and for the evacuation, a diaphragm pump.
The electrical feedthroughs are achieved by using vacuum tight connectors provided by LEMO
(HGP.0S.304CLLDV for the jacks and FLM.0S304.CLAD4 for the plugs). Inside the cavity we use
capton-insulated wire which is designed for high vacuum. Other points of entry which must be
vacuum tight are where the fundamental beam enters the cavity and the second harmonic exits
it. For these points we use AR-coated windows made vacuum-tight by pressing the window with
a sealing ring to the cavity with a metal mask.

The internal breadboard of the cavity (Fig. 7.2b) is also made of aluminum. It is fixed to the
housing by using magnetic seats from Thorlabs (KBS98). The breadboard and housing are cho-
sen to be two distinctive parts to avoid misalignment from the contraction of the latter when
it is evacuated. To facilitate the alignment of the cavity we drill holes into the breadboard at
the position of the mirrors, which we calculated in Sec. 5.2. To hold the mirrors, we use Polaris
mounts from Thorlabs for half inch mirrors. To change the cavity length, we use two piezos from
Piezomechanik, a small one (HPCH150/6-2/2) responsible for fast deviations from resonance
and a larger one (HP St150/14-10/12) for slow drifts from resonance. The latter is also used to
scan the cavity length to find the resonances, see Sec. 7.3. To achieve high bandwidths of the
small piezo, it is glued onto a copper holder filled with soldering tin. This dampens the mechan-
ical vibrations and pushes the resonance frequency to higher values [59]. Also the mirror glued
onto the small piezo is a quarter inch mirror instead of half inch like the others and is only 2mm
thick, to avoid slowing it down due to the weight. The mirrors are glued onto both piezos by
using the two-component glue Torrseal, intended for low-pressure environments.

Finally, we address the crystal holder shown in Fig. 7.2c. It must keep the crystal temperature
stabilized and allow for translations in all directions and angles to optimize the alignment of
the crystal with respect to the beam. We use a translational stage from Newport (9081-M) onto



7. FIRST DOUBLING CAVITY 51

Feedthrough for the adjustement 
of the crystal stage

Electrical 
feedthrough 

Vacuum 
feedthrough

Incoupling 
window

Outcoupling 
window

Breadboard 
mounted with 
magnetic seats

Beam Path

 

(a) Complete cavity drawing with the breadboard and crystal holder
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Figure 7.2: Drawing of the cavity with and without the housing and the crystal holder for the case of a
Brewster-cut crystal
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which we fix the actual crystal holder by using an intermediate piece made of stainless steel. The
screws used to connect the stage and steel part are vented screws to avoid any pressure build-
up from trapped volumes of air. To thermally decouple the heated crystal from the cavity we
screw an intermediate block of Vespel inbetween the stainless steel and copper parts holding
the crystal. Vespel is a material with low heat conductivity. Finally, the parts holding the crystal
which are made of copper are screwed onto the Vespel. We drill holes into these parts to place
a NTC thermistor from OMEGA and a resistive heating cartridge from Thorlabs (HT15W) close
to the crystal. To assure good thermal contact of the thermistor and the heating element to the
copper, we fill Indium foil into any space left in the hole of the heating element and fill thermally
conductive and low outgasing epoxy (EPOTEC H74) into the hole for the thermistor. We use a
Thorlabs controller (TC200) to monitor and regulate the temperature of the crystal. The crystals
are sensitive to any mechanical stress applied to them and can break easily. Therefore we choose
the dimensions of the copper parts such that there is enough space between copper and crystal
to insert a layer of Indium foil. This assures both a softer contact surface compared to copper
and a good heat conductivity. Three different kinds of crystal holders were designed to allow for
the different cavity designs with the AR-coated and Brewster cut LBO crystals with dimension
3×3×20mm3 and the CLBO and BBO crystals with both 3×3×10mm3. For the Brewster-cut
versions, the copper parts are such that the crystal is already in the beam path with the proper
angle.

In this part we have described the optical setup built around the first doubling cavity. Also we
have seen the design and purpose of the cavity and its components in detail.

7.2 Finesse and Free Spectral Range

In this Section we characterize the operating cavity by calculating the finesse for different input
powers of the fundamental light. The expected values for the finesse can be calculated with the
following formula:

F =
π
√∣∣gr t (ω)

∣∣
1− ∣∣gr t (ω)

∣∣
= π (R1R234 (1−κN LPci r c ))

1/4

1− (R1R234 (1−κN LPci r c ))
1/2

,

(7.1)

where gr t (ω) is the roundtrip function as defined in Sec. 3.3. The values for the reflectivity of the
mirrors R1 and R234, the non-linear coefficient κN L and the circulating power Pci r c are all taken
from Sec. 5. The resulting values for F as a function of the input power are shown in Fig. 7.3c.

To determine the finesse in the experiment, we measure the transmission signal and error signal
from the cavity at input powers of 2, 5 and 8W. They are shown in Fig. 7.3a and 7.3b. The am-
plitude of the sidebands is too small to be seen on the transmission signal, therefore we use the
error signal to rescale the x-axis to frequency values. The sidebands are 60MHz away from the
main peak. We then measure the frequency difference between two main cavity peaks, which
defines the free spectral range ∆νF SR and divide it by the peak width δν. We repeat this proce-
dure for the three values of the input power. The resulting values for the finesse are shown as
markers in Fig. 7.3c, where we have taken into account the coupling efficiency of 65% and the
isolator losses of 10%. As we can see from this Figure, the calculated and measured values for the
finesse differ by up to 40%. A possible reason for this discrepancy is the measurement method.
The value for the peak width is particularly sensitive to length fluctuations of the cavity during
the scanning. However, the calculated and measured values are still of the same order of magni-
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tude which is an acceptable result and indicates that our cavity parameters calculated in Sec. 5
yield a functioning doubling stage.
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Figure 7.3: Measurements of transmission and error signal at 5W input power and comparison of the
resulting finesse values for all input powers with calculations

7.3 Pound-Drever-Hall Lock

To maintain a high output power, the cavity length has to be locked onto the resonance. This
is done by a Pound-Drever-Hall locking scheme (see Sec. 4.1). The sidebands are generated by
an EOM before the Raman Fiber Amplifier (see Fig. 6.1) and are set to a frequency of 60MHz.
The feedback loop acts on the two piezos described in Sec. 7.1. The reflection signal and error
signal are measured at an input power of 8W, where losses from the isolator and incoupling are
not taken into account. The measured PDH signal in the unlocked and locked state is shown in
Fig. 7.4a and 7.4b respectively.

Similarly to the frequency stabilization lock of the infrared laser in Sec. 6.2, it is possible to cal-
culate the Root Mean Square of the locked error signal to quantify the deviations from the res-
onance. However, expressing them in frequency is not applicable, as we deal with length stabi-
lization. The resulting RMS is 0.03mV and depicted by grey lines in Fig. 7.4b.
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Figure 7.4: Measurements for the length stabilization of the cavity by the Pound-Drever-Hall method

We have shown how the length of the cavity is stabilized to remain at maximum output by using
the Pound-Drever-Hall locking technique.

7.4 Outgoing Power and Comparison to Simulations

In this Section we are interested in characterizing the output power of the second harmonic light.
We compare the output power values we obtain in a length stabilized state of the cavity to cal-
culations. To determine the output power with the cavity parameters from Sec. 5, we use the
Eq. 3.44 and vary the input power instead of the reflectivity of the first mirror. The resulting
values are shown in Fig. 7.5 as the blue curve.
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Figure 7.5: Plot of the theoretically calculated output power and efficiency and the actual measured
values with the correction from the incoupling of 65% and the isolator losses of 10%

We measure values of the output power for input powers between 2 and 8W in steps of 1W.
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For the data points in Fig. 7.5, we take into account the 10% losses from the isolator and the
coupling efficiency of 65%. We can see that the calculated and measured values are in very good
agreement. It is possible to obtain even higher output powers by further optimizing incoupling
and alignment in the cavity.

In this Section, we have described the optical setup around the first doubling cavity and its de-
sign. We have characterized the cavity by measuring its finesse and output power and compared
the values to our theoretical calculations. These comparisons prove that we have an operational
cavity with the anticipated performance.
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Conclusion

In this thesis we presented the design, construction and initial characterization of a setup for a
one-photon transition in Potassium to Rydberg states. In particular, we designed two frequency
doubling stages to transform light from an infrared laser to the UV light necessary for the tran-
sition. We discussed the performance of the infrared laser system and characterized the perfor-
mance of the implemented first doubling cavity.

We have first discussed Rydberg atoms and in particular the possibility to use Rydberg dressing
as a way to engineer long-range interactions between ultracold atoms. Long lifetimes and strong
interaction of Rydberg-dressed states require a high-power laser source. For Potassium, this laser
source must have a wavelength between 285.5 and 288.5nm. This is best achieved with a laser
system involving three steps: an infrared high power laser source, and two consecutive frequency
doubling cavities.

To explain frequency doubling, we started by discussing the fundamentals of non-linear optical
effects, in particular second harmonic generation. This led us to a formula for the second har-
monic conversion of Gaussian beams. As nonlinear media we used an LBO crystal for the first
doubling stage and a CLBO crystal for the second. With this formula and the parameters of the
crystals we then optimized our setup to a maximum single-pass conversion efficiency for each
doubling stage.

We placed the crystals in bow-tie cavities to increase the second harmonic power. Such cavities
must fulfill two conditions: a stability condition and a self-consistency condition for a Gaussian
cavity mode. On the basis of these conditions and taking into account the results from the single-
pass conversion efficiency we calculated a geometry of the doubling cavities. The reflectivity of
the cavities’ first mirrors was determined by an impedance matching condition. This ensures
maximum circulating power and yields higher second harmonic output power.

For the experimental setup we used an infrared laser and applied frequency stabilization with
the Pound-Drever-Hall method. We achieved a linewidth of approximately 180kHz and then
increased the laser’s output power using a Raman Fiber Amplifier to at least 8W.

We then developed the design further and described the components of the first doubling cavity.
Subsequently, we built the cavity based on the calculated and described design. We measured
the output power of the cavity and obtained values of up to 4W. We found that the cavity’s per-
formance exactly corresponds to the anticipated values. However, the position of mirrors and
lenses could be further improved to avoid incoupling losses.

This work contribute to a setup which will use Rydberg dressed Potassium atoms to study many-
body systems. To complete the setup from this work, the last remaining step is to build the sec-
ond cavity and characterize its performance. With this final setup, we can proceed to actual
experiments with Potassium.
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Appendix

A Paramter Optimization for Alternative Second Harmonic Cavities

This Appendix shows the complementary calculations for the parameter optimization in Sec. 5.

We show the optimization of the Boyd-Kleinman integral from Eq. 5.1 for a BBO crystal of di-
mensions 3×3×10mm3. It is a back-up to the CLBO crystal, in case the latter is damaged due
to mechanic stress or absorption of water. The values for the BBO crystal parameters are taken
from Tab. 3. The resulting values of the Boyd Kleinman integral h as a function of the phase mis-
match factor σ and the focusing parameter ξ are shown are Fig. A.1a. The corresponding Figures
for LBO and CLBO in the main text are Fig. 5.1a and Fig. 5.2a respectively. For BBO, the values for
a maximum h are:

hBBO = 0.0396
ξBBO = 1.42
σBBO =−0.75.

(A.1)

We plot h as a function of ξ for σ = 0 and the optimum σ in Fig. A.1b. The maximum value for
h in both cases only differs by a few percent. We therefore set σ to zero for simplicity. Also as
explained in Sec. 5.1, we decrease ξ by a factor of 3 to avoid the damage threshold of the crystal
and thermal lensing, changing the corresponding waist in the BBO crystal from w = 19.6µm to
w = 34.0µm. The final values used for later calculations are:

hBBO = 0.0313
ξBBO = 0.475
σBBO = 0.

(A.2)

We have optimized for a maximum single-pass conversion efficiency for a cavity with BBO and
found the corresponding waist through the focusing parameter ξ.
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Figure A.1: Boyd-Kleinman factor h for the BBO crystal with material parameters from Tab. 3

The geometry optimization from Sec. 5.2 omits the calculations for a cavity with a Brewster-cut
LBO crystal. The Brewster-cut LBO crystal is meant to be used in case the AR-coating of the other
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LBO crystal is damaged due to high circulating power. The results of the geometry optimization
for a cavity with a Brewster-cut LBO crystal are shown in the following. We optimize the geometry
analogously to the calculations in Sec. 5.2. We start by choosing a mirror curvature of:

R, LBO, Brewster = 50mm. (A.3)

The ensuing values for the long and short arm are:

ds, LBO, Brewster = 46.8mm

dl, LBO, Brewster = 185.3mm.
(A.4)
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Figure A.2: Waist sizes as a function of the opening angle θ for the geometric considerations with the
Brewster-cut LBO crystal
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Figure A.3: Differing stability diagrams in the tangential and sagittal plane for the Brewster-cut LBO
crystal: the blue regions indicate a stable resonator, the blue curve is a result of the self-consistency

condition and the point indicates the choice of arm lengths in this thesis

As for the AR-coated LBO crystal in Fig. 5.3 and the CLBO crystal in Fig. 5.4, we calculate the
crystal and second waist in the sagittal and tangential plane and show the results in Fig. A.2. To
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achieve a round second waist we choose:

θLBO, Brewster = 20.8°. (A.5)

As in Fig. 5.5 for the AR-coated LBO crystal and in Fig. 5.6 for the CLBO crystal, we plot the
stability diagram for the Brewster-cut LBO crystal in the sagittal and tangential plane in Fig. A.3a
and Fig. A.3b respectively. We confirm that the values for the long and short arm from Eq. A.4 lie
within the stability region for the sagittal and tangential plane.

Finally, we show the results for impedance matching for the cavities with the AR coated LBO
crystal and the BBO crystal omitted from Sec. 5.3. We calculate the efficiency as a function of the
input reflectivity R1 for both crystals and show the results in Fig. A.4 for the Brewster-cut LBO
crystal and in Fig. A.5 for the BBO crystal. We use the same input powers for the Brewster-cut
LBO crystal as for the AR-coated alternative (see Fig. 5.7). For the calculation for BBO, the input
powers are the same as the ones for CLBO (see Fig. 5.8). We use the same mirrors in the two
doubling cavities, independent of the choice of crystals. Therefore we the values for the input
reflectivity are the same as in Eq. 5.10:

R1, LBO, Brewster = 0.96±0.0075 R1, BBO = 0.985±0.005. (A.6)

The uncertainty for R1 is shown as a grey area in the Figure and is a consequence of the manu-
facturing process of the mirrors.
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In this Appendix we have presented all calculations for the optimization of alternate cavities,
omitted in Sec. 5.
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