News
30.01.2018
What Magnetic Fields Do in the Brain – And How to Observe It
Tübingen Neuroscientists develop method to better understand transcranial magnetic stimulation (TMS)
Tübingen Neuroscientists have developed a method to measure brain activity during transcranial magnetic stimulation (TMS). TMS has been under investigation for 30 years, yet we still know very little about its mechanisms. A better understanding of TMS could contribute to the further development of this non-invasive, pain-free diagnostic and therapeutic tool. The study has recently been published in eLife.
It sounds like science fiction: we can alter the human brain’s activity simply by holding a wire coil over the head, resulting in movement of the arms or legs. This technique is called transcranial magnetic stimulation (TMS), and it is much used in research and medicine. In TMS, a strong magnetic pulse induces tiny electrical currents in the affected brain tissue. These currents can activate nerve cells.
In medicine, TMS is used to diagnose impairments of motor function such as in multiple sclerosis or as a result of a stroke. TMS is also used therapeutically, for instance to treat tinnitus, clinical depression, chronic pain or addictions. In Europe, however, TMS is not yet an established method of treatment.
This is partly because researchers still do not really understand what happens on a neuronal level when the magnet is switched on – even though TMS has been under investigation for more than 30 years. This lack of understanding is due to the fact that neuronal activity in the brain is usually recorded with microelectrodes. But such recordings are massively disturbed by the strong magnetic fields brought to bear in TMS, resulting in masked signals from the neurons’ activity.
Now researchers from several groups (Cornelius Schwarz, Martin Giese, Ulf Ziemann and Axel Oeltermann) at three Tübingen institutes (Werner Reichardt Centre for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, and Max Planck Institute for Biological Cybernetics) have cooperatively developed a method to shield microelectrodes against TMS-induced magnetic fields. In this way, they can detect changes in individual brain cells with a delay of only one millisecond after the magnetic pulse.
In their study, the Tübingen researchers show how reliable data can be acquired using their shielding technique. In rats, they stimulated the part of the motor cortex that controls forelimb movement. While the rats moved their forepaws following the magnetic stimulation, the researchers measured their neuronal activity. Observing the cortex neurons’ activity directly under TMS, they found that this activity remained for some time after the TMS pulse had ended. Furthermore, the direction of TMS-induced electrical currents in the brain influenced the neuronal activity detected by the researchers. These findings fit with prior experiments done in human subjects, where neuronal activity in the spine and the muscles was measured instead of the brain.
“There are only two research groups in the world who have done something like this”, says Dr. Alia Benali, who planned and performed the study. The methods employed by these two groups, however, require exceedingly demanding engineering capabilities. Moreover, they have been developed specifically for primate brains. Because of these restrictions, many laboratories will not be able to make use of these methods. “We wanted to develop a simple method to investigate neuronal activity under TMS. Any given lab should be able to use it without specific know-how”, PhD student Bingshuo Li explains.
Publication:
Bingshuo Li, Juha P. Virtanen, Axel Oeltermann, Cornelius Schwarz, Martin A. Giese, Ulf Ziemann, Alia Benali: Lifting the Veil on the Dynamics of Neuronal Activities Evoked by Transcranial Magnetic Stimulation. eLife 2017;6:e30552; DOI: 10.775/eLife.30552
Corresponding Author:
Dr. Alia Benali
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Otfried-Müller-Str. 25
D-72076 Tübingen
Tel.: +49 7071 29-89033
alia.benalispam prevention@uni-tuebingen.de
Press Contact CIN:
Dr. Paul Töbelmann
University of Tuebingen
Science Communication and Public Outreach
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Otfried-Müller-Str. 25
D – 72076 Tübingen
Tel.: +49 7071 29-89108
paul.toebelmannspam prevention@cin.uni-tuebingen.de
Press Contact HIH:
Dr. Mareike Kardinal
Director of Communications
Hertie Institute for Clinical Brain Research
Otfried-Müller-Str. 27
72076 Tübingen
Tel.: +49 7071 29-88800
mareike.kardinalspam prevention@medizin.uni-tuebingen.de
The University of Tübingen
Innovative. Interdisciplinary. International. Since 1477. These have always been the University of Tübingen’s guiding principles in research and teaching. With its long tradition, Tübingen is one of Germany’s most respected universities. Tübingen’s Neuroscience Excellence Cluster, Empirical Education Research Graduate School and institutional strategy are backed by the German government’s Excellence Initiative, making Tübingen one of eleven German universities with the title of excellence. Tübingen is also home to five Collaborative Research Centers, participates in six Transregional Collaborative Research Centers, and hosts six Graduate Schools.
Our core research areas include: integrative neuroscience, clinical imaging, translational immunology and cancer research, microbiology and infection research, biochemistry and pharmaceuticals research, the molecular biology of plants, geo-environment research, astro- and elementary particle physics, quantum physics and nanotechnology, archeology and prehistory, history, religion and culture, language and cognition, media and education research.
The excellence of our research provides optimal conditions for students and academics from all over the world. Nearly 28,000 students are currently enrolled at the University of Tübingen. As a comprehensive research University, we offer more than 250 subjects. Our courses combine teaching and research, promoting a deeper understanding of the material while encouraging students to share their own knowledge and ideas. This philosophy gives Tübingen students strength and confidence in their fields and a solid foundation for interdisciplinary research.
The Werner Reichardt Centre for Integrative Neuroscience (CIN)
The Werner Reichardt Centre for Integrative Neuroscience (CIN) is an interdisciplinary institution at the University of Tübingen funded by the DFG’s German Excellence Initiative program. Its aim is to deepen our understanding of how the brain generates functions and how brain diseases impair them, guided by the conviction that any progress in understanding can only be achieved through an integrative approach spanning multiple levels of organization.
The Hertie Institute for Clinical Brain Research (HIH)
Founded in 2001, the Hertie Institute for Clinical Brain Research (HIH) was brought to life by an agreement between several entities: the non-profit Hertie Foundation, the State of Baden-Württemberg, the University of Tübingen and its Medical Faculty, and the University Hospital of Tübingen. The HIH deals with one of the most fascinating fields of today´s research: the decoding of the human brain. The main question is how certain diseases affect brain functions. In its daily work, the HIH builds the bridge from basic research to clinical application. Its goal is to facilitate new and more effective strategies for diagnosis, therapy and prevention. At present, the HIH is home to a total of 18 professors and about 350 employees.