Digital Humanities Center

Dr. Rentschler, Tobias

Project member SFB 1070 ResourceCultures

Contact

t.rentschlerspam prevention@uni-tuebingen.de

 +49 (0)7071 29-73621

 Keplerstraße 2, 72074 Tübingen

Room 139

Work research

•    Research data management in interdisciplinary collaborative eprojects
•    Spatial humanities
•    Geoinformatics and spatial statistics
•    Environmental modelling with machine learning

Professional career

Since 2021
Postdoctoral researcher

SFB 1070 ResourceCultures project S: Research data management, Eberhard Karls Universität Tübingen

2017-2021
Research Associate

SFB 1070 ResourceCultures project S: Geoscientific and geoarchaeological consulting, Eberhard Karls Universität Tübingen

2017
Trainee

Swiss Soil Monitoring Network, modelling section, Agroscope, Federal Department of Economic Affairs, Education and Research, Switzerland

2013-2017
Research assistant in different third-party funding projects

Chair of Physical Geography, Eberhard Karls Universität Tübingen

• Chair of Soil Science and Geomorphology, Eberhard Karls Universität Tübingen

• BEF China (FOR 891): The role of tree and shrub diversity for production, erosion

control, element cycling, and species conservation in Chinese subtropical forest

ecosystems, Eberhard Karls Universität Tübingen

• SFB 1070 ResourceCultures. B03 Exploitation of Resources and Ruling Areas in the

Middle Ages, Eberhard Karls Universität Tübingen

• SNF-Project: Region, Nation and Beyond. An Interdisciplinary and Transcultural

Reconceptualization of Ukraine, Universität St. GallenSoil

Academic education

04/2021
Doctoral degree: Explainable machine learning in soil mapping (Dr. rer. nat.),

Eberhard Karls University of Tübingen

2017 - 2021
Doctoral student of Geography, Eberhard Karls University of Tübingen

Eberhard Karls University of Tübingen

2014 - 2017
Study of physical Geography - Landscape System Sciences (M.Sc.),

Eberhard Karls University of Tübingen

2010 - 2014
Study of Geography (B.Sc.),

Eberhard Karls University of Tübingen

Publications

2022 Rentschler, T., Bartelheim, M., Behrens, T., Díaz-Zorita Bonilla, M., Teuber, S., Scholten, T., Schmidt, K. (2022): Contextual spatial modelling in the horizontal and vertical domains. Scientific reports 12, 1, 9496. doi: 10.1038/s41598-022-13514-5
2021 Rentschler, T., Schmidt, K., Behrens, T., Scholten, T., (2021): Soil quality and soil property data and terrain data for 3D multi-scale contextual spatial modelling in Lora del Rio, Andalusia, Spain. PANGAEA. doi.pangaea.de/10.1594/PANGAEA.938774
Rentschler, T., Schmidt, K., Nitschke, R., Scholten, T., Teuber, S., (2021): Soil spectroscopy data from 130 soil profiles in Lora del Rio, Andalusia, Spain. PANGAEA.  doi.pangaea.de/10.1594/PANGAEA.938774
2020 Rentschler, T., Werban, U., Ahner, M., Behrens, T., Gries, P., Scholten, T., Teuber, S., Schmidt, K. (2020): 3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning. Vadose Zone Journal 19, 1. doi: 10.1002/vzj2.20062
Stumpf, F., Schneider, M.K., Keller, A., Mayr, A., Rentschler, T., Meuli, R.G., Schaepman, M., Liebisch, F. (2020): Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecological Indicators 113, 106201. doi: 10.1016/j.ecolind.2020.106201
Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T., Zeraatpisheh, M., Sarmadian, F., Valavi, R., Davatgar, N., Behrens, T., Scholten, T. (2020): Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space. Remote Sensing 12 1095. doi: 10.3390/rs12071095
2019 Rentschler, T., Gries, P., Behrens, T., Bruelheide, H., Kühn, P., Seitz, S., Shi, X., Trogisch, S., Scholten, T., Schmidt, K. (2019): Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE 14(8): e0220881. doi: 10.1371/journal.pone.0220881
2017 Schmaltz, E.M., Rosner, H.-J., Rentschler, T., Märker, M. (2017): Assessment of groundwater response and soil moisture fluctuations in the Mugello Basin (central Italy). Geography, Environment, Sustainability (GES Journal) 10/2, 15-27. doi: 10.24057/2071-9388-2017-10-2-15-27

Talks and presentations

2022 Rentschler, T., Bartelheim, M., Behrens, T., Díaz-Zorita Bonilla, M., Scholten, T., Schmidt, K. (2022): Tiefenbezogene und skalenabhängige Modellierung der Bodenqualität in Andalusien, Spanien. Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 2022, Trier.
Taghizadeh-Mehrjardi, R., Rentschler, T., Schmidt, K., Cheshmberah, F., Scholten, T. (2022): Improving the spatial prediction of soil texture fractions using semisupervised machine learning in Germany.  Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 2022, Trier.
Rentschler, T., Bartelheim, M., Behrens, T., Díaz-Zorita Bonilla, M., Scholten, T., Schmidt, K. (2022): The relevant range of scales for 3D multi-scale contextual spatial modelling. 22nd World Congress of Soil Science, Glasgow, Vereinigtes Königreich.
Bellat, M., Glissmann, B., Rentschler, T., Schmidt, K., Sconzo, P., Pfälzner, P., Scholten, T. (2022): Unraveling archaeological settlement, landscape, and resource use patterns with machine learning in Kurdistan (Iraq). EGU General Assembly 2022, Wien.
2021 Rau, K., Gläßle, T., Rentschler, T., Hennig, P., Scholten, T. (2021): Spatial prediction of soil thickness with Gaussian Process Regression using pedological knowledge described by partial differential equations. EGU General Assembly 2021, Wien.
2020

Rentschler, T., Bartelheim, M., Díaz-Zorita Bonilla, M., Gries, P., Scholten, T., Schmidt, K. (2020): Volumetric soil quality modelling with machine learning in a diverse agricultural landscape in Andalusia, Spain.

Bindereif, L., Rentschler, T., Batelheim, M., Díaz-Zorita Bonilla, M., Gries, P., Scholten, T., Schmidt, K. (2020): Synthetic sampling for spatio-temporal land cover mapping with machine learning and the Google Earth Engine in Andalusia, Spain.
2019 Scholten, T., Rentschler, T., Taghizadeh-Mehrjardi, R., Schmidt, K. (2019): Prediction of Drought Risk and Soil Quality using FTIR and ML - Examples from Prehistoric Andalusia, Spain. Interdisciplinary and International Workshop 26.-28.09.2019 Linares, Spain.
Rentschler, T., Bartelheim, M., Díaz-Zorita Bonilla, M., Scholten, T., Schmidt, K. (2019): Convolutional neural networks und Nahinfrarotspektroskopie für die Prognose von Bodenqualitätsindikatoren. Jahrestagung der Deutschen Bodenkundlichen Gesellschaft 2019, Kommission V /Digital Soil Mapping, 25. – 28. August 2019, Bern, Schweiz.
Rentschler, T., Ahner, M., Behrens, T., Gries, P., Kühn, P., Werban, U., Scholten, T., Schmidt, K.: Three-dimensional mapping of soil organic carbon and soil water content with proximal soil sensing data. EGU General Assembly 2019, Vienna.
Bindereif, L., Rentschler, T., Bartelheim, M., Díaz-Zorita Bonilla, M., Gries, P., Scholten, T., Schmidt, K.: Analysis and mapping of spatio-temporal land use dynamics in Andalusia, Spain using the Google Earth Engine cloud computing platform and the Landsat archive. EGU General Assembly 2019, Vienna.
Rentschler, T., Ahner, M., Behrens, T., Gries, P., Kühn, P., Werban, U., Scholten, T., Schmidt, K.: Dreidimensionale Kartierung des organischen Bodenkohlenstoffs und des Bodenwassergehalts mit geophysikalischen Methoden. 7th Digital Soil Mapping Workshop, Deutsche Bodenkundliche Gesellschaft (DBG), AG DSM, Tübingen.
2018 Rentschler, T., Gries, P., Behrens, T., Bruelheide, H., Kühn, P., Seitz, S., Trogisch, S., Scholten, T., Schmidt, K.: Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. 2nd ISMC Conference: New Perspectives on Soil Models, Wageningen, Netherlands.
Stumpf, F., Keller, A., Mayr, A., Rentschler, T., Schneider, M., Meuli, R., Schaepman, M., Liebisch, F.: Spatial monitoring of grassland management and plant diversity in Switzerland. SUSALPS Conference 2018, Garmisch-Partenkirchen, Germany.
Taghizadeh-Mehrjardi, R., Schmidt, K., Eftekhari K., Rentschler, T., Scholten, T.: Updating the categorical soil map of Iran using limited soil legacy data. 21st World Congress of Soil Science, Rio de Janeiro, Brazil.
Rentschler, T., Schmidt, K.: Learning QGIS - Getting started with geospatial analysis and mapping. In Poseidons Reich XXIII, Jahrestagung der DEGUWA e.V.

2017

Rentschler, T., Kühn, P., Scholten, T., Schmidt, K.: Dreidimensionale Kartierung von SOC basierend auf maschinellem Lernen in Jiangxi, VR China. Deutscher Kongress für Geographie, Tübingen, Germany.

Rentschler, T., Kühn, P., Behrens, T., Scholten, T., Schmidt, K.: Dreidimensionale Modellierung von organischem Kohlenstoff im Boden basierend auf multi-skaliger Reliefanalyse und Methoden des Data Minings in Jiangxi, VR China. Deutsche Bodenkundliche Gesellschaft (DBG) Jahrestagung 2.-7.9.2017, Göttingen, Germany.
Rentschler, T., Kühn, P., Scholten, T., Schmidt, K.: Three-dimensional mapping of soil organic carbon (SOC) based on multi-scale digital terrain analysis and data mining in Jiangxi Province, PR China. Pedometrics 2017, Wageningen, Netherlands.