Uni-Tübingen

Press Releases Archive

17.12.2020

Newly developed curriculum improves students’ understanding of electric circuits in schools

Researchers at universities in Frankfurt and Tübingen have developed and empirically evaluated a new teaching concept for teaching secondary physics.

Teaching concept: A battery generates an electrical pressure difference (left), which leads to an electric current through it when a lamp is connected (right).

The topic of electricity often poses difficulties for many secondary school students in physics lessons. Physics Education Researchers at the Goethe University and the University of Tübingen have developed and empirically evaluated a new, intuitive curriculum as part of a major comparative study. The result: not only do secondary school students gain a better conceptual understanding of electric circuits, but teachers also perceive the curriculum as a significant improvement in their teaching. 

Life without electricity is something that is no longer imaginable. Whether it be a smartphone, hair-dryer or a ceiling lamp – the technical accomplishments we hold dear all require electricity. Although every child at school learns that electricity can only flow in a closed electric circuit, what is actually the difference between current and voltage? Why is a plug socket a potential death-trap but a simple battery is not? And why does a lamp connected to a power strip not become dimmer when a second lamp is plugged in?

Research into physics education has revealed that even after the tenth grade many secondary school students are not capable of answering such fundamental questions about simple electric circuits despite their teachers’ best efforts. Against this backdrop, Jan-Philipp Burde, who recently became a junior professor at the University of Tübingen, in the framework of his doctoral thesis supervised by Prof. Thomas Wilhelm at Goethe University, developed an innovative curriculum for simple electric circuits, which specifically builds upon the everyday experiences of the students. In contrast to the approaches taken to date, from the very outset the new curriculum aims to help students develop an intuitive understanding of voltage. In analogy to air pressure differences that cause an air stream (e.g. at an inflated air mattress), voltage is introduced as an “electric pressure difference” that causes an electric current. A comparative study with 790 school pupils at secondary schools in Frankfurt showed that the new curriculum led to a significantly improved understanding of electric circuits compared to traditional physics tuition. Moreover, the participating teachers also stated that using the new curriculum fundamentally improved their teaching. 

The two researchers from Frankfurt and Tübingen have now published a detailed description of the theoretical considerations underlying the teaching concept in the renowned international journal “Physical Review Physics Education Research” in the framework of the “Focused Collection: Theory into Design”. The German Society for Chemistry and Physics Education (GDCP) awarded its “GDCP-Nachwuchspreis”, a prize presented each year for the best dissertation or post-doctoral thesis in chemistry and physics education in the German-speaking region, to Burde for his dissertation. As of the winter semester 2019/20 Burde was appointed to a junior professorship for Physics Education Research supported by the Vector Foundation at the University of Tübingen. On the basis of his work a cross-border consortium encompassing the Universities Tübingen, Frankfurt, Darmstadt, Dresden, Graz and Vienna has been constituted with the objective of making the subject of “simple electric circuits” more interesting and more comprehensible by embedding the topic in contexts from daily life.

Publications:

Jan-Philipp Burde and Thomas Wilhelm (2020). Teaching electric circuits with a focus on potential differences. In: Phys. Rev. Phys. Educ. Res. 16, 020153, DOI: https://doi.org/10.1103/PhysRevPhysEducRes.16.020153 
Jan-Philipp Burde (2018): Konzeption und Evaluation eines Unterrichtskonzepts zu einfachen Stromkreisen auf Basis des Elektronengasmodells. Studien zum Physik- und Chemielernen, Band 259, Logos-Verlag, Berlin, ISBN: 978-3-8325-4726-4, http://doi.org/10.30819/4726 

Contact:

Prof. Dr. Thomas Wilhelm
Executive Director
Department of Physics Education Research
Goethe University Frankfurt
 Phone: +49 69 798-47845
wilhelmspam prevention@physik.uni-frankfurt.de 

Jun.-Prof. Dr. Jan-Philipp Burde
Physics Education Research Group
University of Tübingen
 Phone: +49 7071 29 78651
jan-philipp.burdespam prevention@uni-tuebingen.de 

Contact for press:

Eberhard Karls Universität Tübingen
Public Relations Department
Dr. Karl Guido Rijkhoek
Director

Antje Karbe
Press Officer
Phone +49 7071 29-76789
Fax +49 7071 29-5566
antje.karbespam prevention@uni-tuebingen.de

www.uni-tuebingen.de/en/university/news-and-publications

Back