Uni-Tübingen

attempto online

07.11.2019

Alzheimer-Auslöser enttarnt

Beta-Amyloid-Fibrillen aus dem menschlichen Gehirn aufbereitet – Forscher der Universität Tübingen beteiligt

Kryo-elektronenmikroskopische Aufnahme von Aß-Amyloid Fibrillen, welche aus menschlichem Hirngewebe von Alzheimer Patienten aufgereinigt wurden. Hervorgehoben sind einzelne Fibrillen mit unterschiedlichen Formen (Morphologie I und II). Zu sehen ist außerdem eine Fibrille, welche in unterschiedlichen Bereichen verschiedene Morphologien aufweist (roter Asterisk).

Wissenschaftlerinnen und Wissenschaftlern der Universität Ulm ist es erstmals gelungen, Beta-Amyloid-Fibrillen aus dem menschlichen Gehirn zu isolieren und zu untersuchen. Diese Eiweißfasern stehen im Verdacht, die Alzheimer-Krankheit sowie die Zerebrale Amyloid-Angiopathie mit auszulösen. Veröffentlicht wurde die Studie, an der auch Forschende aus Tübingen, Halle und San Diego beteiligt waren, im Fachjournal Nature Communications. 

Dass Morbus Alzheimer mit Proteinablagerungen im Gehirn einhergeht, ist seit vielen Jahren bekannt. Unter Alzheimer-Forschern gelten dabei zwei Proteine, Tau und Beta-Amyloid, als besonders krankheitsverursachend. Diese Eiweiße bilden lange Molekülketten, sogenannte Fibrillen, die sich als Faserklumpen im Gehirn ansammeln. Die genaue Ursache, warum sich körpereigene Proteine krankhaft entwickeln und zu degenerativen Veränderungen des Gehirns führen, ist noch nicht bekannt.

Wissenschaftlerinnen und Wissenschaftlern der Universität Ulm ist es jedoch erstmals gelungen, Beta-Amyloid-Fibrillen aus Gewebeproben erkrankter Menschen zu extrahieren und präzise darzustellen. Die Überraschung dabei: die Fasern unterscheiden sich sehr deutlich von den bisher zur Forschung genutzten, synthetisch erzeugten Fibrillen.

„Unsere Hauptergebnisse sind, dass wir die Struktur von Beta-Amyloid sichtbar machen konnten, und dass sie sich fundamental von bisherigen Annahmen unterscheidet“, erklärt Professor Marcus Fändrich, Leiter des Instituts für Proteinbiochemie der Universität Ulm. Zum einen sind die einzelnen Peptide, aus denen sich die Fibrillen zusammensetzen, anders gestaltet als die Exemplare aus dem Reagenzglas, zum anderen sind die nun untersuchten Fibrillen in sich völlig anders verdrillt als die synthetischen Exemplare. „Das ist eine grundsätzlich andere Eigenschaft, die wir so nicht erwartet hatten“, sagt Fändrich. Für ihre Studie untersuchten die Wissenschaftlerinnen und Wissenschaftler Gewebeproben dreier Patienten, in denen sie die gleichen Strukturen fanden. 

Back